Turning Forces and Levers. Junior Science

Size: px
Start display at page:

Download "Turning Forces and Levers. Junior Science"

Transcription

1 Turning Forces and Levers Junior Science

2 Lesson Objectives Understand the terms - Lever, Fulcrum, Turning effect, Moment Recall the formula M= Fd and be able to calculate the moment of a force Be able to explain why an object with forces acting on it isn t turning Be able to explain why an object at rest doesn t turn. Be able to calculate the size of a force (or it s perpendicular distance from a pivot) acting on an object that is balanced Explain, in terms of forces, why objects with pivot points appear at rest or are moving in various situations. calculate the size of a force (or it s perpendicular distance from a pivot) acting on an object that is balanced in a number of contexts. Understand equilibrium and the Law of the Lever. Be able to carry out simple calculations using a lever.

3 Turning Effects When we apply a force, it sometimes causes an object to turn or twist. This turning effect of a Force is called the Moment (M) i.e. opening a bottle, turning a spanner The turning effect can be increased by - increasing the size of the force - increasing the distance from the turning point

4 Turning Effect (Moment) Moment = Force x perdendicular Distance

5 What is a Lever? A Lever is a rigid body free to move about a fixed point called the fulcrum. Levers are machines used to increase force. They are called "simple machines" because they have only two parts - the handle and the fulcrum. In a lever a force called the EFFORT is used to overcome a resisting force called the LOAD. The pivotal point is called the FULCRUM.

6 Examples of Levers

7 Can you locate the Effort, Load and Fulcrum on each of the following levers?

8 Scissors Effort Load Fulcrum

9 Wheelbarrow Effort Fulcrum Load

10 The Human Arm Effort Load Fulcrum

11 Spanner Fulcrum Effort

12 Types of Levers There are three main types of levers First Class Lever Second Class Levers Third Class Levers. In each type the fulcrum, effort and load are located at difference positions.

13 A First Class Lever The First class lever is a very common type of lever. The fulcrum is in the centre with the effort and load on the outside. Fulcrum Load Effort Examples of first class levers include: A seesaw, pliers, scissors.

14 Second Class Lever A second class lever is one in where the load is in the centre and the effort and fulcrum on the outside. Effort Load Fulcrum Examples include a Wheelbarrow, nutcracker, and bottle opener.

15 Third Class Lever Third class levers are hard to find. They have the effort in the centre and fulcrum and load on the outside. Load Fulcrum Effort Examples include Hammers and fishing rods.

16 Law of Moments The Turning effect or Moment of a force depends on the size of the force and the distance from the fulcrum. Moment = Force x Perpendicular distance (from the fulcrum) M = F(N) x d(m)

17 The Law of the Lever F 1 d 1 = F 2 d 2 F2 F1 When a body is in equilibrium the sum of the clockwise moments is equal to the sum of the anti-clockwise moments about the same point.

18 When a body is in equilibrium the sum of the clockwise moments is equal to the sum of the anti-clockwise moments about the same point. Weight = Force W = F

19 The prove the law of the lever 1. Draw diagram of equipment in copy 2. Copy table below F 1 d 1 F 1 d 1 F 2 d 2 F 2 d 2 (N) (m) Nm (N) (m) Nm 3. Carry out three calculations to test the law of the lever

20 Law of the Lever 25cm 20cm 20N F F 1 d 1 = F 2 d 2 20N X 0.25m = F 2 x (0.20m) 5Nm = F 2 x (0.20m) 5Nm / 0.20m = F 2 25Nm = F 2

21 Law of the Lever 25cm 10cm 30cm 20N 10N W (0.25m x 20N) + ( 0.10m x 10M) = 5Nm + 1Nm 6Nm 6Nm / 0.30m 20N = (W x 0.30) W

22 Law of the Lever 40cm d 20N 50N (20N x 0.4m) = 8Nm 8Nm/50N = 0.16m = (50N x d) d d Position is at the 66cm Mark

23 Law of the Lever 5 cm 60 cm 10N (10N x 0.45cm) = 4.5Nm = 4.5Nm / 0.1m 45N = F (F x 0.10m) F F

24 Summary This turning effect of a Force is called the Moment (M) Moment = Force x Perpendicular distance (from the fulcrum) The turning effect can be increased by increasing the size of the force or the distance from the turning point. A Lever is a rigid body free to move about a fixed point called the fulcrum. Levers are machines used to increase force. They are called "simple machines" because they have only two parts the handle and the fulcrum. In a lever a force called the EFFORT is used to overcome a resisting force called the LOAD. The pivotal point is called the FULCRUM. The Law of the lever states thatwhen a body is in equilibrium the sum of the clockwise moments is equal to the sum of the anti-clockwise moments about the same point. F 1 d 1 = F 2 d 2

Simple machines and the lever

Simple machines and the lever Simple machines and the lever Objectives Define mechanical advantage. Calculate and demonstrate the mechanical advantage of a lever. Draw a free-body diagram of a simple machine. 1. What is mechanical

More information

Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the

Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the Module 2: LEVERS Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the difference between the three classes of levers.

More information

Moments, Levers and Centre of Gravity

Moments, Levers and Centre of Gravity Second Year Science Moments, Levers and Centre of Gravity Ms Rochford In this topic: Levers Moment of a force Centre of Gravity Levers Levers are everywhere! Levers Lever: a rigid body that can rotate

More information

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers OpenStax-CNX module: m38992 1 Torque and levers * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Torque and

More information

How Can Motion be Described? and Explained?

How Can Motion be Described? and Explained? How Can Motion be Described? and Explained? Lesson 14: Torque and the Stability of Structures Stable Structures Explain why structures should be stable. What are the conditions for a structure to be stable?

More information

Comparing the Mechanical Advantage of Levers

Comparing the Mechanical Advantage of Levers Chapter 14 Work, Power, and Machines Investigation 14A Comparing the Mechanical Advantage of Levers Background Information A lever consists of a rigid bar that is free to rotate around a fixed point. The

More information

Name Date Class. This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines.

Name Date Class. This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines. Simple Machines This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines. Use Target Reading Skills Before you read the section,

More information

Levers of the Musculoskeletal System

Levers of the Musculoskeletal System Levers of the Musculoskeletal System Lever system consists of: lever fulcrum load force Three classes of levers 1. first class (a) - pry bars, crowbars 2. second class (b) - wheelbarrow 3. third class

More information

MATHEMATICAL SKILLS MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM AND ASSOCIATED EXAMINATION QUESTIONS.

MATHEMATICAL SKILLS MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM AND ASSOCIATED EXAMINATION QUESTIONS. MATHEMATICAL SKILLS MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM AND ASSOCIATED EXAMINATION QUESTIONS DESIGN AND TECHNOLOGY NOT FOR SALE OR REDISTRIBUTION THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER

More information

Lever Lab: First Class Lever

Lever Lab: First Class Lever Lever Lab 2 Name: Lever Lab: First Class Lever Objective: To investigate the use of a lever as a simple machine. Materials: Workshop Stand, Lever, Bolt, Hooked Masses Background: A lever is one of the

More information

Created by T. Madas VECTOR MOMENTS. Created by T. Madas

Created by T. Madas VECTOR MOMENTS. Created by T. Madas VECTOR MOMENTS Question 1 (**) The vectors i, j and k are unit vectors mutually perpendicular to one another. Relative to a fixed origin O, a light rigid rod has its ends located at the points 0, 7,4 B

More information

Work & Simple Machines. Chapter 4

Work & Simple Machines. Chapter 4 Work & Simple Machines Chapter 4 Work & Power Section 1 Work Work - occurs when a force causes an object to move in the same direction that the force is applied. Work involves motion, not just effort.

More information

When the applied force is not perpendicular to the crowbar, for example, the lever arm is found by drawing the perpendicular line from the fulcrum to

When the applied force is not perpendicular to the crowbar, for example, the lever arm is found by drawing the perpendicular line from the fulcrum to When the applied force is not perpendicular to the crowbar, for example, the lever arm is found by drawing the perpendicular line from the fulcrum to the line of action of the force. We call torques that

More information

Simple Machines. Bởi: OpenStaxCollege

Simple Machines. Bởi: OpenStaxCollege F Simple Machines Simple Machines Bởi: OpenStaxCollege Simple machines are devices that can be used to multiply or augment a force that we apply often at the expense of a distance through which we apply

More information

Nozha Directorate of Education Nozha Language Schools Ismailia Road Branch

Nozha Directorate of Education Nozha Language Schools Ismailia Road Branch Cairo Governorate Nozha Directorate of Education Nozha Language Schools Ismailia Road Branch Department: Science Form : 6 th Primary Unit ( 1 ) Lesson ( 1 ) : Type of levers A- Complete: 1- is a rigid

More information

Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

More information

Structures Activity 2 Levers

Structures Activity 2 Levers Structures Activity 2 Levers Object: The objects of this activity are to explore the concepts of torque and rotational equilibrium, study the three classes of lever, and apply the concepts of torque and

More information

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc.

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc. Mechanisms Simple Machines Lever, Wheel and Axle, and Pulley 2012 Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six

More information

Chapter 3 Machines EXERCISE- 3 (A)

Chapter 3 Machines EXERCISE- 3 (A) EXERCISE- 3 (A) Question 1: What do you understand by a simple machine? Solution 1: A machine is a device by which we can either overcome a large resistive force at some point by applying a small force

More information

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2 Lecture 8 Torque and Equilibrium Pre-reading: KJF 8.1 and 8.2 Archimedes Lever Rule At equilibrium (and with forces 90 to lever): r 1 F 1 = r 2 F 2 2 General Lever Rule For general angles r 1 F 1 sin θ

More information

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 12: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational 2 / / 1/ 2 m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv 2 /

More information

Work, Power and Simple Machines. Chapter 4 Physical Science

Work, Power and Simple Machines. Chapter 4 Physical Science Work, Power and Simple Machines Chapter 4 Physical Science Work, Power and Simple Machines Machines make jobs easier by increasing the applied force on an object. The trade-off is that this also requires

More information

Moments of forces. Rudolf arnheim

Moments of forces. Rudolf arnheim T C Y Moments of forces The photograph shows a mobile tower crane, consisting of the main vertical section housing the engine, winding gear and controls and the boom which supports the load and the counterweight.

More information

Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

More information

Simple Biomechanical Models. Introduction to Static Equilibrium F F. Components of Torque. Muscles Create Torques. Torque is a Vector

Simple Biomechanical Models. Introduction to Static Equilibrium F F. Components of Torque. Muscles Create Torques. Torque is a Vector Simple Biomechanical Models Introduction to Static Equilibrium Components of Torque axis of rotation (fulcrum) force (not directed through axis of rotation) force (moment) arm T = F x d force arm Muscles

More information

Unit 4 Statics. Static Equilibrium Translational Forces Torque

Unit 4 Statics. Static Equilibrium Translational Forces Torque Unit 4 Statics Static Equilibrium Translational Forces Torque 1 Dynamics vs Statics Dynamics: is the study of forces and motion. We study why objects move. Statics: is the study of forces and NO motion.

More information

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES SPH4C Findlay What do you think of when you hear the word machine? Simple Machines Machines created

More information

Rotational Equilibrium

Rotational Equilibrium Rotational Equilibrium 6-1 Rotational Equilibrium INTRODUCTION Have you ever tried to pull a stubborn nail out of a board or develop your forearm muscles by lifting weights? Both these activities involve

More information

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14 Static equilibrium Objectives State the conditions of static equilibrium in terms of forces and torques. Draw a free-body diagram of a lever showing all forces. Use the condition of equilibrium to solve

More information

GIANCOLI READING ACTIVITY Lesson 8-4

GIANCOLI READING ACTIVITY Lesson 8-4 AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 1. Big Idea(s): GIANCOLI READING ACTIVITY Lesson 8-4 a. Big Idea 3: The interactions of an object with other objects can be described

More information

Forces. Name and Surname: Class: L E A R N I N G O U T C O M E S. What is a force? How are forces measured? What do forces do?

Forces. Name and Surname: Class: L E A R N I N G O U T C O M E S. What is a force? How are forces measured? What do forces do? F O R C E S P A G E 1 L E A R N I N G O U T C O M E S Forces What is a force? Y E A R 9, C H A P T E R 2 G J Z A H R A B. E D ( H O N S ) How are forces measured? What do forces do? Why do we need to think

More information

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14 Objectives Calculate torque given the lever arm (perpendicular distance) and the force. Calculate torque in newton meters and in pound feet. Interpret positive and negative signs in the context of torque.

More information

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever, 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support

More information

Models and Anthropometry

Models and Anthropometry Learning Objectives Models and Anthropometry Readings: some of Chapter 8 [in text] some of Chapter 11 [in text] By the end of this lecture, you should be able to: Describe common anthropometric measurements

More information

8Moments. Introduction

8Moments. Introduction 8Moments Introduction When you use a spanner to tighten or loosen a nut, you are applying a moment. moment is a turning effect and is related to the concept of leverage: if you use a screwdriver to prise

More information

Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER

Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER WORK Work: The transfer of energy to an object by the application of a force that causes the object to move in the direction of the force. WORK

More information

is the study of and. We study objects. is the study of and. We study objects.

is the study of and. We study objects. is the study of and. We study objects. Static Equilibrium Translational Forces Torque Unit 4 Statics Dynamics vs Statics is the study of and. We study objects. is the study of and. We study objects. Recall Newton s First Law All objects remain

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley Mechanisms Simple Machines Lever, Wheel and Axle, & Pulley Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six Simple

More information

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path.

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. Center of Mass A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. The bat wobbles about a special point. This point stays

More information

Theme 2 - PHYSICS UNIT 2 Forces and Moments. A force is a push or a pull. This means that whenever we push or pull something, we are doing a force.

Theme 2 - PHYSICS UNIT 2 Forces and Moments. A force is a push or a pull. This means that whenever we push or pull something, we are doing a force. Forces A force is a push or a pull. This means that whenever we push or pull something, we are doing a force. Forces are measured in Newtons (N) after the great physicist Sir Isaac Newton. The instrument

More information

SECONDARY SCHOOL - IMRIEĦEL HALF-YEARLY EXAMINATIONS 2017/2018

SECONDARY SCHOOL - IMRIEĦEL HALF-YEARLY EXAMINATIONS 2017/2018 FORM: 3 SECONDARY SCHOOL - IMRIEĦEL HALF-YEARLY EXAMINATIONS 2017/2018 PHYSICS Track 3 Time: 1½ hrs Name: Class: Answer all the questions. Write down your answers in the spaces provided. The use of a calculator

More information

Evaluation copy. First-Class Levers. computer OBJECTIVES MATERIALS

Evaluation copy. First-Class Levers. computer OBJECTIVES MATERIALS Dual-Range Force Sensor Name Date First-Class Levers Computer 30 A lever is a simple machine used to make work easier. It consists of a long, rigid bar with a support that allows the bar to pivot. The

More information

PHY 126 Lecture Notes Chapter 10

PHY 126 Lecture Notes Chapter 10 Chapter 10 Simple Machines OBJECTIVES Define a machine Examine energy transfer in machine to determine Mechanical Advantage and Energy Efficiency KEY WORDS: Simple and complex machines, Effort and resistance

More information

Check out course website for: Link to practice problems & old/sample exams Link to HW website Lecture notes

Check out course website   for: Link to practice problems & old/sample exams Link to HW website Lecture notes Common Exam 1 Time: 4-5:25pm on 9/26, Monday (arrive 15 min before) Room: TBA Covers Week 1 and 2 in the syllabus All problems will be open-ended, no multiple-choice Check out course website http://web.njit.edu/~kenahn

More information

CHAPTER 24 SIMPLE MACHINES

CHAPTER 24 SIMPLE MACHINES CHAPTER 24 SIMPLE MACHINES EXERCISE 106, Page 240 1. A simple machine raises a load of 825 N through a distance of 0.3 m. The effort is 250 N and moves through a distance of 3.3 m. Determine: (a) the,

More information

Chapter: Work and Machines

Chapter: Work and Machines Table of Contents Chapter: Work and Machines Section 1: Work Section 2: Using Machines Section 3: Simple Machines 1 Work What is work? To many people, the word work means something they do to earn money.

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Work and Simple Machines

Work and Simple Machines Work Work and Simple Machines Simple Machines Mechanical Advantage Calculating MA Misc. 200 200 200 200 200 400 400 400 400 400 600 600 600 600 600 800 800 800 800 800 1000 1000 1000 1000 1000 FINAL JEOPARDY

More information

Use the following equation to calculate the moment of child B about the pivot of the see-saw. moment of a force = force distance

Use the following equation to calculate the moment of child B about the pivot of the see-saw. moment of a force = force distance Q1.Two children, A and B, are sitting on a see-saw, as shown in the figure below. The see-saw is balanced. (a) Use the following equation to calculate the moment of child B about the pivot of the see-saw.

More information

The diagram shows the wheel wrench being used without the handle extended.

The diagram shows the wheel wrench being used without the handle extended. Q. A company makes a wheel wrench with an extending handle. The company claims that the extending handle makes it easier to loosen the wheel nuts on a car. The diagram shows the wheel wrench being used

More information

LAMC Advanced Circle March 12, A deeper look at weighted sums.

LAMC Advanced Circle March 12, A deeper look at weighted sums. LAMC Advanced Circle March 12, 2017 A deeper look at weighted sums. Last time, many of our students felt uncomfortable with the weighted sums in the formula defining a convex function y = f(x). f(αx 1

More information

2.1 Introduction to Simple Machines

2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines Simple Machines Unit DO NOT WRITE ANYWHERE IN THIS PACKAGE One of the few properties that separate us from animals is our ability

More information

Science Olympiad. Machines. Roger Demos

Science Olympiad. Machines. Roger Demos Science Olympiad Machines. Roger Demos Some Basic Physics Concepts What do Machines do? Do they allow one to do more work? Not really, at best they make completing a task easier. So then what do Machines

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

Broughton High School

Broughton High School 1 Physical Science Vocabulary Vocabulary for Chapter 5 - Work and Machines No.# Term Page # Definition 2 1. Compound Machine 2. Efficiency 3. Inclined Plane 4. Input force 5. Lever 6. Machine 7. Mechanical

More information

Chapter 5 The Force Vector

Chapter 5 The Force Vector Conceptual Physics/ PEP Name: Date: Chapter 5 The Force Vector Section Review 5.1 1. Indicate whether each of the following units of measurement are scalar or vector units: Speed _scalar time scalar mass

More information

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions 4.5.3 Forces and elasticity 4.5.2 Work done and energy transfer 4.5.1 Forces and their interactions Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G 1. Identify

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture five moments Moments 1 Moments forces have the tendency to make a body rotate about an axis http://www.physics.umd.edu

More information

Chapter 15 Work, Power & Simple Machines

Chapter 15 Work, Power & Simple Machines Chapter 15 Work, Power & Simple Machines Essential Questions: I. What is Work? (In Physics Terms!) II. What is Power? (In Physics Terms!) III. How do machines make work easier and how efficient are they?

More information

IB PHYSICS OPTION: ENGINEERING PHYSICS. Atit Bhargava

IB PHYSICS OPTION: ENGINEERING PHYSICS. Atit Bhargava IB PHYSICS OPTION: ENGINEERING PHYSICS Atit Bhargava 016 First published 016 Private Bag 703 Marrickville NSW 1475 Australia Tel: +61 9516 11 Fax: +61 9550 1915 sales@sciencepress.com.au www.sciencepress.com.au

More information

When an object is in translational equilibrium and rotational equilibrium, we say it is in static equilibrium.

When an object is in translational equilibrium and rotational equilibrium, we say it is in static equilibrium. STATIC EQUILIBRIUM I. PURPOSE In this experiment you will apply the concept of torque and learn what we mean when we say that a body is in static equilibrium. You will examine an object in static equilibrium

More information

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration: Recap I Angular position: Angular displacement: s Angular velocity: Angular Acceleration: Every point on a rotating rigid object has the same angular, but not the same linear motion! Recap II Circular

More information

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines Chapter 12 - Work and Energy Section 1 - Work, Power, and Machines 1 Imagine trying to lift a car without a jack You might be exerting a lot of force, but not moving the It would feel like you have done

More information

Torque. 1. Torque - To make an object rotate, we must apply a force at a certain distance away from the axis => ex) opening a door

Torque. 1. Torque - To make an object rotate, we must apply a force at a certain distance away from the axis => ex) opening a door Torque Level : Conceptual Physics Teacher : Kim 1. Torque - To make an object rotate, we must apply a force at a certain distance away from the axis => ex) opening a door Torque is defined as τ = r F where

More information

Parallel Forces. Forces acting in the same or in opposite directions at different points on an object.

Parallel Forces. Forces acting in the same or in opposite directions at different points on an object. Parallel Forces Forces acting in the same or in opposite directions at different points on an object. Statics refers to the bodies in equilibrium. Equilibrium deals with the absence of a net force. When

More information

Springs Old Exam Questions

Springs Old Exam Questions Springs Old Exam Questions Q1. A spring has a stiffness of 15 Nm 1. Calculate the extension of the spring when a weight of 8.0 N is suspended on it. Give your answer in metres. extension of spring... m

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

More information

Moments Mixed exercise 4

Moments Mixed exercise 4 Moments Mixed exercise 4 1 a The plank is in equilibrium. Let the reaction forces at the supports be R and R D. Considering moments about point D: R (6 1.5 1) = (100+ 145) (3 1.5) 3.5R = 245 1.5 3.5R =

More information

Equilibrium and Torque

Equilibrium and Torque Equilibrium and Torque Equilibrium An object is in Equilibrium when: 1. There is no net force acting on the object 2. There is no net Torque In other words, the object is NOT experiencing linear acceleration

More information

Nozha Directorate of Education Form : 6 th primary Nozha Language Schools Ismailia Road Branch. Unit One Lesson (1) Types of levers

Nozha Directorate of Education Form : 6 th primary Nozha Language Schools Ismailia Road Branch. Unit One Lesson (1) Types of levers Governorate Department: Science Nozha Directorate of Education Form : 6 th primary Nozha Language Schools Sheet Ismailia Road Branch A- Complete: Unit One Lesson (1) Types of levers 1- is a rigid bar that

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

UNIT 6 STATICS AND TORQUE. Objectives. to be able to solve problems involving static equilibrium

UNIT 6 STATICS AND TORQUE. Objectives. to be able to solve problems involving static equilibrium to understand the concept of torque to be able to calculate torques UNIT 6 STATICS AND TORQUE Objectives to understand the concept of static equilibrium to be able to solve problems involving static equilibrium

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

Physics 1A Lecture 10B

Physics 1A Lecture 10B Physics 1A Lecture 10B "Sometimes the world puts a spin on life. When our equilibrium returns to us, we understand more because we've seen the whole picture. --Davis Barton Cross Products Another way to

More information

Rotational Mechanics Part II Torque. Pre AP Physics

Rotational Mechanics Part II Torque. Pre AP Physics Rotational Mechanics Part II Torque Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration. Now

More information

Physics 8 Wednesday, October 28, 2015

Physics 8 Wednesday, October 28, 2015 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses,

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Work & Energy. Chapter 4 pg

Work & Energy. Chapter 4 pg Work & Energy Chapter 4 pg 106-127 Today s Learning Objectives 1) Know the vocabulary of this chapter. 2) What is the two-pronged test to see if something qualifies as work? 3) Solve and calculate problems

More information

Mass per unit volume Mass of 1 m 3. Units of density = kg m 3 Density is a scalar. mass volume. density = m V. rho. 1m x 1m x 1m

Mass per unit volume Mass of 1 m 3. Units of density = kg m 3 Density is a scalar. mass volume. density = m V. rho. 1m x 1m x 1m 1 Mass per unit volume Mass of 1 m 3 density = mass volume rho ρ = m V 1m x 1m x 1m Units of density = kg m 3 Density is a scalar 2 1000 kg 5100 kg 8900 kg Each has a volume of 1 m 3. Which has the greatest

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

Center of Gravity Pearson Education, Inc.

Center of Gravity Pearson Education, Inc. Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Centripetal force keeps an object in circular motion Rotation and Revolution

Centripetal force keeps an object in circular motion Rotation and Revolution Centripetal force keeps an object in circular motion. 10.1 Rotation and Revolution Two types of circular motion are and. An is the straight line around which rotation takes place. When an object turns

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines 1 What is work? To many people, the word work means something they do to earn money. The word work also means exerting a force with your muscles. 1 What is work? Someone might say

More information

(Free Sample) PHYSICS FOUNDATION & OLYMPIAD CLASS - 9 E: X P L D R E: R BRAIN MAPPING MapptngYour Future ACADEMY

(Free Sample) PHYSICS FOUNDATION & OLYMPIAD CLASS - 9 E: X P L D R E: R   BRAIN MAPPING MapptngYour Future ACADEMY w w (F.bm re a e ta Sa le n m t. pl co e) m Integrated Syllabus FOUNDATION & OLYMPIAD l l Cross word Puzzles l Graded Exercise n Basic Practice n Further Practice n Brain Nurtures Numerical Problems Conceptual

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question.

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 7.P.2.4 - Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 1. For work to be done on an object, a. some force need

More information

Torques and Static Equilibrium

Torques and Static Equilibrium Torques and Static Equilibrium INTRODUCTION Archimedes, Greek mathematician, physicist, engineer, inventor and astronomer, was widely regarded as the leading scientist of the ancient world. He made a study

More information

Chapter 9 Rotational Dynamics

Chapter 9 Rotational Dynamics Chapter 9 ROTATIONAL DYNAMICS PREVIEW A force acting at a perpendicular distance from a rotation point, such as pushing a doorknob and causing the door to rotate on its hinges, produces a torque. If the

More information

Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Torque and Rotational Equilibrium Name Section Theory Torque is the rotational analog of force. If you want something to move (translate), you apply a force; if you want something to rotate, you apply

More information

P12 Torque Notes.notebook. March 26, Torques

P12 Torque Notes.notebook. March 26, Torques Torques The size of a torque depends on two things: 1. The size of the force being applied (a larger force will have a greater effect) 2. The distance away from the pivot point (the further away from this

More information

Chapter 09 Multiple Choice Test

Chapter 09 Multiple Choice Test Class: Date: Chapter 09 Multiple Choice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A simple machine can multiply: a. forces only. b. energy only.

More information

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Lecture 14 Rotational dynamics Torque Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Archimedes, 87 1 BC EXAM Tuesday March 6, 018 8:15 PM 9:45 PM Today s Topics:

More information

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks Mechanical Advantage & Simple Machines Physics 5 th Six Weeks And now, for an appetizer: Bill Nye and using Mechanical Advantage Mechanical Advantage A machine is something that makes doing work easier

More information

Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

More information