f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1)

Size: px
Start display at page:

Download "f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1)"

Transcription

1 MATEMATIQKI VESNIK 68, 206, Mrch 206 origili uqi rd reserch pper INTEGRAL INEQUALITIES OF JENSEN TYPE FOR λ-convex FUNCTIONS S. S. Drgomir Abstrct. Some itegrl iequlities o Jese type or λ-covex uctios deied o rel itervls re give.. Itroductio Assume tht I d J re itervls i R, 0, J d uctios h d re rel o-egtive uctios deied i J d I, respectively. Deiitio. 20 Let h: J 0, ith h ot ideticl to 0. We sy tht : I 0, is h-covex uctio i or ll x, y I e hve or ll t 0,. tx + ty htx + h ty. For some results cocerig this clss o uctios see 3, 3, This clss o uctios cotis the clss o Goduov-Levi type uctios 9, 0, 4, 6. It lso cotis the clss o P uctios d qusi-covex uctios. For some results o P -uctios see 5 hile or qusi covex uctios, the reder c cosult. Deiitio 2. 4 Let s be rel umber, s 0,. A uctio : 0, 0, is sid to be s-covex i the secod sese or Brecker s-covex i or ll x, y 0, d t 0,. tx + ty t s x + t s y For some properties o this clss o uctios see, 2, 4, 7, 8, Mthemtics Subject Clssiictio: 26D5, 25D0 Keyords d phrses: Covex uctio; discrete iequlity; λ-covex uctio; Jese type iequlity. 45

2 46 S. S. Drgomir We c itroduce o other clss o uctios deied o covex subset C o lier spce X tht cotis s limitig cses the clsses o Goduov-Levi d P -uctios. Deiitio 3. We sy tht the uctio : C X 0, is o s-goduov- Levi type, ith s 0,, i or ll t 0, d x, y C. tx + ty t s x + y,.2 t s We observe tht or s = 0 e obti the clss o P -uctios hile or s = e obti the clss o Goduov-Levi. I e deote by Q s C the clss o s- Goduov-Levi uctios deied o C, the e obviously hve P C = Q 0 C Q s C Q s2 C Q C = QC or 0 s s 2. For dieret iequlities o Hermite-Hdmrd or Jese type relted to these clsses o uctios, see, 3, 3, 5 9. A uctio h: J R is sid to be supermultiplictive i hts hths or y t, s J..3 I the iequlity.3 is reversed, the h is sid to be submultiplictive. equlity holds i.3 the h is sid to be multiplictive uctio o J. I 5, e itroduced the olloig cocept o uctios: I the Deiitio 4. Let λ: 0, 0, be uctio ith the property tht λt > 0 or ll t > 0. A mppig : C R deied o covex subset C o lier spce X is clled λ-covex o C i αx + βy λαx + λβy.4 α + β λα + β or ll α, β 0 ith α + β > 0 d x, y C. We observe tht i : C R is λ-covex o C, the is h-covex o C ith ht = λt λ, t 0,. I : C 0, is h-covex uctio ith h supermultiplictive o 0,, the is λ-covex ith λ = h. We hve the olloig result providig my exmples o subdditive uctios λ: 0, 0,. Theorem. 5 Let hz = =0 z be poer series ith oegtive coeiciets 0 or ll N d coverget o the ope disk D0, R ith R > 0 or R =. I r 0, R the the uctio λ r : 0, 0, give by λ r t := l hr hr exp t is oegtive, icresig d subdditive o 0,..5

3 Itegrl iequlities o Jese type 47 No, i e tke hz = z, z D0,, the r exp t λ r t = l r is oegtive, icresig d subdditive o 0, or y r 0,. I e tke hz = expz, z C the.6 λ r t = r exp t.7 is oegtive, icresig d subdditive o 0, or y r > 0. Corollry. 5 Let hz = =0 z be poer series ith oegtive coeiciets 0 or ll N d coverget o the ope disk D0, R ith R > 0 or R = d r 0, R. For mppig : C R deied o covex subset C o lier spce X, the olloig sttemets re equivlet: i The uctio is λ r -covex ith λ r : 0, 0,, hr λ r t := l ; hr exp t ii We hve the iequlity αx+βy α+β hr hr exp α β or y α, β 0 ith α + β > 0 d x, y C. iii We hve the iequlity x y hr hr.8 hr exp α hr exp β hr exp α x hr exp β y αx+βy hr x+y αx+βy α+β.9 hr exp α β α+β or y α, β 0 ith α + β > 0 d x, y C. We observe tht, i the cse he λ r t = r exp t, t 0 the the uctio is λ r -covex o covex subset C o lier spce X i αx + βy exp αx + exp βy.0 α + β exp α β or y α, β 0 ith α + β > 0 d x, y C. Notice tht this deiitio is idepedet o r > 0. The iequlity.0 is equivlet to αx + βy expβexpα x + expαexpβ y. α + β expα + β or y α, β 0 ith α + β > 0 d x, y C. Motivted by the lrge iterest o Jese d Hermite-Hdmrd iequlities tht hs bee mterilized i the lst to decdes by the publictio o hudreds o ppers, e estblish here some iequlities o these types or λ-covex uctios deied o rel itervls.

4 48 S. S. Drgomir 2. Ueighted Jese itegrl iequlities The olloig discrete iequlity o Jese type hs bee obtied i 6: Theorem 2. Let λ: 0, 0, be uctio ith the property tht λt > 0 or ll t > 0 d mppig : C R deied o covex subset C o lier spce X. The olloig sttemets re equivlet: i is λ-covex o C; ii For ll x i C d p i 0 ith i {,..., }, 2 so tht P > 0, e hve the iequlity p i x i λp i x i. 2. P λp i= i= The proo c be doe by iductio over 2. Corollry 2. Let : C R be λ-covex uctio o C d α i 0,, i {,..., } ith i= α i =. The or y x i C ith i {,..., } e hve the iequlity α i x i λα i x i. 2.2 i= λ i= I prticulr, e hve x + + x c x + + x, 2.3 here c := λ λ. We hve the olloig versio o Jese s iequlity s ell: Corollry 3. Let : C R be λ-covex uctio o C d x i C d p i 0 ith i {,..., }, 2 so tht P > 0. The e hve the iequlity p i x i pi λ x i. 2.4 λ P i= i= P The proo ollos by 2.2 or α i = pi P, i {,..., }. We re ble o to stte d prove the olloig ueighted Jese iequlity or Riem itegrl: Theorem 3. Let u:, b m, M be Riem itegrble uctio o, b. Let λ: 0, 0, be uctio ith the property tht λt > 0 or ll t > 0

5 Itegrl iequlities o Jese type 49 d the uctio : m, M 0, is λ -covex d Riem itegrble o the itervl m, M. I the olloig limit exists the b λt lim = k 0, 2.5 t 0+ t k ut dt λb Proo. Cosider the sequece o divisios d the itermedite poits d : x i = + i b, i {0,..., } ξ i = + i b, i {0,..., }. ut dt. 2.6 We observe tht the orm o the divisio := mx i {0,..., } x 0 s d sice u is Riem itegrble o, b, the b ut dt = lim uξ i x i+ x i b = lim u i+ x i = + i b. Also, sice : m, M 0, is Riem itegrble, the u is Riem itegrble d b ut dt = lim u + i b. Utilisig the iequlity 2. or p i := b d x i := u + i b e hve b u + i b b b b λb b λ u + i b 2.7 or y. Observe tht lim λ b λt = lim = k 0,, b t 0+ t d by tkig the limit over i the iequlity 2.7, e deduce the desired result 2.6. Corollry 4. Let u:, b m, M be Riem itegrble uctio o, b d hz = =0 z be poer series ith oegtive coeiciets 0

6 50 S. S. Drgomir or ll N d coverget o the ope disk D0, R ith R > 0 or R = d r 0, R. Let λ r : 0, 0, be give by hr λ r t := l hr exp t d the uctio : m, M 0, be λ r -covex d Riem itegrble o the itervl m, M. The b rh r b ut dt ut dt. 2.8 b hr l hr hr exp b Proo. We observe tht λ r is dieretible o 0, d λ rt := r exp th r exp t hr exp t or t 0,, here h z = = z. Sice λ r 0 = 0, thereore λs k = lim = λ s 0+ s +0 = rh r > 0 or r 0, R. hr Utilisig 2.6 e get the desired result 2.8. The olloig Hermite-Hdmrd type iequlity holds: Corollry 5. With the ssumptios o Theorem 3 or d λ d i, b = m, M, e hve the Hermite-Hdmrd type iequlity + b k b t dt λb Remrk. Assume tht the uctio : m, M 0, is λ-covex d Riem itegrble o the itervl m, M ith λt = exp t, t 0. I u:, b m, M is Riem itegrble uctio o, b, the b b ut dt ut dt. b exp b I prticulr, or, b = m, M d ut = t e hve the Hermite-Hdmrd type iequlity + b b t dt. 2 exp b The proo ollos rom 2.6 observig tht λt k = lim = λ t 0+ t +0 =.

7 Itegrl iequlities o Jese type 5 Utilisig similr rgumet d the iequlity 2.4 e c stte the olloig result s ell: Theorem 4. Let u:, b m, M be Riem itegrble uctio o, b. Let λ: 0, 0, be uctio ith the property tht λt > 0 or ll t > 0 d the uctio : m, M 0, is λ -covex d Riem itegrble o the itervl m, M. I the limit 2.5 exists, the b k ut dt λb Exmples o such iequlities re icorported belo: ut dt. 2.0 Corollry 6. Let u:, b m, M be Riem itegrble uctio o, b d hz = =0 z be poer series ith oegtive coeiciets 0 or ll N d coverget o the ope disk D0, R ith R > 0 or R = d r 0, R. Let λ r : 0, 0, be give by hr λ r t := l hr exp t d the uctio : m, M 0, be λ r -covex d Riem itegrble o the itervl m, M. The b rh r b ut dt ut dt. 2. b b hr l hr hre We lso hve the Hermite-Hdmrd type iequlity: Corollry 7. With the ssumptios o Theorem 4 or d λ d i, b = m, M, e hve the Hermite-Hdmrd type iequlity + b k b t dt λb Remrk 2. Assume tht the uctio : m, M 0, is λ-covex d Riem itegrble o the itervl m, M ith λt = exp t, t 0. I u:, b m, M is Riem itegrble uctio o, b, the b ut dt e b e b ut dt. b I prticulr, or, b = m, M d ut = t e hve the Hermite-Hdmrd type iequlity + b e 2 e b t dt. b

8 52 S. S. Drgomir 3. Weighted Jese itegrl iequlities We c prove o eighted versio o Jese iequlity. Theorem 5. Let u, :, b m, M be Riem itegrble uctios o, b d t 0 or y t, b ith t dt > 0. Let λ: 0, 0, be uctio ith the property tht λt > 0 or ll t > 0 d the uctio : m, M 0, is λ-covex d Riem itegrble o the itervl m, M. I the olloig limit exists, is iite d t lim = l > 0, 3. t λt the b t dt tut dt Proo. Cosider the sequece o divisios d the itermedite poits b l t dt λtut dt. 3.2 d : x i = + i b, i {0,..., } ξ i = + i b, i {0,..., }. We observe tht the orm o the divisio := mx i {0,..., } x i+ x i = b 0 s. I e rite the iequlity 2. or the sequeces p i = + i b d x i = u + i b, i {0,..., } e get + i b λ + i b λ or. Observe tht + i b = b + i b b + i + i b u + i b u + i b, i b u + i b b + i b u + i b

9 d λ + i b λ Itegrl iequlities o Jese type 53 + i b u + i b = + i b λ + i b b + i b b The rom 3.3 e get b b λ + i b u + i b. + i b u + i b + i b + i b λ + i b b + i b b λ + i b u + i b or ll. Sice + i b lim = the t dt =, lim b = lim + i b λ + i + i b lim b = lim t λt = l d by lettig i 3.4 e get the desired result 3.2. The olloig ueighted versio o Jese iequlity holds: b 3.4 Corollry 8. Let u:, b m, M be Riem itegrble uctio o, b. Let λ: 0, 0, be uctio ith the property tht λt > 0 or ll t > 0 d the uctio : m, M 0, be λ -covex d Riem itegrble o the itervl m, M. I the limit 3. exists, the b b ut dt lλ ut dt. 3.5 b b Moreover, i, b = m, M, the by tkig ut = t, t, b, e hve the Hermite- Hdmrd iequlity + b b lλ t dt b

10 54 S. S. Drgomir Remrk 3. I order to give exmples o subdditive uctios λ: 0, 0, ith the property tht λt > 0 or ll t > 0 d or hich the olloig limit exists, is iite d lim t t = l > 0, 3.7 λt e cosider the poer series hz = = z ith oegtive coeiciets 0 or ll, > 0 d coverget o the ope disk D0, R ith R > 0 or R =. Let λ r : 0, 0, be give by λ r t := l hr hr exp t We ko tht λ r is dieretible o 0, d. λ rt = r exp th r exp t hr exp t or t 0,, here h z = = z. By l Hospitl s rule e hve lim t t λ r t = lim t λ rt. Sice or the poer series hz = z + 2 z z 3 + e hve h z = z z 2 +, the λ rt = r exp t r exp t r exp t 2 + r exp t + 2 r exp t + 3 r exp t 2 + = r exp t r exp t r exp t + 3 r exp t 2, t 0,. + Thereore lim t λ rt = d lim t t λ r t =. Corollry 9. Let u, :, b m, M be Riem itegrble uctios o, b d t 0 or y t, b ith t dt > 0. Cosider the poer series hz = = z ith oegtive coeiciets 0 or ll, > 0 d coverget o the ope disk D0, R ith R > 0 or R =. Let r 0, R d ssume tht the uctio : m, M 0, is λ r -covex d Riem itegrble o the itervl m, M ith hr λ r t := l. hr exp t The e hve the iequlity b b t dt tut dt t dt l hr hr exp t ut dt. 3.8

11 Itegrl iequlities o Jese type 55 The proo ollos by Theorem 5 observig tht l =. Remrk 4. With the ssumptios o Corollry 9 or u, h d e hve b hr b ut dt l b hre ut dt. 3.9 b I prticulr, or, b = m, M e hve the Hermite-Hdmrd iequlity + b hr b l 2 hre t dt. 3.0 b 4. Itervl depedecy Let u:, b m, M be Riem itegrble uctio o, b. Let λ: 0, 0, be uctio ith the property tht λt > 0 or ll t > 0 d the uctio : m, M 0, be λ-covex d Riem itegrble o the itervl m, M. Assume lso tht the olloig limit exists By Theorem 3 e hve tht, u, λ;, b := λt lim = k 0,. t 0+ t ut dt k λb b ut dt Theorem 6. With the bove ssumptios or u, λ, d k e hve: i For y c, b e hve, u, λ;, b, u, λ;, c +, u, λ; c, b 0, 4.2 i.e.,, u, λ; is superdditive uctio o itervls. ii For y c, d, b ith c < d e hve, u, λ;, b, u, λ; c, d 0, 4.3 i.e.,, u, λ; is mootoic odecresig uctio o itervls. Proo. i By the λ-covexity o e hve or c, b tht b ut dt b c c = ut dt + b c b b c b b c λc c c ut dt + λb c b c λb c c ut dt ut dt.

12 56 S. S. Drgomir Thereore, u, λ;, b = c c ut dt + ut dt + c λc c c c ut dt k λb b ut dt λb k =, u, λ;, c +, u, λ; c, b d the iequlity 4.2 is proved. ii Obvious by the property 4.2. ut dt + λb c b c λb c ut dt ut dt Remrk 5. I, b = m, M d ut = t, t, b the the uctiol δ, λ;, b := t dt + b k λb 0 2 is superdditive d mootoic odecresig uctio o itervls. REFERENCES M. Alomri d M. Drus, The Hdmrd s iequlity or s-covex uctio, It. J. Mth. Al. Ruse 2, 3 6, 2008, M. Alomri d M. Drus, Hdmrd-type iequlities or s-covex uctios, It. Mth. Forum 3, , M. Bombrdelli d S. Vrošec, Properties o h-covex uctios relted to the Hermite- Hdmrd-Fejér iequlities, Comput. Mth. Appl. 58, , W. W. Brecker, Stetigkeitsussge ür eie Klsse verllgemeierter kovexer Fuktioe i topologische liere Räume, Publ. Ist. Mth. Beogrd N.S , S. S. Drgomir, Iequlities o Hermite-Hdmrd type or λ-covex uctios o lier spces, Preprit RGMIA Res. Rep. Coll S. S. Drgomir, Discrete iequlities o Jese type or λ-covex uctios o lier spces, Preprit RGMIA Res. Rep. Coll S.S. Drgomir d S. Fitzptrick, The Hdmrd iequlities or s-covex uctios i the secod sese, Demostrtio Mth. 32, 4 999, S.S. Drgomir d S. Fitzptrick, The Jese iequlity or s-brecker covex uctios i lier spces, Demostrtio Mth. 33, 2000, S. S. Drgomir d B. Mod, O Hdmrd s iequlity or clss o uctios o Goduov d Levi, Idi J. Mth. 39, 997, 9. 0 S. S. Drgomir d C. E. M. Perce, O Jese s iequlity or clss o uctios o Goduov d Levi, Period. Mth. Hugr. 33, 2 996, S. S. Drgomir d C. E. M. Perce, Qusi-covex uctios d Hdmrd s iequlity, Bull. Austrl. Mth. Soc , H. Hudzik d L. Mligrd, Some remrks o s-covex uctios, Aequtioes Mth. 48, 994, M. A. Lti, O some iequlities or h-covex uctios, It. J. Mth. Al. Ruse 4, ,

13 Itegrl iequlities o Jese type 57 4 D. S. Mitriović d J. E. Pečrić, Note o clss o uctios o Goduov d Levi, C. R. Mth. Rep. Acd. Sci. Cd 2, 990, C. E. M. Perce d A. M. Rubiov, P-uctios, qusi-covex uctios, d Hdmrdtype iequlities, J. Mth. Al. Appl. 240, 999, M. Rdulescu, S. Rdulescu d P. Alexdrescu, O the Goduov-Levi-Schur clss o uctios, Mth. Iequl. Appl. 2, , M. Z. Sriky, A. Sglm, d H. Yildirim, O some Hdmrd-type iequlities or h- covex uctios, J. Mth. Iequl. 2, , M. Z. Sriky, E. Set d M. E. Özdemir, O some e iequlities o Hdmrd type ivolvig h-covex uctios, Act Mth. Uiv. Comei. N.S. 79, 2 200, M. Tuç, Ostroski-type iequlities vi h-covex uctios ith pplictios to specil mes, J. Iequl. Appl. 203: S. Vrošec, O h-covexity, J. Mth. Al. Appl. 326, 2007, received ; i revised orm ; vilble olie Mthemtics, College o Egieerig & Sciece, Victori Uiversity, PO Box 4428, Melboure City, MC 800, Austrli School o Computtiol & Applied Mthemtics, Uiversity o the Wittersrd, Privte Bg 3, Johesburg 2050, South Aric E-mil: sever.drgomir@vu.edu.u

A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY

A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY Krgujevc Jourl o Mthemtics Volume 4() (7), Pges 33 38. A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY MOHAMMAD W. ALOMARI Abstrct. I literture the Hermite-Hdmrd iequlity ws eligible or my resos, oe

More information

Abel type inequalities, complex numbers and Gauss Pólya type integral inequalities

Abel type inequalities, complex numbers and Gauss Pólya type integral inequalities Mthemticl Commuictios 31998, 95-101 95 Abel tye iequlities, comlex umbers d Guss Póly tye itegrl iequlities S. S. Drgomir, C. E. M. Perce d J. Šude Abstrct. We obti iequlities of Abel tye but for odecresig

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS MOHAMMAD ALOMARI A MASLINA DARUS A AND SEVER S DRAGOMIR B Abstrct In terms of the first derivtive some ineulities of Simpson

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex Stud. Univ. Beş-Bolyi Mth. 6005, No. 4, 57 534 Some Hermite-Hdmrd type inequlities for functions whose exponentils re convex Silvestru Sever Drgomir nd In Gomm Astrct. Some inequlities of Hermite-Hdmrd

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1) TAMKANG JOURNAL OF MATHEMATICS Volume 41, Number 4, 353-359, Winter 1 NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI, M. DARUS

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

n-points Inequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces

n-points Inequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces Armenin Journl o Mthemtics Volume 8, Number, 6, 38 57 n-points Inequlities o Hermite-Hdmrd Tpe or h-convex Functions on Liner Spces S. S. Drgomir Victori Universit, Universit o the Witwtersrnd Abstrct.

More information

Selected Topics on Hermite-Hadamard Inequalities and Applications. Sever S. Dragomir Charles E.M. Pearce

Selected Topics on Hermite-Hadamard Inequalities and Applications. Sever S. Dragomir Charles E.M. Pearce Selected Topics o Hermite-Hdmrd Iequlities d Applictios Sever S. Drgomir Chrles E.M. Perce School o Commuictios d Iormtics, Victori Uiversity o Techology, PO Box 448, Melboure City MC, Victori 8, Austrli.

More information

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a Act Mth. Univ. Comenine Vol. LXXIX, (00, pp. 65 7 65 ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS M. Z. SARIKAYA, E. SET nd M. E. ÖZDEMIR Abstrct. In this pper, we estblish some

More information

Integral inequalities for n times differentiable mappings

Integral inequalities for n times differentiable mappings JACM 3, No, 36-45 8 36 Journl of Abstrct nd Computtionl Mthemtics http://wwwntmscicom/jcm Integrl ineulities for n times differentible mppings Cetin Yildiz, Sever S Drgomir Attur University, K K Eduction

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER S. S. DRAGOMIR ;2 Astrct. In this pper we otin severl new logrithmic inequlities for two numers ; minly

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

The Hadamard s Inequality for s-convex Function

The Hadamard s Inequality for s-convex Function Int. Journl o Mth. Anlysis, Vol., 008, no. 3, 639-646 The Hdmrd s Inequlity or s-conve Function M. Alomri nd M. Drus School o Mthemticl Sciences Fculty o Science nd Technology Universiti Kebngsn Mlysi

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

On some refinements of companions of Fejér s inequality via superquadratic functions

On some refinements of companions of Fejér s inequality via superquadratic functions Proyecciones Journl o Mthemtics Vol. 3, N o, pp. 39-33, December. Universidd Ctólic del Norte Antogst - Chile On some reinements o compnions o Fejér s inequlity vi superqudrtic unctions Muhmmd Amer Lti

More information

New general integral inequalities for quasiconvex functions

New general integral inequalities for quasiconvex functions NTMSCI 6, No 1, 1-7 18 1 New Trends in Mthemticl Sciences http://dxdoiorg/185/ntmsci1739 New generl integrl ineulities for usiconvex functions Cetin Yildiz Atturk University, K K Eduction Fculty, Deprtment

More information

3.7 The Lebesgue integral

3.7 The Lebesgue integral 3 Mesure d Itegrtio The f is simple fuctio d positive wheever f is positive (the ltter follows from the fct tht i this cse f 1 [B,k ] = for ll k, ). Moreover, f (x) f (x). Ideed, if x, the there exists

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Hermite-Hadamard type inequalities for harmonically convex functions

Hermite-Hadamard type inequalities for harmonically convex functions Hcettepe Journl o Mthemtics nd Sttistics Volume 43 6 4 935 94 Hermite-Hdmrd type ineulities or hrmoniclly convex unctions İmdt İşcn Abstrct The uthor introduces the concept o hrmoniclly convex unctions

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

On New Bijective Convolution Operator Acting for Analytic Functions

On New Bijective Convolution Operator Acting for Analytic Functions Jourl o Mthetics d Sttistics 5 (: 77-87, 9 ISSN 549-3644 9 Sciece Pulictios O New Bijective Covolutio Opertor Actig or Alytic Fuctios Oqlh Al-Rei d Msli Drus School o Mtheticl Scieces, Fculty o Sciece

More information

arxiv: v1 [math.ca] 28 Jan 2013

arxiv: v1 [math.ca] 28 Jan 2013 ON NEW APPROACH HADAMARD-TYPE INEQUALITIES FOR s-geometrically CONVEX FUNCTIONS rxiv:3.9v [mth.ca 8 Jn 3 MEVLÜT TUNÇ AND İBRAHİM KARABAYIR Astrct. In this pper we chieve some new Hdmrd type ineulities

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

INEQUALITIES OF HERMITE-HADAMARD TYPE FOR

INEQUALITIES OF HERMITE-HADAMARD TYPE FOR Preprints (www.preprints.org) NOT PEER-REVIEWED Posted: 7 June 8 doi:.944/preprints86.44.v INEQUALITIES OF HERMITE-HADAMARD TYPE FOR COMPOSITE h-convex FUNCTIONS SILVESTRU SEVER DRAGOMIR ; Abstrct. In

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex Mly J Mt 34 93 3 On Hermite-Hdmrd tye integrl ineulities for functions whose second derivtive re nonconvex Mehmet Zeki SARIKAYA, Hkn Bozkurt nd Mehmet Eyü KİRİŞ b Dertment of Mthemtics, Fculty of Science

More information

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES Volume 8 (2007), Issue 4, Article 93, 13 pp. ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES A. ČIVLJAK, LJ. DEDIĆ, AND M. MATIĆ AMERICAN COLLEGE OF MANAGEMENT AND TECHNOLOGY ROCHESTER INSTITUTE OF TECHNOLOGY

More information

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS S.S. DRAGOMIR AND A. SOFO Abstrct. In this pper by utilising result given by Fink we obtin some new results relting to the trpezoidl inequlity

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

ON THE WEIGHTED OSTROWSKI INEQUALITY

ON THE WEIGHTED OSTROWSKI INEQUALITY ON THE WEIGHTED OSTROWSKI INEQUALITY N.S. BARNETT AND S.S. DRAGOMIR School of Computer Science nd Mthemtics Victori University, PO Bo 14428 Melbourne City, VIC 8001, Austrli. EMil: {neil.brnett, sever.drgomir}@vu.edu.u

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave Applied Mthemticl Sciences Vol. 9 05 no. 5-36 HIKARI Ltd www.m-hikri.com http://d.doi.org/0.988/ms.05.9 Hermite-Hdmrd Type Ineulities for the Functions whose Second Derivtives in Absolute Vlue re Conve

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 29, Article ID 28347, 3 pges doi:.55/29/28347 Reserch Article On The Hdmrd s Inequlity for Log-Convex Functions on the Coordintes

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b) GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR Abstrct. In this pper, we estblish some generliztions

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 6, Number, 0 Avilble online t www.mth.ut.ee/ct/ Bounds for the Riemnn Stieltjes integrl vi s-convex integrnd or integrtor Mohmmd Wjeeh

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (RIEMANN AND RIEMANN-STIELTJES INTEGRAL OF A SINGLE VARIABLE, INTEGRAL CALCULUS, FOURIER SERIES AND SPECIAL FUNCTIONS INSTRUCTOR: CEZAR LUPU Problem.

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Orthogonal functions - Function Approximation

Orthogonal functions - Function Approximation Orthogol uctios - Fuctio Approimtio - he Problem - Fourier Series - Chebyshev Polyomils he Problem we re tryig to pproimte uctio by other uctio g which cosists o sum over orthogol uctios Φ weighted by

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

On some inequalities for s-convex functions and applications

On some inequalities for s-convex functions and applications Özdemir et l Journl of Ineulities nd Alictions 3, 3:333 htt://wwwjournlofineulitiesndlictionscom/content/3//333 R E S E A R C H Oen Access On some ineulities for s-convex functions nd lictions Muhmet Emin

More information

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term An. Ştiinţ. Univ. Al. I. Cuz Işi. Mt. (N.S. Tomul LXIII, 07, f. A unified generliztion of perturbed mid-point nd trpezoid inequlities nd symptotic expressions for its error term Wenjun Liu Received: 7.XI.0

More information

Some Results on the Variation of Composite Function of Functions of Bounded d Variation

Some Results on the Variation of Composite Function of Functions of Bounded d Variation AMRICAN JOURNAL OF UNDRGRADUAT RSARCH OL. 6 NO. 4 Some Results o the ritio o Composite Fuctio o Fuctios o Boue ritio Mohse Soltir Deprtmet o Mthemtics Fculty o Sciece K.N. Toosi Uiversity o Techology P.O.

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

Some Properties of Brzozowski Derivatives of Regular Expressions

Some Properties of Brzozowski Derivatives of Regular Expressions Itertiol Jourl of Computer Treds d Techology (IJCTT) volume 13 umber 1 Jul 014 Some Properties of Brzozoski erivtives of Regulr Expressios NMuruges #1, OVShmug Sudrm * #1 Assistt Professor, ept of Mthemtics,

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions Avilble online t www.tjns.com J. Nonliner Sci. Appl. 8 5, 7 Reserch Article Some ineulities of Hermite-Hdmrd type for n times differentible ρ, m geometriclly convex functions Fiz Zfr,, Humir Klsoom, Nwb

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX Journl of Mthemticl Ineulities Volume 1, Number 3 18, 655 664 doi:1.7153/jmi-18-1-5 NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX SHAHID

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex ISRN Applied Mthemtics, Article ID 8958, 4 pges http://dx.doi.org/.55/4/8958 Reserch Article On Hermite-Hdmrd Type Inequlities for Functions Whose Second Derivtives Absolute Vlues Are s-convex Feixing

More information

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex Wu et l. SpringerPlus (5) 4:83 DOI.8/s44-5-33-z RESEARCH Prmetrized inequlity of Hermite Hdmrd type for functions whose third derivtive bsolute vlues re qusi convex Shn He Wu, Bnyt Sroysng, Jin Shn Xie

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17 (2009, 3 12 RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROIMATION OF CSISZAR S f DIVERGENCE GEORGE A. ANASTASSIOU Abstrct. Here re estblished vrious tight probbilistic

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM Bsic Mths Fiorell Sgllri Uiversity of Bolog, Itly Fculty of Egieerig Deprtmet of Mthemtics - CIRM Mtrices Specil mtrices Lier mps Trce Determits Rk Rge Null spce Sclr products Norms Mtri orms Positive

More information

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x.

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x. HOMEWORK 1 SHUANGLIN SHAO 1. P 229. # 7.1.2. Proof. (). Let f (x) x99 + 5. The x 66 + x3 f x 33 s goes to ifiity. We estimte the differece, f (x) x 33 5 x 66 + 3 5 x 66 5, for ll x [1, 3], which goes to

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

Some new integral inequalities for n-times differentiable convex and concave functions

Some new integral inequalities for n-times differentiable convex and concave functions Avilble online t wwwisr-ublictionscom/jns J Nonliner Sci Al, 10 017, 6141 6148 Reserch Article Journl Homege: wwwtjnscom - wwwisr-ublictionscom/jns Some new integrl ineulities for n-times differentible

More information

Completion of a Dislocated Metric Space

Completion of a Dislocated Metric Space 69 Chpter-3 Completio o Dislocte Metric Spce 3 Itrouctio: metric o X [] i We recll tht istce uctio o set X is si to be islocte i) y ) ii) 0 implies y iii) z) z or ll y z i X I is islocte metric o X the

More information

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that Preprints (www.preprints.org) NOT PEER-REVIEWED Posted 6 June 8 doi.944/preprints86.4.v WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, µcebyšev AND LUPAŞ TYPE WITH APPLICATIONS SILVESTRU SEVER DRAGOMIR Abstrct.

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t TAMKANG JOURNAL OF MATHEMATICS Volume 33, Numer, Summer 00 ON THE PERTURBED TRAPEZOID FORMULA N. S. BARNETT AND S. S. DRAGOMIR Astrct. Some inequlities relted to the pertured trpezoid formul re given.

More information

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE RGMIA Reserch Report Collection, Vol., No., 998 http://sci.vut.edu.u/ rgmi SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE S.S. DRAGOMIR Astrct. Some clssicl nd new integrl inequlities of Grüss type re presented.

More information