Logarithmic Sine and Cosine Transforms and Their Applications to Boundary-Value Problems Connected with Sectionally-Harmonic Functions

Size: px
Start display at page:

Download "Logarithmic Sine and Cosine Transforms and Their Applications to Boundary-Value Problems Connected with Sectionally-Harmonic Functions"

Transcription

1 pplied Mthemti Publihed Olie Febuy 3 ( Logithmi Sie d Coie Tfom d Thei pplitio to Boudy-Vlue Poblem Coeted with Setiolly-Hmoi Futio Mitht Ideme Egieeig Fulty OKN Uiveity Itbul Tukey Emil: mideme@gmil.om eeived Septembe 3 ; evied Juy 8 3; epted Juy 5 3 BSTCT Let td fo the pol oodite i be give ott while u tifie the Lple equtio u i the wedge-hped domi D : j j o : j j j j D. Hee j j deote eti gle uh tht j j. It i kow tht if u tifie homogeeou boudy oditio o ll boudy lie j j dditio to o-homogeeou oe o the iul boudy the expliit expeio of i u i tem of eige-futio be foud though the lil method of eptio of vible. But whe the boudy oditio give o the iul boudy i homogeeou it i ot poible to defie diete et of eige-futio. I thi ppe oe how tht if the homogeeou oditio i quetio i of the Diihlet (o Neum) type the the logithmi ie tfom (o logithmi oie tfom) defied by f F i log d (o f Folog d ) my be effetive i olvig the poblem. The ivee of thee tfomtio e expeed though the me keel o o. Some popetie of thee tfom e lo give i fou theoem. illuttive exmple oeted with the het tfe i two-pt wedge domi how thei effetivee i gettig ext olutio. I the exmple i quetio the ltel boudie e umed to be o-odutig whih e expeed though Neum type boudy oditio. The pplitio of the method give lo the eey oditio fo the olvbility of the poblem (the ledy kow exitee oditio!). Thi kid of poblem ie i viou domi of pplitio uh eletotti mgeto-tti hydotti het tfe m tfe outi eltiity et. Keywod: Itegl Tfom; Hmoi Futio; Wedge Poblem; Boudy-Vlue Poblem; Logithmi Sie Tfom; Logithmi Coie Tfom. Itodutio Boudy-vlue poblem oeted with etiollyhmoi futio i wedge-hped domi d : j j D j D : j j j whee td fo the pol oodite i while > i give ott e impott fom both pue ietifi d egieeig poit of view. Figue epitomize imple e of D whih oepod to =. The ub-egio detemied by d model the egio filled with diffeet mteil hvig diffeet otitutive pmete. The field futio u tifie the bi equtio div gdu F () Copyight 3 Sie.

2 M. IDEMEN 379 L (u) = f () O y L(u) = f () L (u) = f () Figue. ompoite egio D filled with two diffeet mteil. i the ee of ditibutio ude the boudy oditio L u f L u f d Lu f how o the figue. Hee F td fo the deity of the exitig oue oetted o the itefe (if y) while Lu L ud L u e give lie (diffeetil) boudy opetio. The boudy oditio i quetio my lo ivolve eti tem epeetig the oue lolized o the boudy (if y). to the futio it h ott vlue d i the ub-egio i quetio. Thu o the itefe betwee the ub-egio two tmiio oditio of the followig fom e tified: u u (b) u u F. () i well-kow whe F f f oe defie et of othogol eige-futio whih pemit u to obti expliit expeio of u i tem of thee eige-futio. The oeffiiet i the eige-futio eie e detemied by uig the ohomogeeou boudy oditio give o the boudy = (i.e. though f ) togethe with the egulity oditio to be tted t =. Whe f t let oe of the futio F f d f mut be diffeet fom zeo i ode to hve o tivil olutio u. I thi e it i ot poible to defie et of diete eige-futio. To oveome uh kid of diffiulty i the midt of the lt etuy ome method whih e effetive whe the egio oit of D wee popoed. mog them we metio fo exmple the fiite Stum-Liouville tfom itodued by Eige [] d Chuhill [] d the fiite Melli tfom itodued by Nylo [34] (ee lo [5]). The fiite Stum-Liouville tfom e ot ppopite i the e oideed hee beue they e bed o the et of eige-futio whih ot be defied i the peet e. to the fiite Melli tfom they e defied follow (ee fo ex. [5 pp ]): x d () M f f d. (b) M f f Oe eily hek tht the fit o the eod tfom i ppopite to edue the Lple equtio witte i the iul pol oodite to odiy diffeetil equtio whe Diihlet o Neum type oditio e peibed epetively o the iul pt = of the boudy. The ivee tfom oit the of the lil Melli type itegl. The im of thi ote i to how tht the tfom of the fom d f Fi log d (3) f F olog d (3b) e effetive i gettig expliit expeio to the olutio of the poblem oeted with etiolly-hmoi futio defied i D d D metioed bove whe the boudy oditio o the = i homogeeou d of the Diihlet o Neum type. The impliity of thee tfom i tht thei ivee e lo give with the me keel (ee Setio B below). To lify the eetil popetie of the epeettio ((3) (b)) i wht follow we will oide without lo of geelity the e whee = (ee Figue d 3). To the bet of ou kowledge epeettio of the fom (3b) w fit oideed by Smythe (ee [6 pp. 7-7]) to fid the eletotti potetil due to lie oue loted pllel to dieleti wedge fo whih. Hi diuio i bed o moot phyil gumet d ome ptiul etitio. we will how lte o epeettio of the fom (3b) i ot uitble whe beue oly the dt kow i uffiiet to uiquely fo o L (u) = f () y L(u) = L (u) = f () O x Figue. wedge-hped egio ivolvig oly the igul poit =. D Copyight 3 Sie.

3 38 M. IDEMEN L(u) = y D D L (u) = f () L (u) = f () Figue 3. wedge-hped egio ivolvig oly the igul poit =. detemie F (i.e. the ivee tfom). Futhe- (3b f fo ll it give whih i ot om phyi poit of eptble f view. moe whe ) i ued to expe f f. Logithmi Sie d Coie Tfom Let > be give ott while F L i give futio. The oide the futio f d f defied though the oveget itegl tkle i (3) d (3b). Thee log td fo the pi- ig p ipl bh of the logithm futio. We will efe f d f to the logithmi ie tfom d logithmi oie tfom of F epetively. I wht follow we will lo deote th em by the ymbol SF d CF. Some iteetig d impott popetie of thee tfom e tted i the theoem give below. ) Limit Vlue fo d we will ee lte o (ee Setio B) the expeio of the futio f (o f ) kow oly i the itevl o i uffiiet to detemie the futio F uiquely. The futio f d f my be piee-wie otiuou i thee itevl. Tht me tht the limit vlue of the itegl tkig ple i (3) d (3b) ted to the ed poit o o my be diffeet fom the vlue obtied by eplig dietly o o i thoe itegl. Fom pplitio poit of view it i the limitig vlue tht e impott. Theefoe thee limit vlue mut be diued efully. The two theoem tht follow oe thi poit (fo thei poof ee ppedix). Theoem-. If F L the fom (3) oe get lim f f Theoem-. ) If oe get lim f f lim f f. F L x (4) the fom (3b) lim f f lim f f. b) If oe h lo F L lim. (4b) the f f (4) B) Ivee Tfom It i iteetig ft tht whe f (o f ) i kow fo ll o fo ll the the futio F be detemied ompletely. The theoem tht follow oe thi iveio poblem (fo thei poof ee ppedix). Notie tht whe f i piee-wie otiuou i wht follow f me f f. Theoem -3. ) Let f L be piee-wie otiuou i the itevl d f. The (3) yield F f i log d. (5) b) If f L i piee-wie otiuou i the itevl the (3b) yield F f o log d. (5b) Theoem-4. ) Let f L otiuou fo d f yield F be piee-wie. The (3) i log d. (6) f b) If f L the fom (3b) i piee-wie otiuou fo oe get F o log d. (6b) f The poof of thee theoem (exept Theoem ) eily be hieved by uig the ledy kow oe though imple tfomtio (See fo exmple [5] o [7]). Fo the ke of fluey of the ppe we pefe to potpoe the poof to the ppedix. I wht follow we will deote the ivee tfom give by (5) d (6) by S f. Similly the ivee tfom give by ( 5b) d (6b) will be deoted by C f. 3. pplitio to Boudy-Vlue Poblem Coeted with Setiolly-Hmoi Futio Whe oe h lo FL by ueive diffeetitio of (3) d (3b) oe get Copyight 3 Sie.

4 M. IDEMEN 38 d f F i log d (7) f Folog d (7b) whih how tht d f S f S (8) C f C f. Now oide futio i o j (8b) u whih i hmoi j j D : j : j j D d tifie homogeeou boudy oditio of the Diihlet o Neum type o the iul pt of the boudy mely: d o u u j j (9) u () u j j pplitio of the opeto d u. (b) S o C to (9) yield uˆ ˆ () d ((8) (b)) beig tke ito out. Hee uˆ td fo the logithmi ie o oie tf om of u. Fom () oe get j Bj j j j j uˆ ih oh () whee j d B j e the itegtio ott to be detemied though the boudy d tmiio oditio while j d j e two ott whih be hoe ppopitely to filitte the omputtio. They my lo be depedet o. Thu i the eto j j oe h the followig expeio o j u j ih Bj oh j i log d jih j u (3). (3b) Bj oh j o log d (3) i vlid fo the oditio () while (3b) i vlid fo the e of (b). 4. Illuttive pplitio To how the effetivee of the epeettio ((3) (b)) i wht follow we will give illuttive exmple whih oe the het odutio i two-pt ompoite egio how i Figue 4. poit oue of mout Q exit t the poit (b ) while the iul pt of the boudy i oted by iultig mteil. The phyil popetie of the ltel boudie (i.e. the boudy oditio o d ) will be defied lte o. Thu the field futio (tempetue) u tifie the followig field equtio ude the give boudy oditio: Q divgdu b b (4) u u f (5) u u f (5b) u u (5) u O. (5d) u/ = O y u/ = f () u/ = f () Q Q b Figue 4. wedge-hped egio with Neum type boudy oditio. x Copyight 3 Sie.

5 38 M. IDEMEN Hee h ott vlue d i the idited ub-egio. emk tht the poblem poed by (4)-(5d) h olutio if the followig eey oditio i tified by the boudy oditio : D o moe expliitly u d Q f d f dq (6) (6b) Thi i obtied by fit itegtig (4) o D the pplyig the Gee theoem. I wht follow we will ume tht (6b) i tified (it will be ued lte o!). I ode with the defiitio of d Q let u wite u u u. (7) Sie the field Equtio (4) i equivlet to the equtio d u D (8) u u (8b) u u bq b d oe wite (8) u oh Boh olog d (9 ) u Coh Doh olog d. (9b) d The oeffiiet B C D e detemied though the oditio (5) (5b) (8b) d (8) follow: C B ih ih oh ih Q o log b ih () (b) D Hee we put oh log b ih ih Q o f olog d f olog d. () () If we fit iet ()-() ito ((9) (9b)) d the ue the Eule fomul to wite the o futio though expoetil futio the we get d u u oh i oh e d ih ih oh Q oh b i o log e d ih oh i oh e d ih ih oh Q oh b i o log e d ih () (b) Copyight 3 Sie.

6 M. IDEMEN 383 whee i defied with log. () Now it i impott to obeve tht the poit whih i loted o the itegtio lie eem to be double pole of the itegd i () d (b). But beue of the eltio (6b) thee pole e emovble. Ideed the emovbility of thee pole equie the oditio Q (3) whih i equivlet to (6b) () beig tke ito out. Sie the expeio tkig ple i the bket i () d (b) e eve futio of (3) gutee the emovbility of the igulity t =. Thu o the bi of Jod lemm the itegl i (() (b)) be omputed though the eidue t the pole loted i the uppe J o lowe J hlf-ple. The eidue eie omig fom the pole whih ou t the zeo of ih() d oh() e oeted with the geomety of the wedge i quetio d hee oit of the eige-futio eie. But the tem omig fom the pole of d (if y!) e idepedet of the geomety of th e wedge d hve o oetio with the eige-futio. emk. It i wothwhile to otie hee tht the ovegee of the ivee tfom itegl i () d (b) equie the eltio (3). Tht me tht the el- tfomtio i quetio doe ot oly pemit u to tio tted by (3) i i ft oditio fo the exitee of the olutio. Oe eily hek tht thi i othig but (6b) (o (6)). Thi how tht the pplitio of the obti expliit expeio of the olutio but the how lo the eey oditio fo the exitee of olutio. 4.. Ptiul Ce. Poit Sik Loted o the Ltel Boudie ume moe ptiully tht f M f M whee (4) d M td fo two give ott uh tht (Cf. (3) o (6b)) M Q. (4b) I thi e the ltel boudie oit of iultig mteil d y ik t the poit d. By tightfowd omputtio oe get M o log (4) whih edue () to u i Q oh ih Q oh ih i log log e +e d log i log i b e +e d. (5) Sie i the peet e oe lwy h b whih yield oh exp exp ih exp oh exp exp ih exp i o i o by the Jod lemm the fit pt of thee itegl be omputed by oideig the eidue of the pole tkig ple i the uppe hlf-ple Jh. But depedig o the eltive poitio of d oe get o <. Theefoe the eod pt of the fit itegl ivolve the otibutio of the pole exitig i the hlf-ple Jh o Jh (imil itutio i lo vlid fo the eod pt of the eod itegl). Thu we hve to oide the followig fou e ep tely: Ce : b e : b Ce 3: b e 4: b. Copyight 3 Sie.

7 384 M. IDEMEN By tightfowd omputtio we get the followig eult: b Q u o Q b o b b Q u o b Q o b b Q u o b Q o b b Q u o b Q o b (6) (6b) (6) (6d) By ompig (b) with () oe obeve tht u u whee. It i lo iteetig to ompe ( 6)-(6d) with the eult petiet to the e of. Thu o e olude tht the peet two-pt wedge poblem i equivlet to the homogeewith otitutive pmete ou wedge poblem. 5. Coluio d Coludig emk Fom the lyi mde bove oe olude tht the logithmi tfomtio defied by (3) d (3b) my be ppopite i gettig expliit expeio of etiolly-hmoi futio whih tify the homogeeou Diihlet o Neum boudy oditio o the iul pt of the boudy of wedge hped domi. Thi kid of poblem ie i viou domi of ppli- tio uh eletotti mgeto-tti hydotti het tfe m tfe outi eltiity et. EFEENCES []. C. Eige The Fiite Stum-Liouville Tfom Qutely Joul of Mthemti Vol. 5 No. 954 pp. -9. doi:.93/qmth/5.. []. V. Chuhill Geelized Fiite Fouie Coie Tfom Mihig Mthemtil Joul Vol. 3 No. 955 pp doi:.37/mmj/3754 [3] D. Nylo O Melli Type Itegl Tfom Joul of Mthemti d Mehi Vol. No. 963 pp [4] D. Nylo O Itegl Tfom of the Melli Type Joul of Egieeig Mthemti Vol. 4 No. 98 pp doi:.7/bf3769 [5] I. N. Seddo The Ue of Itegl Tfom MGw- Hill Co. New Yok 97. [6] W.. Smythe Stti d Dymi Eletiity MGw- Hill Co. New Yok 95. [7] E. C. Tithmh Itodutio to the Theoy of Fouie Itegl Oxfod Uiveity Pe 948. Copyight 3 Sie.

8 M. IDEMEN 385 ppedix. Poof of Theoem. Poof fo Theoem- f i quite obviou. To fid the limit of f oide fit the e whe d fo ume tht bitily fixed (mll) i give. Sie F L we fid uh tht Thu fom (3) oe get F d. (7) 4 f f F i log i log d F ilog ilog d whih yield f f log F i d. Now by tkig ito out the ue ). d (7b) iequlitie (ee Fig- log log i x x x we hooe o mll tht F i log d F d F d. (7) (7d) Fom (7b) d (7d) we olude tht fo evey howeve it i mll we fid uh tht whih pemit u to wite f f f f. Fo thi give the fit equti o i (4). To pove the me equlity fo the e of we hooe bity umbe d epet the gumet mde bove by eplig by. ll the lie exept (7b) d ( 7) emi uhged while the ltte beome ow follow: d - O y y = x y = log(+x) y = log(- x) y = - x y = - mx m> Figue. Logithm futio. f f F ilog d log log m. Hee m x (8) (8b) td fo uitble umbe whih doe ot deped o (Fo detil ee Figue ). Thu by hooig uffiietly mll we gutee whih yield d m F d (8) f f f f. Fo = the ltte edue to the fit equlity i (4) whe. To ee the limit of f oide bitily give (mll) d hooe uh tht the eod pt i f F i log d F i log d meet the followig iequlity: (8d) (9) Fi log d F d. (9b) Copyight 3 Sie.

9 386 M. IDEMEN fte hvig fixed let u mke. By vitue of the well-kow iem-lebegue lemm [5 p. 3] the fit pt i (9) ted to zeo whe log. Theefoe fo uffiietly mll oe h lo F i log d. (9) Fom (9)-(9) oe olude tht fo uffiietly mll oe h f fo evey. Thi pove the eod equlity i (4). (9)-(9) e lo vlid fo whih how the lt equlity i (4). Poof fo Theoem- The equlitie give i (4b) be how by epetig the eoig mde i povig Theoem-. to the equlity give i (4) owig to the umptio d FL f Fi log d (3) it i edued to the fit equlity i (4). 3. Poof of Theoem-3 d 4 Poof of thee theoem e bed o the followig wellkow lemm (ee [5 p. 34]). Lemm (Fouie itegl theoem). If f t i piee-wie otiuou d bolutely itegble i x oe h the fo ll d o f t x t dt (3) f x f x. Let u iet (5) ito the ight-hd ide of (3) d mke the ubtitutio whih yield d log log (3) d e e d F i log d f e i di d. (3b) (33) Now let u defie the odd futio e L f follow (otie tht f e f ): f e f e. The (33) lo be witte o F i log d f e i di d F i log d d f e o d. Sie the futio f e metioed i the lemm fom get (33b) (33) (33d) meet the equiemet the lt expeio oe F i log d e e f f f f. (34) Thi pove (5). To pove (5b) oe tt fom (3b) d epet (3)- (34) with the oly exeptio tht (33b) i epled ow by the eve futio f e f f Poof of theoem-4 i quite imil to tht of Theoem-3. The oly diffeee i tht d defied i (3) e epled ow by d e e. log log. Copyight 3 Sie.

Generalized Functions in Minkowski Space

Generalized Functions in Minkowski Space Geelize Ftio i Miowi Spe Chiw Ch Agt t, Mthemti Deptmet, The Uiveit of Aizo Cl DeVito Mthemti Deptmet, The Uiveit of Aizo PDF ete with FiePit pffto til veio http://www.fiepit.om . Itoio Peioi ftio e i

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder Joul of Applied Mthemtics d Physics, 5, 3, 75-8 Published Olie Juy 5 i SciRes. http://www.scip.og/joul/jmp http://dx.doi.og/.436/jmp.5.3 Expsio by Lguee Fuctio fo Wve Diffctio oud Ifiite Cylide Migdog

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

Estimation Theory. Chapter 12

Estimation Theory. Chapter 12 timtio heoy hpte Lie Byei timto Optiml MMS Byei etimto i geel e difficult to compute i cloed fom; ecept fo the joitly Gui ce. But i my itutio, we c t mke the Gui umptio. lled iee Filte Ited, we keep the

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the 1. The 0.1 kg pticle h peed v = 10 m/ it pe the 30 poitio how. The coefficiet of kietic fictio betwee the pticle d the veticl ple tck i m k = 0.0. Detemie the mgitude of the totl foce exeted by the tck

More information

Sequences and series Mixed exercise 3

Sequences and series Mixed exercise 3 eqees seies Mixe exeise Let = fist tem = ommo tio. tem = 7 = 7 () 6th tem = 8 = 8 () Eqtio () Eqtio (): 8 7 8 7 8 7 m to te tems 0 o 0 0 60.7 60.7 79.089 Diffeee betwee 0 = 8. 79.089 =.6 ( s.f.) 0 The

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

Analysis of a Two-Echelon Inventory Model with Lost Sales and Stochastic Demand using Continuous-Time Markov chain

Analysis of a Two-Echelon Inventory Model with Lost Sales and Stochastic Demand using Continuous-Time Markov chain Poceedig of te tetiol ofeece o dutil Egieeig d Opetio Mgemet li doei Juy 7 9 Alyi of Two-Ecelo vetoy Model wit Lot le d toctic Demd uig otiuou-time Mov ci m Vegi Fi d Roul Hi if Uiveity of Tecology Abtct

More information

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline OPTIMAL ESTIMATORS FOR THE FIITE POPULATIO PARAMETERS I A SIGLE STAGE SAMPLIG Detailed Outlie ITRODUCTIO Focu o implet poblem: We ae lookig fo a etimato fo the paamete of a fiite populatio i a igle adom

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA

NATIONAL OPEN UNIVERSITY OF NIGERIA NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH - COURSE TITLE: ELEMENTARY DIFFERENTIAL EQUATIONS II MTH - ELEMENTARY DIFFERENTIAL EQUATIONS II Couse Te: D. O.J. Adei

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c STTS FORE foe is veto qutit. t is defied we its () mgitude, () oit of litio, d () dietio e kow. Te veto fom of foe is F F i F j RESULTNT (TWO DMENSONS) Te esultt, F, of foes wit omoets F,i d F,i s te mgitude

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Generating Function for Partitions with Parts in A.P

Generating Function for Partitions with Parts in A.P Geetig Fuctio fo Ptitio wi Pt i AP Hum Reddy K # K Jkmm * # Detmet of Memtic Hidu Coege Gutu 50 AP Idi * Detmet of Memtic 8 Mi AECS Lyout B BLOCK Sigd Bgoe 5604 Idi Abtct: I i e we deive e geetig fuctio

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

Latticed pentamode acoustic cloak (supplementary Info)

Latticed pentamode acoustic cloak (supplementary Info) Lattied petamode aousti loak (supplemetay Ifo) Yi Che, Xiaoig Liu ad Gegkai Hu Key Laboatoy of yamis ad Cotol of Flight Vehile, Miisty of Eduatio, Shool of Aeospae Egieeig, Beiig Istitute of Tehology,

More information

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators. Topic i Qutu Optic d Qutu Ifortio TA: Yuli Mxieko Uiverity of Illioi t Urb-hpig lt updted Februry 6 Proble Set # Quetio With G x, x E x E x E x E x G pqr p q r where G pqr i oe trix eleet For geerl igle

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function Math 3b Sprig 005 Yum-og Siu Expliit Formula for Logarithmi Derivative of Riema Zeta Futio he expliit formula for the logarithmi derivative of the Riema zeta futio i the appliatio to it of the Perro formula

More information

Review. I will give you these formulas: Sphere: V=frr Circle: A = rr2 Cone: V = I 2rr2h Cube: V = side3

Review. I will give you these formulas: Sphere: V=frr Circle: A = rr2 Cone: V = I 2rr2h Cube: V = side3 You eed to kow: Rolle s Theoem: f ) f is cotiuous o [.bj, 2) f is diffeetible o (,b), d ) f()=f(b), the thee s oe c i (,b) whee f (c) = Me Vlue Theoem: l) f is cotiuous o [.b d 2) f is diffeetible o (,b),

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

First assignment of MP-206

First assignment of MP-206 irt igmet of MP- er to quetio - 7- Norml tre log { : MP Priipl tree: I MP II MP III MP Priipl iretio: { I { II { III Iitill uppoe tht i tre tte eribe i the referee tem ' i the me tre tte but eribe i other

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan.

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. SULT 347/ Rumus-umus eikut oleh memtu d mejw sol. Simol-simol yg diei dlh yg is diguk. LGER. 4c x 5. log m log m log 9. T d. m m m 6. log = log m log 0. S d m m 3. 7. log m log m. S, m m logc 4. 8. log.

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Faulty of Siees ad Matheatis, Uivesity of Niš, Sebia Available at: http://www.pf.i.a.yu/filoat Filoat 22:2 (28), 59 64 SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Saee Ahad Gupai Abstat. The sequee

More information

2. Elementary Linear Algebra Problems

2. Elementary Linear Algebra Problems . Eleety e lge Pole. BS: B e lge Suoute (Pog pge wth PCK) Su of veto opoet:. Coputto y f- poe: () () () (3) N 3 4 5 3 6 4 7 8 Full y tee Depth te tep log()n Veto updte the f- poe wth N : ) ( ) ( ) ( )

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010 Optimal Sigal Poceig Leo 5 Chapte 7 Wiee Filte I thi chapte we will ue the model how below. The igal ito the eceive i ( ( iga. Nomally, thi igal i ditubed by additive white oie v(. The ifomatio i i (.

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Powe Seies Solutios Foeius Metho Septee 6, 7 Powe Seies Solutios Foeius etho L Cetto Mehil Egieeig 5AB Sei i Egieeig Alsis Otoe 6, 7 Outlie Review lst wee Powe seies solutios Geel ppoh Applitio Foeius

More information

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c 4. (0 ts) Use Femt s Piile t ve the lw eleti. A i b 0 x While the light uld tke y th t get m A t B, Femt s Piile sys it will tke the th lest time. We theee lulte the time th s uti the eleti it, d the tke

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu)

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu) Joul of Qulity Mesuemet d Alysis JQMA 7 0 4-5 Jul Peguu Kuliti d Alisis PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR Mslh d Sift-sift sutu Pegopesi Peme Bhu MASLINA DARUS & IMRAN FAISAL ABSTRACT

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 3. Fid the geel solutio of the diffeetil equtio blk d si y ycos si si, d givig you swe i the fom y = f(). (8) 6 *M3544A068* PhysicsAdMthsTuto.com Jue

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com 5. () Show tht d y d PhysicsAdMthsTuto.com Jue 009 4 y = sec = 6sec 4sec. (b) Fid Tylo seies epsio of sec π i scedig powes of 4, up to d 3 π icludig the tem i 4. (6) (4) blk *M3544A08*

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

1999 by CRC Press LLC

1999 by CRC Press LLC Poulri A. D. The Melli Trform The Hdboo of Formul d Tble for Sigl Proceig. Ed. Alexder D. Poulri Boc Rto: CRC Pre LLC,999 999 by CRC Pre LLC 8 The Melli Trform 8. The Melli Trform 8. Propertie of Melli

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information