ISO 376 Calibration Uncertainty C. Ferrero

Size: px
Start display at page:

Download "ISO 376 Calibration Uncertainty C. Ferrero"

Transcription

1 ISO 376 Calibration Uncertainty C. Ferrero For instruments classified for interpolation, the calibration uncertainty is the uncertainty associated with using the interpolation equation to calculate a single value of applied force from a measured deflection. It is not the uncertainty associated with the mean deflection (or force) value, as the subsequent use of the device (in ISO ) demands that each individual value be within certain limits. For instruments classified for specific forces only, the calibration uncertainty is the uncertainty associated with the range of deflections obtained at a specific calibration force, expressed in units of force. This device s uncertainty during its subsequent use will also be subject to further contributions, such as drift of its sensitivity with time, the effect of temperature on its sensitivity, the effect of different end-loading conditions, and the effect of different time-loading profiles. The sensitivity of the device to these two final effects can be calculated from the results of the preliminary checks (e.g. a bearing pad test and a creep test), and the drift of its sensitivity with time can be calculated from its calibration history. Its change of sensitivity with temperature can either be directly measured or the manufacturer s specification figures can be used. DEFLECTION Firstly, I think we need to define deflection if labs can t calculate the same deflection values from the same raw data, there s not much hope for an uncertainty annex! At the moment, ISO 376 (6.4.4) defines deflection as the difference between a reading under force and a reading without force, but doesn t specify which reading without force to use. I can see three possibilities: 1. The zero reading before the run starts 2. The average of the initial and final zero readings 3. An interpolated value, assuming a linear change between the initial and final zero readings throughout the calibration run At NPL, we use option 3, as this is how it is defined in ASTM E 74 - we occasionally issue ISO 376 and ASTM E 74 certificates based on the same raw data, and it would look strange if the two gave different deflection values for what was the same calibration. CALIBRATION UNCERTAINTY At each calibration force, a combined uncertainty value (u c, in force units) is calculated from the readings obtained during the calibration. These combined uncertainties are plotted against force, and a worst case fit covering all values calculated. This equation is used to calculate a combined uncertainty for each force these uncertainties are then multiplied by the coverage factor k = 2 to give an expanded uncertainty value, U.

2 Calculation of expanded uncertainty, U, and combined uncertainty, u c U = k and u c 3 2 u c = ui + i= 1 B 2 where: u 1 = standard uncertainty associated with calibration force, expressed in units of force u 2 = standard uncertainty associated with reproducibility of calibration results, expressed in units of force u 3 = standard uncertainty associated with resolution of indicator, expressed in units of force B = for interpolation: maximum deviation of deflection (incremental or decremental) from interpolated value, expressed in units of force for specific forces: difference between incremental and decremental deflections, expressed in units of force Note: B is divided by 2 in the equation so that, when the expanded uncertainty is calculated (using k = 2), its effect is of the correct magnitude. The effect of B is added linearly, rather than in quadrature as, at each specific calibration force, it is the result of a systematic difference between the measured deflection and the value obtained from the interpolation equation. This is due to the lack of fit of the equation and/or to the hysteresis of the instrument. For specific forces, it is a systematic error resulting from the worst case scenario of using the incremental deflection for decremental forces but can be ignored in the subsequent use of the instrument if the actual decremental deflection is used for decremental forces and the maximum force applied was the maximum calibration force. Alternatively, the magnitude of B can be halved if the certified deflection is taken as the mean of the incremental and decremental deflections. Calculation of calibration force uncertainty, u 1 u 1 is simply the certified standard uncertainty associated with the forces generated by the calibration machine, expressed in units of force. Calculation of reproducibility uncertainty, u 2 u 2 is the standard deviation associated with the population of incremental deflections obtained during the calibration, expressed in units of force. Calculation of resolution uncertainty, u 3 Each deflection value is calculated from two readings (the reading with an applied force minus the reading at zero force). Because of this, the resolution of the indicator needs to be included twice, either as two rectangular distributions, each with a standard uncertainty of r 2 3, or as a single triangular distribution with a standard uncertainty of r 6, where r is the resolution, expressed in units of force.

3 Calculation of maximum deflection deviation, B The following table gives the criteria for the calculation of B: Incremental only Incremental and decremental Interpolation B = difference between mean deflection and value calculated from interpolation equation, expressed in units of force B = the greater of: a) difference between mean incremental deflection and value calculated from interpolation equation b) difference between mean decremental deflection and value calculated from interpolation equation expressed in units of force Specific forces B = 0 B (incremental) = 0 and B (decremental) = difference between incremental and decremental deflections, expressed in units of force (if certified deflection is incremental value) Alternatively, B (incremental) = B (decremental) = 0.5 x difference between incremental and decremental deflections, expressed in units of force (if certified deflection is mean of incremental and decremental values)

4 Example: Force X 1 X 2 X 3, X 4 X 5, X 6 X r Fit Fit Error kn µvv -1 µvv -1 µvv -1 µvv -1 µvv -1 µvv -1 µvv ,48 220,49 220,41 220,32 220,40 220,37 0, ,61 440,62 440,58 440,45 440,55 440,57-0, ,60 660,59 660,48 660,46 660,51 660,53-0, ,33 880,32 880,24 880,18 880,25 880,27-0, , , , , , ,78 0, , , , , , ,06 0, , , , , , ,12 0, , , , , , ,95 0, , , , , , ,55 0, , , , , , ,93-0, , , , ,55-0, , , , ,95-0, , , , ,12-0, , , , ,06-0, , , , ,78 0, ,33 880,20 880,31 880,27 0, ,61 660,48 660,58 660,53 0, ,67 440,52 440,62 440,57 0, ,42 220,33 220,41 220,37 0,04 Note 1: For decremental forces, X r is calculated as the incremental value, corrected for the average hysteresis observed in the final two series. Note 2: The fit values come from a second order fit to the incremental deflections, given by the equation: X a = 1, Uncertainty contributions: F 2 + 2, F 0,044 Force u 1 u 2 u 3 B u c kn % kn µvv -1 kn µvv -1 kn µvv -1 kn kn 100 0,005 0,005 0,080 0,036 0,004 0,002 0,04 0,017 0, ,005 0,010 0,085 0,039 0,004 0,002 0,06 0,026 0, ,005 0,015 0,076 0,034 0,004 0,002 0,05 0,024 0, ,005 0,020 0,075 0,034 0,004 0,002 0,04 0,018 0, ,005 0,025 0,080 0,036 0,004 0,002 0,01 0,006 0, ,005 0,030 0,146 0,066 0,004 0,002-0,03-0,015 0, ,005 0,035 0,154 0,070 0,004 0,002-0,08-0,035 0, ,005 0,040 0,118 0,054 0,004 0,002-0,08-0,037 0, ,005 0,045 0,146 0,066 0,004 0,002-0,08-0,036 0, ,005 0,050 0,168 0,077 0,004 0,002-0,03-0,012 0,097

5 0,14 0,12 0,10 u c / kn 0,08 0,06 0,04 0,02 0, Force / kn The equation of the line encompassing all values is: u c = 0, F + 0,038 The expanded calibration uncertainty is therefore given by the equation: U = 0, F + 0,076 For incremental forces only, the uncertainty is reduced (due to the incremental deflections being closer to the fitted curve than the decremental ones), as shown below: 0,14 0,12 0,10 u c / kn 0,08 0,06 0,04 0,02 0, Force / kn The expanded calibration uncertainty for incremental forces only is given by: U = 0, F + 0,078

6 These uncertainties can be calculated at each calibration force and also, if required, expressed as percentage values: Force U (inc & dec) U (inc only) kn kn % kn % 100 0,093 0,093 0,090 0, ,109 0,055 0,102 0, ,126 0,042 0,115 0, ,142 0,036 0,127 0, ,159 0,032 0,139 0, ,176 0,029 0,151 0, ,192 0,027 0,163 0, ,209 0,026 0,176 0, ,225 0,025 0,188 0, ,242 0,024 0,200 0,020 Note: In its actual calibration, the instrument received a Class 00 classification down to 200 kn, and a Class 0,5 classification down to 100 kn, failing to satisfy only the Class 00 repeatability with rotation limit (achieving a value of 0,070 %). The uncertainty values obtained therefore agree well with EA 10/04 which gives maximum uncertainties of 0,06 % for Class 00 and 0,12 % for Class 0,5.

7 UNCERTAINTY DURING THE TRANSDUCER S SUBSEQUENT USE The uncertainty associated with the force calculated from the deflection obtained from the transducer subsequent to its calibration will comprise of contributions from a number of sources: 1. Calibration uncertainty 2. Drift in sensitivity since calibration 3. Effect of being used at a different temperature 4. Effect of being used with different end-loading conditions 5. Effect of being used with a different time-loading profile 6. Effect of linear approximations to interpolation equation 7. If applicable, effect of replacement indicator It can be assumed that none of these effects are correlated, so their standard uncertainties can be summed in quadrature to calculate a combined standard uncertainty at each force (expressed in units of force), assuming that any known errors have been corrected for. For example, if the temperature sensitivity of the transducer is known, and so is the temperature difference (between calibration and subsequent use), either a correction should be made to the calculated force or the effect should be added to the uncertainty arithmetically, rather than in quadrature. 1. Calibration uncertainty This is simply the value of u c calculated in the previous section. 2. Drift in sensitivity since calibration This component may be estimated from the history of the transducer s sensitivity changes between previous calibrations. The exact uncertainty distribution (and possibly even an estimated error correction) will depend on the individual transducer, but a rectangular distribution with an expanded uncertainty of ± the largest previous change is suggested. If such information is not available, an estimate should be made based on the performance history of similar devices. 3. Temperature effect The temperature effect on zero output can be ignored, as the calculation of deflection makes it insignificant, but the effect of temperature on sensitivity, or span, needs to be allowed for. If the actual temperature sensitivity of the load cell is known, a correction should be made to the calculated force. If, as is more likely to be the case, the only information is the manufacturer s specification, an uncertainty component based on this figure and the difference in temperature between the load cell s calibration and its subsequent use shall be employed. It is recommended that a rectangular distribution be used. 4. End-loading effect The bearing pad test specified in Annex B.2 of ISO 376 gives an indication of the sensitivity of a compression load cell to end-loading effects. Clause also calls for a preliminary test to ensure that the loading attachments for tension transducers allow axial force application. The results of these tests, together with information as to the conditions in which the transducers will subsequently be used, should enable realistic uncertainty contributions for these effects to be determined.

8 5. Time-loading profile The load cell calibration method (as defined in ISO 376) and its subsequent use (as defined in ISO ) specify different time-loading profiles (a wait of 30 s before taking a reading in ISO 376, whereas ISO allows calibration with a slowly increasing force). If the load cell is sensitive to time-loading effects, these different protocols would lead to errors in the calculated force, so an uncertainty contribution is needed. It is proposed that ISO 376 be amended to include a once in a lifetime creep / creep recovery test which will determine the change in deflection between the value obtained immediately after the maximum calibration force is applied / removed and the value obtained 30 s later. The changes will be expressed as a percentage of maximum deflection and must fall within given limits to meet particular classifications. In addition, the values can also be used as inputs to the uncertainty budget for the subsequent use of the device. 6. Effect of approximations to equation Some indicators allow points from the calibration curve to be input, so that the display is in units of force, but carry out linear interpolation between these points, rather than use the actual equation. If this is the case, the effect of this approximation to the curve should be investigated and, if significant, an uncertainty contribution should be included. For the majority of cases, it is expected that this effect will be insignificant. 7. Effect of replacement indicator Both indicators must have been calibrated against electrical standards. Ideally, the difference in the indicator sensitivities across the range shall be calculated and used to make corrections to the forces calculated from the interpolation equation. In this case, the additional uncertainty contributions are those due to the indicator calibrations, including any components due to drift since calibration. In the case where the indicator calibrations simply give an error limit within which they fall, the additional uncertainty contributions will include these two error values and any associated drift components.

An Introduction to the Differences Between the Two Most Recognized Force Standards

An Introduction to the Differences Between the Two Most Recognized Force Standards An Introduction to the Differences Between the Two Most Recognized Force Standards Morehouse Instrument Company Introduction Morehouse has been performing both ASTM E74 and ISO 376 calibrations for more

More information

Morehouse. Edward Lane, Morehouse Instrument Company 1742 Sixth Ave York, PA PH: web: sales:

Morehouse. Edward Lane, Morehouse Instrument Company 1742 Sixth Ave York, PA PH: web:  sales: Morehouse 1 Morehouse Edward Lane, Morehouse Instrument Company 1742 Sixth Ave York, PA 17403 PH: 717-843-0081 web: www.mhforce.com sales: edlane@mhforce.com 2 This presentation will cover the calibration

More information

Calibration Traceability Guidelines

Calibration Traceability Guidelines Calibration Traceability Guidelines Check the website of accrediting bodies for the accredited laboratories individual scope of accreditation www.a2la.org ts.nist.gov/standards/accreditation/index.cfm

More information

PRELIMINARY DRAFT INDIAN STANDARD METHOD FOR CALIBRATION AND CLASSIFICATION OF TORQUE MEASURING DEVICES INCLUDING TORQUE WRENCH TESTER

PRELIMINARY DRAFT INDIAN STANDARD METHOD FOR CALIBRATION AND CLASSIFICATION OF TORQUE MEASURING DEVICES INCLUDING TORQUE WRENCH TESTER For BIS Use Only Doc: PGD 34(1203)P PRELIMINARY DRAFT INDIAN STANDARD METHOD FOR CALIBRATION AND CLASSIFICATION OF TORQUE MEASURING DEVICES INCLUDING TORQUE WRENCH TESTER Not to be reproduced without the

More information

EA-10/14. EA Guidelines on the Calibration of Static Torque Measuring Devices. Publication Reference PURPOSE

EA-10/14. EA Guidelines on the Calibration of Static Torque Measuring Devices. Publication Reference PURPOSE Publication Reference EA-10/14 EA Guidelines on the Calibration of Static Torque Measuring Devices PURPOSE This document has been produced by EA to improve harmonisation in determining the calibration

More information

Guidelines on the Calibration of Static Torque Measuring Devices

Guidelines on the Calibration of Static Torque Measuring Devices European Association of National Metrology Institutes Guidelines on the Calibration of Static Torque Measuring Devices EURAMET/cg-14/v.01 Previously EA-10/14 July 2007 Calibration Guide EURAMET/cg-14/v.01

More information

EA-10/13. EA Guidelines on the Calibration of Temperature Block Calibrators. Publication Reference PURPOSE

EA-10/13. EA Guidelines on the Calibration of Temperature Block Calibrators. Publication Reference PURPOSE Publication Reference EA-10/13 EA Guidelines on the Calibration of Temperature Block Calibrators PURPOSE This document been produced by EA to improve the harmonisation in the calibration of temperature

More information

SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Force Proving Instruments

SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Force Proving Instruments NABL 122-06 NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Force Proving Instruments Reviewed by MASTER

More information

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 7500-1 Third edition 2004-08-15 Metallic materials Verification of static uniaxial testing machines Part 1: Tension/compression testing machines Verification and calibration

More information

< Final report > Report on the APMP.M.F-S1 supplementary comparison for 2 MN Force

< Final report > Report on the APMP.M.F-S1 supplementary comparison for 2 MN Force < Final report > Report on the APMP.M.F-S1 supplementary comparison for 2 MN Force Kazunaga Ueda*, Toshiyuki Hayashi*, Hiroshi Maejima*, Rolf Kumme**, Dirk Röske**, Mark Seidel** * National Metrology of

More information

Calibration of Temperature Block Calibrators

Calibration of Temperature Block Calibrators European Association of National Metrology Institutes Calibration of Temperature Block Calibrators EURAMET cg-13 Version 2.0 (03/2011) Previously EA-10/13 Calibration Guide EURAMET cg-13 Version 2.0 (03/2011)

More information

Version 4.0 (09/2017) Version 3.0 (02/2015) Version 2.0 (03/2011) Version 1.0 (07/2007) EURAMET e.v. Bundesallee 100 D Braunschweig Germany

Version 4.0 (09/2017) Version 3.0 (02/2015) Version 2.0 (03/2011) Version 1.0 (07/2007) EURAMET e.v. Bundesallee 100 D Braunschweig Germany Guidelines on the Calibration of Temperature Block Calibrators Authorship and Imprint This document was developed by the EURAMET e.v., Technical Committee for Thermometry. Authors: Yves Hermier (LNE-INM,

More information

Glossary Innovative Measurement Solutions

Glossary Innovative Measurement Solutions Glossary GLOSSARY OF TERMS FOR TRANSDUCERS, LOAD CELLS AND WEIGH MODULES This purpose of this document is to provide a comprehensive, alphabetical list of terms and definitions commonly employed in the

More information

Force Key Comparison CCM.F-K1.a and CCM.F-K1.b 5 kn and 10 kn. Aimo Pusa MIKES Finland

Force Key Comparison CCM.F-K1.a and CCM.F-K1.b 5 kn and 10 kn. Aimo Pusa MIKES Finland Force Key Comparison CCM.F-K1.a and CCM.F-K1.b 5 kn and 10 kn Aimo Pusa 09.02.2009 MIKES Finland 2 Content Page Content 3 Foreword 4 Chapter 1 1.1 General 6 1.2 Characteristics of the transducers 8 1.3

More information

The Determination of Uncertainties in Bend Tests on Metallic Materials

The Determination of Uncertainties in Bend Tests on Metallic Materials Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials Code of Practice No. 09 The Determination of Uncertainties in end Tests on Metallic Materials

More information

CMM Uncertainty Budget

CMM Uncertainty Budget Table of Contents Purpose...3 Scope...3 Measurement Example...3 Uncertainty Groups...4 Probe Group...5 Calibration Artifact Group...6 Environment Group...7 CMM Group...8 Part Group...10 Conversion of Potential

More information

APPENDIX G EVALUATION OF MEASUREMENT UNCERTAINTY

APPENDIX G EVALUATION OF MEASUREMENT UNCERTAINTY APPENDIX G EVALUATION OF MEASUREMENT UNCERTAINTY Table of Contents 1. SCOPE... 2 2. REFERENCES... 2 3. TERMS AND DEFINITIONS... 2 4. BACKGROUND... 4 5. EVALUATION OF MEASUREMENT UNCERTAINTY POLICY... 5

More information

P103d Annex: Policy on Estimating Measurement Uncertainty for Construction Materials & Geotechnical Testing Labs Date of Issue 09/13/05

P103d Annex: Policy on Estimating Measurement Uncertainty for Construction Materials & Geotechnical Testing Labs Date of Issue 09/13/05 P103d Annex: Policy on Estimating Measurement Uncertainty for Construction Materials & Geotechnical Testing Labs Date of Issue 09/13/05 This document provides guidance on the estimation of uncertainty

More information

EA 4/02. Expression of the Uncertainty of Measurement in Calibration. Publication Reference

EA 4/02. Expression of the Uncertainty of Measurement in Calibration. Publication Reference EAEA Publication Reference EA 4/0 Expression of the Uncertainty of Measurement in Calibration PURPOSE The purpose of this document is to harmonise evaluation of uncertainty of measurement within EA, to

More information

2.4 The ASME measurement-uncertainty formulation

2.4 The ASME measurement-uncertainty formulation Friday, May 14, 1999 2.5 Propagation of uncertainty estimates Page: 1 next up previous contents Next: 2.5 Propagation of uncertainty Up: 2. Measurement Uncertainty Previous: 2.3 More terminology 2.4 The

More information

Uncertainty of the Measurement of Radial Runout, Axial Runout and Coning using an Industrial Axi-Symmetric Measurement Machine

Uncertainty of the Measurement of Radial Runout, Axial Runout and Coning using an Industrial Axi-Symmetric Measurement Machine 3924: 38 th MATADOR Conference Uncertainty of the Measurement of Radial Runout, Axial Runout and Coning using an Industrial Axi-Symmetric Measurement Machine J E Muelaner, A Francis, P G Maropoulos The

More information

DESIGN, DEVELOPMENT, AND COMMISSIONING OF A 120 kn DEADWEIGHT FORCE STANDARD MACHINE

DESIGN, DEVELOPMENT, AND COMMISSIONING OF A 120 kn DEADWEIGHT FORCE STANDARD MACHINE DESIGN, DEVELOPMENT, AND COMMISSIONING OF A 120 kn DEADWEIGHT FORCE STANDARD MACHINE Andy Knott National Physical Laboratory, United Kingdom ABSTRACT This paper describes the development of a 120 kn deadweight

More information

APPENDIX G ESTIMATION OF UNCERTAINTY OF MEASUREMENT

APPENDIX G ESTIMATION OF UNCERTAINTY OF MEASUREMENT APPENDIX G ESTIMATION OF UNCERTAINTY OF MEASUREMENT Table of Contents 1. SCOPE... 2 2. REFERENCES... 2 3. TERMS AND DEFINITIONS... 2 4. BACKGROUND... 4 5. ESTIMATION OF UNCERTAINTY OF MEASUREMENT POLICY...

More information

Uncertainty of Calibration. Results in Force Measurements

Uncertainty of Calibration. Results in Force Measurements Publication Reference EAL-G Uncertainty of Calibration Results in Force Measurements PURPOSE This document has been produced to improve the harmonization in determination of uncertainties in force measurements.

More information

Document No: TR 12 Issue No: 1

Document No: TR 12 Issue No: 1 ESTIMATION OF THE UNCERTAINTY OF MEASUREMENT BY CALIBRATION LABORATORIES AND SPECIFICATION OF CALIBRATION AND MEASUREMENT CAPABILITY ON SCHEDULES OF ACCREDITATION Prepared by: SADCAS Technical Manage Approved

More information

Measurement Uncertainty in Mechanical Testing

Measurement Uncertainty in Mechanical Testing Intelligent testing Measurement Uncertainty in Mechanical Testing 27. testxpo 2018 ZwickRoell GmbH & Co. KG Ulm Dr. Eduard Schenuit Industry Manager Metal Agenda Why do we need measurement uncertainty?

More information

Measurement uncertainty analysis of dual wave ultrasonic fastener load estimation using the Micro-Control MC900 fastener transient system

Measurement uncertainty analysis of dual wave ultrasonic fastener load estimation using the Micro-Control MC900 fastener transient system Measurement uncertainty analysis of dual wave ultrasonic fastener load estimation using the Micro-Control MC900 fastener transient system Tushar Thombare 1, A.R.Balwan 2, G.S.Joshi 3 1 PG Student, DKTE

More information

Certification of a High Capacity Force Machine for Testing of Load Cells According to OIML R60

Certification of a High Capacity Force Machine for Testing of Load Cells According to OIML R60 Certification of a High Capacity Force Machine for Testing of Load Cells According to OIML R60 Bernd Meißner Physikalisch-Technische Bundesanstalt Weighing Instruments Laboratory Braunschweig Abstract

More information

COURSE OF Prepared By: MUHAMMAD MOEEN SULTAN Department of Mechanical Engineering UET Lahore, KSK Campus

COURSE OF Prepared By: MUHAMMAD MOEEN SULTAN Department of Mechanical Engineering UET Lahore, KSK Campus COURSE OF Active and passive instruments Null-type and deflection-type instruments Analogue and digital instruments In active instruments, the external power source is usually required to produce an output

More information

The calibration system of force measurement devices - conceptions and principles

The calibration system of force measurement devices - conceptions and principles The calibration system of force measurement devices - conceptions and principles ABSTACT Eng. Boris Katz, Liron Anavy, Itamar Nehary Quality Control Center Hazorea (QCC Hazorea), Israel Developed, put

More information

Metallic materials Brinell hardness test. Part 3: Calibration of reference blocks

Metallic materials Brinell hardness test. Part 3: Calibration of reference blocks INTERNATIONAL STANDARD ISO 6506-3 Third edition 2014-10-01 Metallic materials Brinell hardness test Part 3: Calibration of reference blocks Matériaux métalliques Essai de dureté Brinell Partie 3: Étalonnage

More information

MEASUREMENT UNCERTAINTY PREPARED FOR ENAO ASSESSOR CALIBRATION COURSE OCTOBER/NOVEMBER Prepared by MJ Mc Nerney for ENAO Assessor Calibration

MEASUREMENT UNCERTAINTY PREPARED FOR ENAO ASSESSOR CALIBRATION COURSE OCTOBER/NOVEMBER Prepared by MJ Mc Nerney for ENAO Assessor Calibration MEASUREMENT PREPARED FOR ENAO ASSESSOR CALIBRATION COURSE UNCERTAINTY OCTOBER/NOVEMBER 2012 Prepared by for ENAO Assessor Calibration B SCOPE Introduction House Rules Overview 17025 & 15189 MU Approaches

More information

Review of Anemometer Calibration Standards

Review of Anemometer Calibration Standards Review of Anemometer Calibration Standards Rachael V. Coquilla rvcoquilla@otechwind.com Otech Engineering, Inc., Davis, CA Anemometer calibration defines a relationship between the measured signals from

More information

POWER QUALITY MEASUREMENT PROCEDURE. Version 4 October Power-Quality-Oct-2009-Version-4.doc Page 1 / 12

POWER QUALITY MEASUREMENT PROCEDURE. Version 4 October Power-Quality-Oct-2009-Version-4.doc Page 1 / 12 POWER QUALITY MEASUREMENT PROCEDURE Version 4 October 2009 Power-Quality-Oct-2009-Version-4.doc Page 1 / 12 MEASNET 2009 Copyright all rights reserved This publication may not be reproduced or utilized

More information

SVENSK STANDARD SS-EN ISO

SVENSK STANDARD SS-EN ISO SVENSK STANDARD SS-EN ISO 376:2005 Fastställd 2005-02-04 Utgåva 2 Metalliska material Kalibrering av kraftmätdon avsedda för kontroll av maskiner för enaxlig provning (ISO 376:2004) Metallic materials

More information

Force Key Comparison EUROMET.M.F-K2. (50 kn and 100 kn) EURAMET Project No 518. Final Report. 14 July Pilot: NPL, United Kingdom

Force Key Comparison EUROMET.M.F-K2. (50 kn and 100 kn) EURAMET Project No 518. Final Report. 14 July Pilot: NPL, United Kingdom Force Key Comparison EUROMET.M.F-K2 (50 kn and 100 kn) EURAMET Project No 518 Final Report 14 July 2014 Pilot: NPL, United Kingdom Co-authors: Renato Reis Machado (INMETRO, Brazil), Petr Kašpar (CMI, Czech

More information

INVESTIGATION OF THE CALIBRATION CAPABILITIES OF A 1 KN M AND 10 KN M REFERENCE CALIBRATION MACHINE

INVESTIGATION OF THE CALIBRATION CAPABILITIES OF A 1 KN M AND 10 KN M REFERENCE CALIBRATION MACHINE IMEKO 23 rd TC3, 13 th TC5 and 4 th TC22 International Conference 30 May to 1 June, 2017, Helsinki, Finland INVESTIGATION OF THE CALIBRATION CAPABILITIES OF A 1 KN M AND 10 KN M REFERENCE CALIBRATION MACHINE

More information

R SANAS Page 1 of 7

R SANAS Page 1 of 7 ESTIMATION OF THE UNCERTAINTY OF MEASUREMENT BY CALIBRATION LABORATORIES AND SPECIFICATION OF CALIBRATION AND MEASUREMENT CAPABILITY ON SCHEDULES OF ACCREDITATION Approved By: Chief Executive Officer:

More information

SVENSK STANDARD SS-EN ISO 376. Metalliska material Kalibrering av kraftmätdon avsedda för kontroll av maskiner för enaxlig provning (ISO 376:1999)

SVENSK STANDARD SS-EN ISO 376. Metalliska material Kalibrering av kraftmätdon avsedda för kontroll av maskiner för enaxlig provning (ISO 376:1999) SVENSK STANDARD SS-EN ISO 376 Fastställd 2002-02-01 Utgåva 1 Metalliska material Kalibrering av kraftmätdon avsedda för kontroll av maskiner för enaxlig provning (ISO 376:1999) Metallic materials Calibration

More information

ISO INTERNATIONAL STANDARD. Metallic materials Vickers hardness test Part 3: Calibration of reference blocks

ISO INTERNATIONAL STANDARD. Metallic materials Vickers hardness test Part 3: Calibration of reference blocks INTERNATIONAL STANDARD ISO 6507-3 Third edition 2005-12-15 Metallic materials Vickers hardness test Part 3: Calibration of reference blocks Matériaux métalliques Essai de dureté Vickers Partie 3: Étalonnage

More information

Comparison of measurement uncertainty budgets for calibration of sound calibrators: Euromet project 576

Comparison of measurement uncertainty budgets for calibration of sound calibrators: Euromet project 576 NPL REPORT CMAM 73 Comparison of measurement uncertainty budgets for calibration of sound calibrators: Euromet project 576 Peter Hanes October 2001 The National Physical Laboratory is operated on behalf

More information

POWER UNDERSTANDING MEASUREMENT UNCERTAINTY IN DP FLOW DEVICES

POWER UNDERSTANDING MEASUREMENT UNCERTAINTY IN DP FLOW DEVICES Proceedings of the ASME 2014 Power Conference POWER2014 July 28-31, 2014, Baltimore, Maryland, USA POWER2014-32205 UNDERSTANDING MEASUREMENT UNCERTAINTY IN DP FLOW DEVICES Michael S. Hering Rosemount DP

More information

JAB NOTE4. ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) Japan Accreditation Board (JAB)

JAB NOTE4. ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) Japan Accreditation Board (JAB) JAB NOTE4 ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) nd edition: January 5 01 1 st edition: March 5 00 Japan Accreditation Board (JAB) Initial edition: 00-0-5 1/ nd

More information

UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION. Peter B. Crisp. Fluke Precision Measurement Ltd, 52 Hurricane Way, Norwich, UK

UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION. Peter B. Crisp. Fluke Precision Measurement Ltd, 52 Hurricane Way, Norwich, UK UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION Peter B. Crisp Fluke Precision Measurement Ltd, 5 Hurricane Way, Norwich, UK Introduction NAMAS Accredited laboratories are required to follow recommended

More information

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin NCCAAPM meeting April 17, 2015 Larry DeWerd has partial interest in Standard Imaging Inc. Determination of your uncertainty

More information

THE UNCERTAINTY OF MEASUREMENT IN CALIBRATION USING A COMPARISON FORCE STANDARD MACHINE

THE UNCERTAINTY OF MEASUREMENT IN CALIBRATION USING A COMPARISON FORCE STANDARD MACHINE THE UNCERTAINTY OF MEASUREMENT IN CALIBRATION USING A COMPARISON FORCE STANDARD MACHINE Adrian Gherasimov 1, Eugen Ghita 1 Romanian Bureau of Legal Metrology, Force Laboratory Timisoara, Romania POLITEHICA

More information

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany Measurement - Supports Science - Improves Technology - Protects Environment... and Provides Employment - No and in the Future Vienna, AUSTRIA, 000, September 5-8 UNCERTAINTY SCOPE OF THE FORCE CALIBRATION

More information

Procedure for Uncertainty Determination for Calibration Consoles

Procedure for Uncertainty Determination for Calibration Consoles Category: ELECTRICITY Procedure: EL-ENG-09-01 Page: 1 of 19 Procedure for Uncertainty Determination for Calibration Consoles Adnan Rashid Senior Electrical Engineer Engineering and Laboratory Services

More information

Loadcell Calibration - Evaluation of Uncertainties

Loadcell Calibration - Evaluation of Uncertainties Loadcell Calibration - Evaluation of Uncertainties This document is a revision of the evaluation issued in June 2015. Novatech s calibration laboratory is not UKAS accredited due to the high number of

More information

Disclosure to Promote the Right To Information

Disclosure to Promote the Right To Information इ टरन ट म नक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information

More information

Specific Accreditation Guidance. Infrastructure and Asset Integrity. Measurement Uncertainty in Geotechnical Testing

Specific Accreditation Guidance. Infrastructure and Asset Integrity. Measurement Uncertainty in Geotechnical Testing Specific Accreditation Guidance Infrastructure and Asset Integrity Measurement Uncertainty in Geotechnical Testing January 2018 Copyright National Association of Testing Authorities, Australia 2018 This

More information

Introduction to the evaluation of uncertainty

Introduction to the evaluation of uncertainty Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials SECTION 1 Introduction to the evaluation of uncertainty F A Kandil National Physical Laboratory

More information

MEASUREMENT TRACEABILITY AND ERRORS RELATED TO FORCE MEASUREMENT

MEASUREMENT TRACEABILITY AND ERRORS RELATED TO FORCE MEASUREMENT MEASUREMENT TRACEABILITY AND ERRORS RELATED TO FORCE MEASUREMENT Henry Zumbrun II, President Morehouse Instrument Company 1742 Sixth Ave York, PA 17403 PH: 717-843-0081 web: www.mhforce.com info: hzumbrun@mhforce.com

More information

Standard Practices for Air Speed Calibration Testing

Standard Practices for Air Speed Calibration Testing Standard Practices for Air Speed Calibration Testing Rachael V. Coquilla Bryza Wind Lab, Fairfield, California Air speed calibration is a test process where the output from a wind measuring instrument

More information

What is measurement uncertainty?

What is measurement uncertainty? What is measurement uncertainty? What is measurement uncertainty? Introduction Whenever a measurement is made, the result obtained is only an estimate of the true value of the property being measured.

More information

SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Torque Measuring Devices

SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Torque Measuring Devices NABL 122-10 NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Torque Measuring Devices Reviewed by MASTER COPY

More information

Essentials of expressing measurement uncertainty

Essentials of expressing measurement uncertainty Essentials of expressing measurement uncertainty This is a brief summary of the method of evaluating and expressing uncertainty in measurement adopted widely by U.S. industry, companies in other countries,

More information

Sensors and transducers

Sensors and transducers Sensors and transducers Measurement is an important subsystem of a mechatronics system. Its main function is to collect the information on system status and to feed it to the micro-processor(s) for controlling

More information

Reproducibility within the Laboratory R w Control Sample Covering the Whole Analytical Process

Reproducibility within the Laboratory R w Control Sample Covering the Whole Analytical Process Flowchart for Nordtest Method (a) Specify measurand Quantify components for within lab reproducibility A control samples B possible steps, not covered by the control sample Quantify bias components Convert

More information

Evaluation of Force Standard Machines by using Build-up System

Evaluation of Force Standard Machines by using Build-up System Evaluation of Force Standard Machines by using Build-up System TC3 Round Table Nov. 24, 2010 Y.-K. Park and D.-I. Kang Contents Introduction Basic theory Application examples Dynamic behavior of deadweight

More information

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO NPL Report CMMT(A)81 Project PAJ2 Dynamic Performance of Adhesively Bonded Joints Report No. 3 August 1997 Proposed Draft for the Revision of ISO 11003-2 Adhesives - Determination of Shear Behaviour of

More information

Guide to the Uncertainty of Force Measurement

Guide to the Uncertainty of Force Measurement April 1999 Guide to the Uncertainty of Force Measurement Liam Maybank, Andy Knott, and David Elkington Centre for Mechanical and Acoustical Metrology National Physical Laboratory Queens Road Teddington

More information

CALCULATION OF UNCERTAINTY IN CHEMICAL ANALYSIS. A.Gnanavelu

CALCULATION OF UNCERTAINTY IN CHEMICAL ANALYSIS. A.Gnanavelu CALCULATION OF UNCERTAINTY IN CHEMICAL ANALYSIS A.Gnanavelu UNCERTAINTY (U) Every measurement has error which is unknown and unknowable. This unknown error is called measurement uncertainty. Types of Error

More information

AN EXPLANATION OF THE DG-1000 ACCURACY SPECIFICATIONS

AN EXPLANATION OF THE DG-1000 ACCURACY SPECIFICATIONS WHITE PAPER AN EXPLANATION OF THE DG-1000 ACCURACY SPECIFICATIONS The Energy Conservatory Minneapolis, MN Introduction: The purpose of this document is to explain the details of the accuracy specifications

More information

Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview

Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview Estimation of Uncertainties in Chemical Measurement Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview Angelique Botha Method of evaluation: Analytical measurement Step 1: Specification

More information

M3003 EDITION 2 JANUARY 2007

M3003 EDITION 2 JANUARY 2007 M3003 EDITION 2 JANUARY 2007 The Expression of Uncertainty and Confidence in Measurement JH 2007 CONTENTS SECTION PAGE 1 Introduction 2 2 Overview 4 3 More detail 10 4 Type A evaluation of standard uncertainty

More information

Uncertainties associated with the use of a sound level meter

Uncertainties associated with the use of a sound level meter NPL REPORT DQL-AC 002 Uncertainties associated with the use of a sound level meter Richard Payne April 2004 April 2004 ABSTRACT Uncertainties associated with the use of a sound level meter Richard Payne

More information

A Unified Approach to Uncertainty for Quality Improvement

A Unified Approach to Uncertainty for Quality Improvement A Unified Approach to Uncertainty for Quality Improvement J E Muelaner 1, M Chappell 2, P S Keogh 1 1 Department of Mechanical Engineering, University of Bath, UK 2 MCS, Cam, Gloucester, UK Abstract To

More information

OA03 UNCERTAINTY OF MEASUREMENT IN CHEMICAL TESTING IN ACCORDANCE WITH THE STANDARD SIST EN ISO/IEC Table of contents

OA03 UNCERTAINTY OF MEASUREMENT IN CHEMICAL TESTING IN ACCORDANCE WITH THE STANDARD SIST EN ISO/IEC Table of contents UNCERTAINTY OF MEASUREMENT IN CHEMICAL TESTING IN ACCORDANCE WITH THE STANDARD SIST EN ISO/IEC 17025 Table of contents 1 GENERAL... 2 2 THE STANDARD SIST EN ISO/IEC 17025... 2 3 SA'S POLICY IN IMPLEMENTING

More information

Multi-Capacity Load Cell Concept

Multi-Capacity Load Cell Concept Sensors & Transducers 4 by IFSA Publishing, S. L. http://www.sensorsportal.com Multi-Capacity Load Cell Concept Seif. M. OSMAN, Ebtisam H. HASAN, H. M. EL-HAKEEM, R. M. RASHAD, F. KOUTA National Institute

More information

MEASUREMENT UNCERTAINTY OF ROTATING TORQUE TRANSDUCERS WHEN USED IN PARTIAL LOAD RANGES

MEASUREMENT UNCERTAINTY OF ROTATING TORQUE TRANSDUCERS WHEN USED IN PARTIAL LOAD RANGES XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17, 006, Rio de Janeiro, Brazil MEASUREMENT UNCERTAINTY OF ROTATING TORQUE TRANSDUCERS WHEN USED IN PARTIAL LOAD RANGES Georg

More information

ISO INTERNATIONAL STANDARD. Metallic materials Brinell hardness test Part 2: Verification and calibration of testing machines

ISO INTERNATIONAL STANDARD. Metallic materials Brinell hardness test Part 2: Verification and calibration of testing machines INTERNATIONAL STANDARD ISO 6506-2 Second edition 2005-12-15 Metallic materials Brinell hardness test Part 2: Verification and calibration of testing machines Matériaux métalliques Essai de dureté Brinell

More information

Project 887 Force Uncertainty Guide. Andy Knott, NPL EUROMET TC-M Lensbury, Teddington, United Kingdom 1 March 2007

Project 887 Force Uncertainty Guide. Andy Knott, NPL EUROMET TC-M Lensbury, Teddington, United Kingdom 1 March 2007 Project 887 Force Uncertainty Guide Andy Knott, NPL EUROMET TC-M Lensbury, Teddington, United Kingdom 1 March 2007 Background EA-10/04 (EAL-G22) EUROMET Calibration Guide EM/cg/04.01/p Participants SMD

More information

Metallic materials Brinell hardness test. Part 2: Verification and calibration of testing machines

Metallic materials Brinell hardness test. Part 2: Verification and calibration of testing machines INTERNATIONAL STANDARD ISO 6506-2 Third edition 2014-10-01 Metallic materials Brinell hardness test Part 2: Verification and calibration of testing machines Matériaux métalliques Essai de dureté Brinell

More information

STATIC & DYNAMIC CHARACTERISTICS OF MEASUREMENT SYSTEM

STATIC & DYNAMIC CHARACTERISTICS OF MEASUREMENT SYSTEM STATIC & DYNAMIC CHARACTERISTICS OF MEASUREMENT SYSTEM The performance characteristics of an instrument are mainly divided into two categories: i) Static characteristics ii) Dynamic characteristics Static

More information

Protocol for the design, conducts and interpretation of collaborative studies (Resolution Oeno 6/2000)

Protocol for the design, conducts and interpretation of collaborative studies (Resolution Oeno 6/2000) Protocol for the design, conducts and interpretation of collaborative studies (Resolution Oeno 6/2000) INTRODUCTION After a number of meetings and workshops, a group of representatives from 27 organizations

More information

VAM Project Development and Harmonisation of Measurement Uncertainty Principles

VAM Project Development and Harmonisation of Measurement Uncertainty Principles VAM Project 3.2.1 Development and Harmonisation of Measurement Uncertainty Principles Part (d): Protocol for uncertainty evaluation from validation data V J Barwick and S L R Ellison January 2000 LGC/VAM/1998/088

More information

THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY

THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY D. Peschel 1, D. Mauersberger 1, D. Schwind 2, U. Kolwinski 2 1 Solid mechanics department, PTB, Germany 2 Gassmann Theiss Messtechnik

More information

Experimental investigations of different force measuring systems

Experimental investigations of different force measuring systems Indian Journal Pure & Applied Physics Vol. 51, June 2013, pp. 393-398 Experimental investigations different force measuring systems Harish Kumar 1,2 * & Chitra Sharma 3 1 CSIR-National Physical Laboratory,

More information

Uncertainty Propagation for Force Calibration Systems

Uncertainty Propagation for Force Calibration Systems Uncertainty Propagation for Force Calibration Systems Morehouse Instruments Figure 1. Measurement Uncertainty Pyramid Introduction There are several labs operating throughout the world, whom do not follow

More information

Final Report on the Torque Key Comparison CCM.T-K2 Measurand Torque: 0 kn m, 10 kn m, 20 kn m Dirk Röske 1), Koji Ogushi 2)

Final Report on the Torque Key Comparison CCM.T-K2 Measurand Torque: 0 kn m, 10 kn m, 20 kn m Dirk Röske 1), Koji Ogushi 2) Final Report on the Torque Key Comparison CCM.T-K Measurand Torque: kn m, 1 kn m, kn m Dirk Röske 1), Koji Ogushi ) 1) ) Dirk RÖSKE Physikalisch-Technische Bundesanstalt Department 1. Solid Mechanics orking

More information

Metrological Characterization of a Primary Vickers Hardness Standard Machine - NIS Egypt

Metrological Characterization of a Primary Vickers Hardness Standard Machine - NIS Egypt MAPAN Metrological - Journal of Metrology Characterization Society of a India, Primary Vol. Vickers 5, No. Hardness, 00; pp. Standard -7 Machine - NIS Egypt ORIGINAL ARTICLE Metrological Characterization

More information

+ + ( indicator ) + (display, printer, memory)

+ + ( indicator ) + (display, printer, memory) CERTIFICATION OF STRAIN GAUGE LOAD CELL FAMILIES B. Meissner Physikalisch-Technische Bundesanstalt Weighing Instruments Laboratory 38116 Braunschweig, Germany Abstract: Testing and certification of load

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

TYPICAL PRESSURE MEASUREMENT UNCERTAINTY DEFINED BY AN FPG8601 FORCE BALANCED PISTON GAUGE

TYPICAL PRESSURE MEASUREMENT UNCERTAINTY DEFINED BY AN FPG8601 FORCE BALANCED PISTON GAUGE TYPICAL PRESSURE MEASUREMENT UNCERTAINTY DEFINED BY AN FPG8601 FORCE BALANCED PISTON GAUGE Michael Bair and Pierre Delajoud 2002 DEC 10 Revised 2004 MAR 26 FORWARD FPG8601 is a pressure standard designed

More information

ISO defines the Rockwell superficial hardness value, HRN, as:

ISO defines the Rockwell superficial hardness value, HRN, as: Rockwell Hardness Coefficients HR30N ISO 6508-1 defines the Rockwell superficial hardness value, HRN, as: HRN = 100 h where: h = permanent depth of indentation under preliminary test force after removal

More information

T e c h n i c a l L e x i c o n

T e c h n i c a l L e x i c o n T e c h n i c a l L e x i c o n T e r m s f r o m F o r c e a n d t o r q u e m e a s u r e m e n t t e c h n o l o g y a n d G T M d a t a s h e e t s Technisches Lexikon (eng.) 16/10/14 Introduction

More information

Appendix G Analytical Studies of Columns

Appendix G Analytical Studies of Columns Appendix G Analytical Studies of Columns G.1 Introduction Analytical parametric studies were performed to evaluate a number of issues related to the use of ASTM A103 steel as longitudinal and transverse

More information

Measurement System Analysis

Measurement System Analysis Definition: Measurement System Analysis investigations are the basic requirement for carrying out Capability Studies. They are intended to ensure that the used measuring equipment is suitable. Note: With

More information

NATIONAL ANNEX TO STANDARD. SFS-EN EUROCODE 1: ACTIONS ON STRUCTURES Part 1 3: General Actions. Snow loads

NATIONAL ANNEX TO STANDARD. SFS-EN EUROCODE 1: ACTIONS ON STRUCTURES Part 1 3: General Actions. Snow loads 1 ANNEX 4 NATIONAL ANNEX TO STANDARD SFS-EN 1991-1-3 EUROCODE 1: ACTIONS ON STRUCTURES Part 1 3: General Actions. Snow loads Preface This National Annex is used together with standard SFS-EN 1991-1-3:

More information

ISO INTERNATIONAL STANDARD. Metallic materials Vickers hardness test Part 2: Verification and calibration of testing machines

ISO INTERNATIONAL STANDARD. Metallic materials Vickers hardness test Part 2: Verification and calibration of testing machines INTERNATIONAL STANDARD ISO 6507-2 Third edition 2005-12-15 Metallic materials Vickers hardness test Part 2: Verification and calibration of testing machines Matériaux métalliques Essai de dureté Vickers

More information

4/3/2019. Advanced Measurement Systems and Sensors. Dr. Ibrahim Al-Naimi. Chapter one. Introduction to Measurement Systems

4/3/2019. Advanced Measurement Systems and Sensors. Dr. Ibrahim Al-Naimi. Chapter one. Introduction to Measurement Systems Advanced Measurement Systems and Sensors Dr. Ibrahim Al-Naimi Chapter one Introduction to Measurement Systems 1 Outlines Control and measurement systems Transducer/sensor definition and classifications

More information

Measurement Good Practice Guide

Measurement Good Practice Guide No. 36 Measurement Good Practice Guide Estimating Uncertainties in Testing Keith Birch The National Measurement Partnership is a DTI programme managed by the National Physical Laboratory to promote good

More information

SAMPLE. Accuracy Calibration Certificate. Instrument Type: EURAMET cg-18 v. 4.0 Sample ACC ISO17025 WI v.1.0

SAMPLE. Accuracy Calibration Certificate. Instrument Type: EURAMET cg-18 v. 4.0 Sample ACC ISO17025 WI v.1.0 076-0-067-ACC-USL-S Mettler Toledo, LLC 900 Polaris Parkway Columbus, OH 0.800.METTLER Customer Accredited by the American Association for Laboratory Accreditation (ALA) CALIBRATION CERT #788.0 SAMPLE

More information

MECHATRONICS SYSTEM DESIGN (MTE-401) 2 hr Lecture on 15 th Sep 2014

MECHATRONICS SYSTEM DESIGN (MTE-401) 2 hr Lecture on 15 th Sep 2014 MECHATRONICS SYSTEM DESIGN (MTE-401) 2 hr Lecture on 15 th Sep 2014 COURSE DETAILS 3 Credit hour theory = 3 hours teaching per week Course Book Mechatronics Electronic control systems in Mechanical and

More information

Certificate of Accreditation

Certificate of Accreditation PERRY JOHNSON LABORATORY ACCREDITATION, INC. Certificate of Accreditation Perry Johnson Laboratory Accreditation, Inc. has assessed the Laboratory of: (Hereinafter called the Organization) and hereby declares

More information

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3 AE 3051, Lab #16 Investigation of the Ideal Gas State Equation By: George P. Burdell Group E3 Summer Semester 000 Abstract The validity of the ideal gas equation of state was experimentally tested for

More information

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the UAL

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the UAL Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the UAL A. Specification Gamma-spectrometry method is used to identify and determine the activity concentration

More information

Non-destructive testing of steel forgings- Part 1: Magnetic particle inspection (BS EN :1999)

Non-destructive testing of steel forgings- Part 1: Magnetic particle inspection (BS EN :1999) Non-destructive testing of steel forgings- Part 1: Magnetic particle inspection (BS EN 10228-1:1999) 1 Scope This part of EN 10228 describes the method and acceptance criteria to be used for the magnetic

More information

Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO Second edition

Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO Second edition INTERNATIONAL STANDARD ISO 6974-1 Second edition 2012-05-15 Natural gas Determination of composition and associated uncertainty by gas chromatography Part 1: General guidelines and calculation of composition

More information