On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

Size: px
Start display at page:

Download "On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator"

Transcription

1 Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this ppe we itoduce two ew clsses (α,, ξ, γ, δ) d T V (α,, ξ, γ, δ), <,0, 0, / ξ, 0 α / ξ, / < γ, 0o mily o lytic uctios o the om N deied s: 0 () () () () () () [ ()] (), 0, o,3,, We hve obtied coeiciet estimtes, gowth & distotio theoems, exteml popeties o these two clsses The detemitio o exteme poits o mily o uivlet uctios leds to solve my exteml poits Keywods--- Al-Oboudi Opeto, Covex Fuctios, Stlike Fuctios, Uivlet Fuctios L I INTROUCTION E deote the clss o uctios o the om + () () tht e lytic d uivlet i the disk < Fo 0 α < let S * ( d K( deote the submilies o S cosistig o uctios stlike o ode α d covex o ode α espectively The submily T o S cosists o uctios o the om (), 0, o,3,, () Silvem [6] ivestigted uctio i the clsses T * ( T S * ( d C( T K( Let N d 0 eote by the Al-Oboudi opeto [3] deied by : A A, 0 () () () ( )() + () () () [ Note tht o () is give by (), ()] () + [+ ( )), whe, is the Sălăge dieetil opeto : A A, TV Sudhs, eptmet o Mthemtics, SIVET College, Chei , Idi E-mil: tvsudhs@edimilcom SP Viylkshmi, eptmet o Mthemtics, SIVET College, Chei , Idi eiitio : [8] Let, R, 0, 0 d + () we deote by the lie opeto deied by : A A () + (+ ( )) Remk : I T, (), 0,, 3,, the () (+ ( )) I this ppe usig the opeto we itoduce the clsses (α,, ξ, γ, δ) d T V (α,, ξ, γ, δ) d obti coeiciet estimtes o these clsses whe the uctios hve egtive coeiciets We lso obti gowth d distotio theoems, closue theoem o uctios i these clsses eiitio : We sy tht uctio () T is i the clss (α,, ξ, γ, δ) i d oly i + () () + + () () ξ α γ () () whee <, 0, / ξ, 0, 0 α / ξ, / < γ, 0 eiitio 3: A uctio () T is sid to belog to the clss (α,, ξ, γ, δ) i d oly i ξ () () () α γ () + + () () ISSN Boig

2 Boig Itetiol Joul o t Miig, Vol, No, Jue 0 7 whee <, 0, / ξ, 0, 0 α α / ξ, / < γ, 0 I we eplce 0, we obti the coespodig esults o SM Khi d Mee Moe [4] I we eplce 0, d γ we obti the esults o Aghly d Kulki [] d Silvem d Silvi [7] I we eplce 0, d ξ by, we obti the coespodig esults o [9] II MAIN RESULTS COEFFICIENT ESTIMATES Theoem : A uctio () ( 0) is i (α,, ξ, γ,δ) i d oly i Poo Suppose, ξδ( (+ ()) [(){ξδ + γδ} + δξ( ] ξ + () () + + () () ξ α γ () () (+ ( )) (+ ( )) (+ ( )) γ (+ ( )) + + α + (+ ( )) (+ ( )) we hve + (+ ( )) [(){ξδ + γδ} + δξ( ] () () δ ξ( + With the povisio, δ ξ γ (+ ()) (+ ()) (+ ()) ξδ( () α ()) γ( α + α + Fo < it is bouded bove by δ (+ ( )) ( ) δ ξ( () + () ()) < 0 (+ ()) δξ( (+ ()) (+ ()) < 0 (+ ( )) {ξα ξ ξ( ) + γ( )} p (α,, ξ, γ, δ) Now we pove the covese esult Let (+ ()) () ξ( + (+ ()) {ξ(α ) ξ()+ γ()} As Re () o ll, we hve (+ ()) () Re ξ( + (+ ()) {ξ( ξ()+ γ()} We choose vlues o o el xis such tht + is el d cleig the deomito o bove expessio d llowig though el vlues, we obti (+ ( )) {( )(ξδ + γδ) + δξ( } [ ξδ( (+ ( )) {( )(ξδ + γδ) + δξ( } ξδ( ] 0 Remk : I () (α,, ξ, γ, δ) the ISSN Boig

3 Boig Itetiol Joul o t Miig, Vol, No, Jue 0 8 ξδ(, (+ ( )) {( )(ξδ + γδ) + δξ( },3,4, d equlity holds o ξδ( () (+ ( )) {()(ξδ + γδ) + δξ( } Coolly : I () p (α,0, ξ, γ, δ), tht is, eplcig 0, we get ξδ(,,3,4, ( ) δ (ξα ξ + γ γ) d equlity holds o ξδ( () ( ) δ (ξα ξ + γ γ) This coolly is due to [4] Coolly : I () 0,, γ we get p (α,0, ξ,, δ), tht is, eplcig ξδ(,,3,4, ( ) δ (ξα ξ + ) d equlity holds o ξδ( () ( ) δ (ξα ξ + ) This coolly is due to [] d [7] Coolly 3: I () p (α,0,,, δ) we get δ(,,3,4, ( ) δ (α ) d equlity holds o δ( () ( ) δ (α ) This coolly is due to [9] Coolly 4: () p (α,0,,,) i d oly i ( ( Theoem : A uctio () ( 0) is i (α,, ξ, γ,δ) i d oly i [+ ( )] + {( ){δξ + γδ} + δξ( } δξ( Poo: The poo o this theoem is logous to tht o Theoem [], becuse uctio () T V (α,, ξ, γ, δ) i d oly i () (α,, ξ, γ, δ) So it is eough tht i Theoem is eplced with + Remk : I () T V (α,, ξ, γ, δ) the + () (+ ( )) d equlity holds o + (+ ()) ξδ(, {( )(ξδ + γδ) + δξ( },3,4, ξδ( {()(ξδ + γδ) + δξ( } Coolly 5: I () T V (α,, ξ, γ, δ), tht is, eplcig 0, we get ξδ(,,3,4, {( ) δ(ξα ξ + γ γ)} d equlity holds o ξδ( () {( ) δ(ξα ξ + γ γ)} This coolly is due to [4] Coolly 6: I () T V (α, 0, ξ,, δ), tht is, eplcig 0,, γ we get ξδ(,,3,4, {( ) δ(ξα ξ + )} d equlity holds o ξδ( () {( ) δ(ξα ξ + )} This coolly is due to [] d [7] Coolly 7: I () T V (α, 0,,, δ), the δ(,,3,4, {( ) δ(α )} d equlity holds o δ( () {( ) δ(α )} Coolly 8: () T V (α, 0,,, ), i d oly i ( ( ISSN Boig

4 Boig Itetiol Joul o t Miig, Vol, No, Jue 0 9 III GROWTH AN ISTORTION THEOREM Theoem 3: I () (α,, ξ, γ, δ) the (+ ) + (+ ) equlity holds o ξδ( { + ξδ γδ + ξδ( } ξ δ( () + 4ξδ δ(γ + ξ () ξδ( { + ξδ γδ + ξδ( } t ± Poo: By Theoem, we hve () (α,, ξ, γ, δ) i d oly i (+ ()) {( ){ξδ + γ} + ξδ( } ξδ( ξδ( Let t + ξδ γδ () (α,, ξ, γ, δ) i d oly i Whe (+ ( )) ( t) t (3) (+ ) ( t) (+ ( )) ( t) t This lst iequlity ollows om (3) we obti t () (+ ) ( t) Similly t () (+ ) ( t) So, t () + ( + ) ( t) tht is, (+ ) + (+ ) Hece the esult t ( + ) ( t) ξδ( () { + ξδ γδ + ξδ( } ξδ( { + ξδ γδ + ξδ( } Coolly 3: I p (α,0, ξ, γ, δ), tht is, eplcig d 0, the p tht is, ξδ( () + ξδ γδ + ξδ + ξδα + d equlity o + ξδ( + ξδ γδ + ξδ + ξδα ξδ( () + 4ξδ δ( γ + ξα ) ξδ( + 4ξδ δ( γ + ξα ) ξ δ( () (+ 4ξδ) δ(γ + ξ This coolly is due to [4] Coolly 3: I (), 0 d γ, the t ± p (α,0, ξ,, δ), tht is, eplcig ξδ( () + 4ξδ δ(+ ξ ξδ( + + 4ξδ δ(+ ξ with equlity o, ξ δ( () + 4ξδ δ(+ ξ t ± This coolly is due to [] d [7] Coolly 33: I () p (α,0,,, δ), the δ( () + 4δ δ(+ δ( + + 4δ δ(+ with equlity o, δ( () (+ 4δ) δ(+ t ± Theoem 3: I () T V (α,, ξ, γ, δ) the ξδ( () + ( + ) {( + ξδ γδ) + ξδ( } + ( + ) + ξδ( {( + ξδ γδ) + ξδ( } Poo: The poo o this theoem is logous to tht o Theoem 3, becuse uctio () T V (α,, χ, γ, δ) i d oly i () (α,, ξ, γ, δ) So it is eough tht i Theoem is eplced with + ISSN Boig

5 Boig Itetiol Joul o t Miig, Vol, No, Jue 0 0 Coolly 34: I () T V (α, 0, ξ, γ, δ) the ξδ( () (+ 4ξδ δ(γ + ξ ξδ( + (+ 4ξδ δ(γ + ξ with equlity o ξδ( () (+ 4ξδ) δ(γ + ξ t ± This coolly is due to [4] Coolly 35: I () T V (α, 0, ξ,, δ) the ξδ( () (+ 4ξδ δ(+ ξ ξδ( + (+ 4ξδ δ(+ ξ with equlity o ξδ( () (+ 4ξδ) δ(+ ξ t ± This coolly is due to [] d [7] Coolly 36: I () T V (α, 0,,, δ) the δ( () + 3δ δα δ( + + 3δ δα with equlity o δ( () + 3δ δα t ± This coolly is due to [9] Theoem 33: I () p (α,, ξ, γ, δ) the 4ξδ( () (+ ) {( γδ) + ξδ( + } 4ξδ( + (+ ) {( γδ) + ξδ( + } Poo Sice p (α,, ξ, γ, δ) we hve (+ ( )) ( t) t ξδ( whee t + ξδ γδ I view o Theoem 3, we hve ( t) (+ ) ( t) ( t) + t (4) + + Similly So, ( t) + ( + ) ( t) ( t) ( + ) ( t) ( t) ( t) () + ( + ) ( t) ( + ) ( t) Substitutig t, we hve 4ξδ( () (+ ) {( γδ) + ξδ( + } 4ξδ( + (+ ) {( γδ) + ξδ( + } Coolly 37: I (α,0, ξ, γ, δ) ) the 4ξδ( () ( γδ) + ξδ( 4ξδ( + ( γδ) + ξδ( o This coolly is due to [4] Coolly 38: I p (α,0, ξ,, δ) the 4ξδ( () ( δ) + ξδ( 4ξδ( + ( δ) + ξδ( This coolly is due to [] d [7] Coolly 39: I p (α,0,,, δ) the 4δ( () ( δ) + δ( 4δ( + ( δ) + δ( tht is, 4δ( () + 3δ δα 4δ( + + 3δ δα This coolly is due to [9] Theoem 34: I T V (α,, ξ, γ, δ) the p ISSN Boig

6 Boig Itetiol Joul o t Miig, Vol, No, Jue 0 o (+ ) + + (+ ) 4ξδ( () {( γδ) + ξδ( + } + 4ξδ( {( γδ) + ξδ( + } Poo: The poo o this theoem is simil to tht o Theoem 33 becuse uctio () T V (α,, ξ, γ, δ) i d oly i () (α,, ξ, γ, δ) So it is eough tht i Theoem 33 is eplced with + Coolly 30: I T V (α, 0, ξ, γ, δ) the ξδ( () ( γδ) + ξδ( ξδ( + ( γδ) + ξδ( o This coolly is due to [4] Coolly 3: I T V (α, 0, ξ,, δ) the ξδ( () ( δ) + ξδ( ξδ( + ( δ) + ξδ( o This coolly is due to [] d [7] Coolly 3: I T V (α, 0,,, δ) the δ( () ( δ) + δ( δ( + ( δ) + δ( δ( () + 3δ αδ δ( + + 3δ αδ o This coolly is due to [9] IV Theoem 4: Let () d CLOSURE THEOREM ξδ( () [+ ( )] [( ){ξδ + γδ} + δξ( ] o, 3, 4, The () T V (α,, ξ, γ, δ) i d oly i () c be expessed i the oms () () whee 0 d Poo: Let () (), 0,,, with () we hve () + () () ξδ( [+ ()] [(){ξδ + γδ} + δξ( ] The ξδ( [ + ( )] [( ){ξδ + γδ} + δξ( ] [+ ( )] [( ){ξδ + γδ} + δξ( ] ξδ( () T V (α,, ξ, γ, δ) Covesely, suppose () T V (α,, ξ, γ, δ) the emk o Theoem gives us ξδ( [+ ( )] [( ){ξδ + γδ} + δξ( ] we tke [+ ()] [(){ξδ + γδ} + δξ( ], ξδ(,3,4, d The () () Coolly 4: I () d ξδ( (), ( ) δ(ξα ξ + γ γ) o,3, The () T V (α, 0, ξ, γ, δ) i d oly i () c be expessed i the om () () whee 0,,,, This coolly is due to [4] ISSN Boig

7 Boig Itetiol Joul o t Miig, Vol, No, Jue 0 Coolly 4: I () d ξδ( (), ( ) δ(ξα ξ + ) o,3, The () T V (α, 0, ξ,, δ) i d oly i () c be expessed i the om () () whee 0, [6] H Silvem, Uivlet uctios with egtive coeiciets [7] H Silvem d E Silvi, Subclsses o pestlike uctios, Mth Jpo, Vol 9, No 6, Pp 99935, 984 [8] TV Sudhs, R Thiumlismy, KG Submi, Mugu Acu, A clss o lytic uctios bsed o extesio o Al-Oboudi opeto, Act Uivesittis Apulesis, Vol, Pp 7988, 00 [9] S Ow d J Nishiwki, Coeiciet Estimtes o ceti clsses o lytic uctios, JIPAM, J Iequl Pue Appl Mth, Vol 35, Aticle 7, 5pp (electoic), 00,,, This coolly is due to [] d [7] Coolly 43: I () d δ( (), ( ) δ(α ) o,3, The () T V (α, 0,,, δ) i d oly i () c be expessed i the om () () whee 0,,,, This coolly is due to [9] Coolly 44: I () d () The () T V (0, 0,,, ) i d oly i () c be expessed i the om () () whee 0,,,, V CONCLUSION I this ppe mkig use o Al-oboudi opeto two ew subclsses o lytic d uivlet uctios e itoduced o the uctios with egtive coeiciets My subclsses which e ledy studied by vious eseches e obtied s specil cses o ou two ew subclsses We hve obtied vious popeties such s coeiciet estimtes, gowth distotio theoems Futhe ew subclsses my be possible om the two clsses itoduced i this ppe REFERENCES [] M Acu, S Ow, Note o clss o stlike uctios, Poceedig o the Itetiol shot wok o study o clculus opetos i uivlet uctio theoy, Kyoto, Pp 0, 006 [] R Aghly d S Kulki, Some theoems o uivlet uctios, J Idi Acd Mth, Vol 4, No, Pp 893, 00 [3] FM Al-Oboudi, O uivlet uctios deied by geelied Sălăge opeto, Id J Mth Sci, No 5-8, 49436, 004 [4] SM Khi d Mee Moe, Ceti mily o lytic d uivlet uctios, Act Mthemtic Acdemie Pedogicl, Vol 4, Pp , 008 [5] SR Kulki, Some poblems coected with uivlet uctios, Ph Thesis, Shii Uivesity, Kolhpu, 98 ISSN Boig

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu)

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu) Joul of Qulity Mesuemet d Alysis JQMA 7 0 4-5 Jul Peguu Kuliti d Alisis PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR Mslh d Sift-sift sutu Pegopesi Peme Bhu MASLINA DARUS & IMRAN FAISAL ABSTRACT

More information

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator Itertiol Jourl of Moder Egieerig Reserch (IJMER) Vol., Issue.3, My-Jue 0-56-569 ISSN: 49-6645 N. D. Sgle Dertmet of Mthemtics, Asheb Dge College of Egieerig, Asht, Sgli, (M.S) Idi 4630. Y. P. Ydv Dertmet

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator Glol Jourl o Pure d Alied Mthetics. ISSN 973-768 Volue 4 Nuer 5 28. 733-74 Reserch Idi Pulictios htt://www.riulictio.co O New Suclss o Multivlt Fuctios eied y Al-Ooudi ieretil Oertor r.m.thirucher 2 T.Stli

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

On New Bijective Convolution Operator Acting for Analytic Functions

On New Bijective Convolution Operator Acting for Analytic Functions Jourl o Mthetics d Sttistics 5 (: 77-87, 9 ISSN 549-3644 9 Sciece Pulictios O New Bijective Covolutio Opertor Actig or Alytic Fuctios Oqlh Al-Rei d Msli Drus School o Mtheticl Scieces, Fculty o Sciece

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Integrals and Polygamma Representations for Binomial Sums

Integrals and Polygamma Representations for Binomial Sums 3 47 6 3 Jounl of Intege Sequences, Vol. 3 (, Aticle..8 Integls nd Polygmm Repesenttions fo Binomil Sums Anthony Sofo School of Engineeing nd Science Victoi Univesity PO Box 448 Melboune City, VIC 8 Austli

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

About Some Inequalities for Isotonic Linear Functionals and Applications

About Some Inequalities for Isotonic Linear Functionals and Applications Applied Mthemticl Sciences Vol. 8 04 no. 79 8909-899 HIKARI Ltd www.m-hiki.com http://dx.doi.og/0.988/ms.04.40858 Aout Some Inequlities fo Isotonic Line Functionls nd Applictions Loedn Ciudiu Deptment

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Modular Spaces Topology

Modular Spaces Topology Applied Matheatics 23 4 296-3 http://ddoiog/4236/a234975 Published Olie Septebe 23 (http://wwwscipog/joual/a) Modula Spaces Topology Ahed Hajji Laboatoy of Matheatics Coputig ad Applicatio Depatet of Matheatics

More information

On Natural Partial Orders of IC-Abundant Semigroups

On Natural Partial Orders of IC-Abundant Semigroups Intentionl Jounl of Mthemtics nd Computtionl Science Vol. No. 05 pp. 5-9 http://www.publicsciencefmewok.og/jounl/ijmcs On Ntul Ptil Odes of IC-Abundnt Semigoups Chunhu Li Bogen Xu School of Science Est

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1)

f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1) MATEMATIQKI VESNIK 68, 206, 45 57 Mrch 206 origili uqi rd reserch pper INTEGRAL INEQUALITIES OF JENSEN TYPE FOR λ-convex FUNCTIONS S. S. Drgomir Abstrct. Some itegrl iequlities o Jese type or λ-covex uctios

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

A note on random minimum length spanning trees

A note on random minimum length spanning trees A ote o adom miimum legth spaig tees Ala Fieze Miklós Ruszikó Lubos Thoma Depatmet of Mathematical Scieces Caegie Mello Uivesity Pittsbugh PA15213, USA ala@adom.math.cmu.edu, usziko@luta.sztaki.hu, thoma@qwes.math.cmu.edu

More information

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India. Steie Hype Wiee Idex A. Babu 1, J. Baska Babujee Depatmet of mathematics, Aa Uivesity MIT Campus, Cheai-44, Idia. Abstact Fo a coected gaph G Hype Wiee Idex is defied as WW G = 1 {u,v} V(G) d u, v + d

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Right-indefinite half-linear Sturm Liouville problems

Right-indefinite half-linear Sturm Liouville problems Computes nd Mthemtics with Applictions 55 2008) 2554 2564 www.elsevie.com/locte/cmw Right-indefinite hlf-line Stum Liouville poblems Lingju Kong, Qingki Kong b, Deptment of Mthemtics, The Univesity of

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

Simultaneous Estimation of Adjusted Rate of Two Factors Using Method of Direct Standardization

Simultaneous Estimation of Adjusted Rate of Two Factors Using Method of Direct Standardization Biometics & Biosttistics Itetiol Joul Simulteous Estimtio of Adjusted Rte of Two Fctos Usig Method of Diect Stddiztio Astct This ppe pesets the use of stddiztio o djustmet of tes d tios i compig two popultios

More information

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x.

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x. HOMEWORK 1 SHUANGLIN SHAO 1. P 229. # 7.1.2. Proof. (). Let f (x) x99 + 5. The x 66 + x3 f x 33 s goes to ifiity. We estimte the differece, f (x) x 33 5 x 66 + 3 5 x 66 5, for ll x [1, 3], which goes to

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Intoduction to Computing II Mcel Tucotte School of Electicl Engineeing nd Compute Science Abstct dt type: Stck Stck-bsed lgoithms Vesion of Febuy 2, 2013 Abstct These lectue notes e ment to be

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 SUTCLIFFE S NOTES: CALCULUS SWOKOWSKI S CHAPTER Ifiite Series.5 Altertig Series d Absolute Covergece Next, let us cosider series with both positive d egtive terms. The simplest d most useful is ltertig

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

Lacunary Weak I-Statistical Convergence

Lacunary Weak I-Statistical Convergence Ge. Mat. Notes, Vol. 8, No., May 05, pp. 50-58 ISSN 9-784; Copyigt ICSRS Publicatio, 05 www.i-css.og vailable ee olie at ttp//www.gema.i Lacuay Wea I-Statistical Covegece Haize Gümüş Faculty o Eegli Educatio,

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information