Analysis of a Two-Echelon Inventory Model with Lost Sales and Stochastic Demand using Continuous-Time Markov chain

Size: px
Start display at page:

Download "Analysis of a Two-Echelon Inventory Model with Lost Sales and Stochastic Demand using Continuous-Time Markov chain"

Transcription

1 Poceedig of te tetiol ofeece o dutil Egieeig d Opetio Mgemet li doei Juy 7 9 Alyi of Two-Ecelo vetoy Model wit Lot le d toctic Demd uig otiuou-time Mov ci m Vegi Fi d Roul Hi if Uiveity of Tecology Abtct ti ppe we tudied two-ecelo ivetoy ytem wic coit of oe upplie d oe etile. All itlltio follow be toc ivetoy mgemet policy. Te cutome ive t etile ccodig to Poio ditibutio. Te demd i tified we bot upplie d etile ve poitive o-d ivetoy. Otewie te demd i lot. Te led time of upplie d te time eeded to eplei ode of etile e umed to be expoetilly ditibuted. Te pupoe of ti tudy i to miimize te expected log-u totl cot of te ytem pe uit time. Totl cot of te ytem iclude oldig cot of upplie d etile d te cot of lot le. We modeled te poblem uig cotiuou-time Mov ci d povided ppoximtio of te tedy-tte oit pobbilitie of outtdig ode of etile i te evice of upplie d upplie o-d ivetoy. Te optiml olutio popetie of te obective fuctio well ome umeicl eult e peeted. ou umeicl eult te mximum eo of.85% w obeved. Keywod Two-ecelo ivetoy ytem e toc policy Poio demd Lot le. toductio Ti ppe focue o two-ecelo ivetoy ytem icludig oe upplie d oe etile. ot upplie d etile follow be toc ivetoy mgemet policy wit pmete d epectively. Te demd ive to etile ccodig to Poio poce wit pmete. ce of o o-d ivetoy t etile te demd i lot. Otewie etile cec te o-d ivetoy level of upplie; gi i ce of o o-d ivetoy t upplie te demd i lot. f bot etile d upplie ve poitive o-d ivetoy level fou evet occu imulteouly: (A) te demd i tified () etile follow be toc ivetoy policy etile demd oe uit of poduct to upplie () oe uit of poduct oi te queue to be ipped to te etile d (D) te upplie tt to eplei it ivetoy. Te led time of upplie d te time eeded to eplei ode of etile e expoetilly ditibuted wit pmete d epectively. Te pupoe of ti ppe i to detemie te optiml vlue of d wic miimize te expected ytem totl cot pe uit time. te followig ectio we fomulte te poblem uig cotiuou-time Mov ci d will povide ppoximtio of te tedy-tte pobbilitie. Filly we will dicu ome popetie of te obective fuctio d will peet ome umeicl exmple.. ottio Te ottio by wic te ytem w modeled i povided i tble. Tble : Model ottio ottio Defiitio Demd te Led time te Repleimet te Mximum ivetoy poitio of upplie O-d ivetoy of upplie Mximum ivetoy poitio of etile Te umbe of outtdig ode of te etile tt i te queue of ode witig to be ipped to te etile 99

2 Retile oldig cot pe uit time pe poduct upplie oldig cot pe uit time pe poduct otge cot pe poduct Retile log-u vege o-d ivetoy upplie log-u vege o-d ivetoy Log-u vege umbe of lot le. Mov Model Te tte pce of te Mov ci model i wee d e defied i tble. Let A if A i tue d A otewie. Teefoe te blce equtio fo te Mov ci model c be witte follow: () () Let ( ) deote te pobbility of cutome ( outtdig ode) i te M / M // queue d let ( ) deote te pobbility of fee eve ( ivetoy) i M / M / / queue. A i (Ro c be clculted below: 6) d t c be ow tt () (5) (6) doe ot tify () d (). Howeve we coectue tt te eltio give cceptble ppoximtio to ou ytem tedy-tte pobbilitie. Tt i: (7). Obective Fuctio Te obective fuctio deoted T i coideed te expected log-u cot of te ytem pe uit time wic i te ummtio of oldig cot of upplie d etile d te cot of lot le. Hece te obective fuctio i give by: () 99

3 99 T (8) Teoem : d e clculted follow: (9) () () Wee i Elg lo fuctio d i clculted. Poof: Uig te tedy-tte pobbilitie peeted i (7): lcultig lcultig lcultig

4 99 Rem: ote tt i clculted twice i. Hece we ubtcted fom i te clcultio of. 5. ovexity Alyi f T i covex fuctio te locl miimum of T i it globl miimum. Accodigly we peet te followig teoem: Teoem : Te obective fuctio T i covex i tem of d fo y. Poof: A i (8) te obective fuctio i defied T. f we ow tt ec compoet of T i covex i tem of d te we c pove teoem. 5. ovexity Alyi of We defie d follow: () () () Wit ome lgebic mipultio oe c ow tt: (5) (6) Lemm : Fo ll d y. Poof: wit ome implifictio we ve: (7)

5 99 Lemm : Fo ll d y. Poof: We pove lemm by iductio o. Let P :. Fitly we ve to ow tt P i tue: : P Wic ow te ttemet P i tue fo. ext we ve to ow tt if P old te P lo old. We wite P follow: P : (8) We dd to bot ide of P. Teefoe: Te poof of lemm i complete by owig : Te ttemet i tue ice ec of it compoet i egtive. Te bi d te iductive tep ve bee pefomed. A eult P i tue fo ll tul d y. Wit epect to lemm d lemm oe c fid tt. 5. ovexity Alyi of We defie below: (9) Te fit compoet of i lie fuctio. Tu it i covex fuctio. Te ecod compoet i Elg lo fuctio multiplied by poitive coefficiet. t i poved tt Elg lo fuctio i covex fuctio (Jge d V Doo 986). Teefoe i covex fuctio i tem of. 5. ovexity Alyi of efoe coductig te lyi we me implifictio to follow: Alo we defie te followig fuctio:

6 995 () () A i i te poduct fom of te two igle-vible fuctio mely d it i ey to ow tt te ecod fowd diffeece of equl to: () Te popetie of covex fuctio e itoduced i (Yücee ). We mut ow tt te ecod fowd diffeece of i egtive. (Jgem 97) it i ow tt Elg lo fuctio i deceig fuctio of tt i: () Wit ome imple lgeb oe c ow tt: () () d () imply tt te ecod fowd diffeece of i egtive. Hece i covex fuctio i tem of d. We defie d below: (5) (6) t i cle tt i poitive. Teefoe i covex. A ec compoet of i covex it i cocluded tt i lo covex. Filly te poof of teoem i complete te obective fuctio compoet mely d e covex fuctio of d. 6. Optiml olutio te peviou ectio we clculted. ow let ~ be defied ~. Hece:

7 996 ~ ~ (7) We defie T follow: T ~ T (8) Uig ~ ited of i te obective fuctio give dditively epble obective fuctio tt i: T T T (9) Wee: T () T () Rem: We ledy ve ow tt d T e covex fuctio. teetigly it i ey to ow tt ~ d T e lo covex fuctio. 6. Optiml vlue of d Let d be te optiml vlue of d epectively; d let T T T d T T T. A T d T e covex d e te mllet poitive itege wic tify te coditio T d T. Te fuctio T d T e clculted below: T () T () Rem: imil coditio fo bove-metioed optimlity i peeted i (Hi et l. ).

8 7. umeicl Exmple Optiml olutio d e obtied fom () d (). ome exmple peeted i tble we olved te et of blce equtio () d () fo d. Te we ued te olutio to clculte te exct vlue of te obective fuctio T. tee exmple we imed to e te pefomce of te popoed ppoximtio. ++ d Mple. ve bee utilized to obti umeicl exmple. Tble : umeicl exmple T T Eo (%) ocluio ome uto believe tt te mtemticl bcgoud of lot-le lye e moe difficult comped to toe of bcodeed (iv d Vi ). Howeve we believe tt it i moe logicl to fomulte coume puce bevio lot-le (Hu et l. 9 iv d Vi ). Exteive ttetio ve bee pid to lot-le ivetoy policy duig te pt decde. Ti ppe del wit toctic pmete be-toc ivetoy mgemet policy d lot le. Ote tudie i te e of lot-le wit viety of umptio o pmete (led time d etocig time) umbe of itlltio i ec ecelo d tei ccteitic e well ctegoized d dicued i (iv d Vi ). Te ide of focuig o ti poblem oe fom (Hi et l. ) wic coide two-ecelo ivetoy ytem imil to te oe we ivetigted i ti ppe but wit te umptio tt i ce of out of toc t etile demd e ot lot. Te uto could fid te exct tedy-tte pobbilitie of te Mov model i te poduct fom. Accodigly te exct optiml olutio fo uc ytem wee deived. ti wo we popoed ppoximtio fo te olutio to () d (). t i wot coideig tt te peeted tedy-tte pobbilitie pplie to () we. ti egd if te ou ppoximtio would be te exct olutio to blce equtio peeted i (Hi et l. ). Refeece iv M. d Vi. F. Lot-le ivetoy teoy: A eview Euope Joul of Opetiol Reec vol. 5 o. pp. -. Hi R. Hi A. d ffi M. Queueig ivetoy ytem i two-level upply ci wit oe-fo-oe odeig policy J. d. yt. Eg vol. 5 o. pp Hu W. T. Jim G. Muctdt J. A. d Rumevicietog P. Aymptotic optimlity of ode-up-to policie i lot le ivetoy ytem Mgemet ciece vol. 55 o. pp Jgem D. L. ome popetie of te Elg lo fuctio ell ytem Tec. J vol. 5 o. pp Jge A. d V Doo E. A. O te cotiued Elg lo fuctio Opetio Reec Lette vol. 5 o. pp Ro. M. toductio to pobbility model Acce Olie vi Elevie 6. Yücee Ü. Dicete covexity: covexity fo fuctio defied o dicete pce Dicete Applied Mtemtic vol. 9 o. pp

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors Joul of Optimiztio i dutil Egieeig 9 (6) 9-4 ot Alyi of ce Smplig Model Uig Dymic Pogmmig d Byei feece oideig pectio Eo Mohmmd Sbe Fllh Nezhd,, Abolghem Youefi Bbdi b Aocite Pofeo, dutil Egieeig Deptmet,

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents =

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents = Refeece Popetie Popetie of Expoet Let a ad b be eal umbe ad let m ad be atioal umbe. Zeo Expoet a 0 = 1, wee a 0 Quotiet of Powe Popety a m a = am, wee a 0 Powe of a Quotiet Popety ( a b m, wee b 0 b)

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through   ISSN Iteatioal Joual of Mathematical Achive-5(3, 04, 7-75 Available olie though www.ijma.ifo ISSN 9 5046 ON THE OSCILLATOY BEHAVIO FO A CETAIN CLASS OF SECOND ODE DELAY DIFFEENCE EQUATIONS P. Mohakuma ad A.

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling Ope Jourl of ttitic, 03, 3, 78-8 ttp://d.doi.org/0.436/oj.03.3403 Publied Olie eptember 03 (ttp://www.cirp.org/jourl/oj) New Etimtor Uig uilir Iformtio i trtified dptive Cluter mplig Nippor Cutim *, Moc

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

Generating Function for Partitions with Parts in A.P

Generating Function for Partitions with Parts in A.P Geetig Fuctio fo Ptitio wi Pt i AP Hum Reddy K # K Jkmm * # Detmet of Memtic Hidu Coege Gutu 50 AP Idi * Detmet of Memtic 8 Mi AECS Lyout B BLOCK Sigd Bgoe 5604 Idi Abtct: I i e we deive e geetig fuctio

More information

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder Joul of Applied Mthemtics d Physics, 5, 3, 75-8 Published Olie Juy 5 i SciRes. http://www.scip.og/joul/jmp http://dx.doi.og/.436/jmp.5.3 Expsio by Lguee Fuctio fo Wve Diffctio oud Ifiite Cylide Migdog

More information

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation Advace i Mathematic ad Statitical Sciece O Poitive Defiite Solutio of the Noliea * Matix Equatio A A I SANA'A A. ZAREA Mathematical Sciece Depatmet Pice Nouah Bit Abdul Rahma Uiveity B.O.Box 9Riyad 6 SAUDI

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Some characterizations for Legendre curves in the 3-Dimensional Sasakian space

Some characterizations for Legendre curves in the 3-Dimensional Sasakian space IJST (05) 9A4: 5-54 Iaia Joual of Sciece & Techology http://ijthiazuaci Some chaacteizatio fo Legede cuve i the -Dimeioal Saakia pace H Kocayigit* ad M Ode Depatmet of Mathematic, Faculty of At ad Sciece,

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r k s r x LTH. September Prediction Error Filter PEF (second order) from chapter 4

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r k s r x LTH. September Prediction Error Filter PEF (second order) from chapter 4 Optimal Sigal oceig Leo 5 Capte 7 Wiee Filte I ti capte we will ue te model ow below. Te igal ito te eceie i ( ( iga. Nomally, ti igal i ditubed by additie wite oie (. Te ifomatio i i (. Alo, we ofte ued

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

Derivation of a Single-Step Hybrid Block Method with Generalized Two Off-Step Points for Solving Second Order Ordinary Differential Equation Directly.

Derivation of a Single-Step Hybrid Block Method with Generalized Two Off-Step Points for Solving Second Order Ordinary Differential Equation Directly. INTENATIONAL JOUNAL OF MATHEMATICS AND COMPUTES IN SIMULATION Volume, 6 Deivatio o a Sigle-Step Hybid Block Metod wit Geealized Two O-Step Poit o Solvig Secod Ode Odiay Dieetial Equatio Diectly. a t. Abdelaim.

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Chapter 23. Geometric Optics

Chapter 23. Geometric Optics Cpter 23 Geometric Optic Ligt Wt i ligt? Wve or prticle? ot Geometric optic: ligt trvel i trigt-lie pt clled ry Ti i true if typicl ditce re muc lrger t te wvelegt Geometric Optic 2 Wt it i out eome ddreed

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010 Optimal Sigal Poceig Leo 5 Chapte 7 Wiee Filte I thi chapte we will ue the model how below. The igal ito the eceive i ( ( iga. Nomally, thi igal i ditubed by additive white oie v(. The ifomatio i i (.

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Estimation Theory. Chapter 12

Estimation Theory. Chapter 12 timtio heoy hpte Lie Byei timto Optiml MMS Byei etimto i geel e difficult to compute i cloed fom; ecept fo the joitly Gui ce. But i my itutio, we c t mke the Gui umptio. lled iee Filte Ited, we keep the

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems Avilble t http://pvmuedu/m Appl Appl Mth ISSN: 192-9466 Vol 8, Iue 2 (December 21), pp 585 595 Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) Aymptotic Propertie of Solutio of Two Dimeiol Neutrl

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline OPTIMAL ESTIMATORS FOR THE FIITE POPULATIO PARAMETERS I A SIGLE STAGE SAMPLIG Detailed Outlie ITRODUCTIO Focu o implet poblem: We ae lookig fo a etimato fo the paamete of a fiite populatio i a igle adom

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator Iteatioal Joual of Mathematic Reeach. ISSN 0976-5840 Volume 9, Numbe 2 (2017), pp. 135-148 Iteatioal Reeach Publicatio Houe http://www.iphoue.com Uified Mittag-Leffle Fuctio ad Exteded Riema-Liouville

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Lacunary Almost Summability in Certain Linear Topological Spaces

Lacunary Almost Summability in Certain Linear Topological Spaces BULLETIN of te MLYSİN MTHEMTİCL SCİENCES SOCİETY Bull. Malays. Mat. Sci. Soc. (2) 27 (2004), 27 223 Lacuay lost Suability i Cetai Liea Topological Spaces BÜNYMIN YDIN Cuuiyet Uivesity, Facutly of Educatio,

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays. Sphericl refrctig urfce Here, the outgoig ry re o the oppoite ide of the urfce from the Icomig ry. The oject i t P. Icomig ry PB d PV form imge t P. All prxil ry from P which trike the phericl urfce will

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Chap8 - Freq 1. Frequency Response

Chap8 - Freq 1. Frequency Response Chp8 - Freq Frequecy Repoe Chp8 - Freq Aged Prelimirie Firt order ytem Frequecy repoe Low-p filter Secod order ytem Clicl olutio Frequecy repoe Higher order ytem Chp8 - Freq 3 Frequecy repoe Stedy-tte

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 16, Number 2/2015, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 16, Number 2/2015, pp THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Seies A, OF THE ROMANIAN ACADEMY Volume 6, Numbe 2/205, pp 2 29 ON I -STATISTICAL CONVERGENCE OF ORDER IN INTUITIONISTIC FUZZY NORMED SPACES Eem

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r Sufce e f ic lid Cue f ide R See f diu 6 Cuid c c Elliticl cectin c Cylinde, wit diu nd eigt Tu, wit cicul c ectin f diu R R Futum, ( tuncted ymid) f e eimete, t e eimete nd lnt eigt. nd e te eective e

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

Lacunary Weak I-Statistical Convergence

Lacunary Weak I-Statistical Convergence Ge. Mat. Notes, Vol. 8, No., May 05, pp. 50-58 ISSN 9-784; Copyigt ICSRS Publicatio, 05 www.i-css.og vailable ee olie at ttp//www.gema.i Lacuay Wea I-Statistical Covegece Haize Gümüş Faculty o Eegli Educatio,

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Discussioes Mathematicae Gaph Theoy 28 (2008 335 343 A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Athoy Boato Depatmet of Mathematics Wilfid Lauie Uivesity Wateloo, ON, Caada, N2L 3C5 e-mail: aboato@oges.com

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu)

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu) Joul of Qulity Mesuemet d Alysis JQMA 7 0 4-5 Jul Peguu Kuliti d Alisis PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR Mslh d Sift-sift sutu Pegopesi Peme Bhu MASLINA DARUS & IMRAN FAISAL ABSTRACT

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Complementary Dual Subfield Linear Codes Over Finite Fields

Complementary Dual Subfield Linear Codes Over Finite Fields 1 Complemetay Dual Subfield Liea Codes Ove Fiite Fields Kiagai Booiyoma ad Somphog Jitma,1 Depatmet of Mathematics, Faculty of Sciece, Silpao Uivesity, Naho Pathom 73000, hailad e-mail : ai_b_555@hotmail.com

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

Basic Limit Theorems

Basic Limit Theorems Bsic Limit Theorems The very "cle" proof of L9 usig L8 ws provided to me by Joh Gci d it ws this result which ispired me to write up these otes. Absolute Vlue Properties: For rel umbers x, d y x x if x

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE 12/GRAAD 12

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE 12/GRAAD 12 NAIONAL ENIOR CERIFICAE NAIONALE ENIOR ERIFIKAA GRADE /GRAAD MAHEMAIC P/WIKUNDE V NOVEMBER 7 MARKING GUIDELINE/NAIENRIGLYNE MARK/PUNE: 5 is memodum cosists o pges. Hiedie memodum best uit bldsye. Copyigt

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EVALUATION OF SUMS INVOLVING GAUSSIAN -BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EMRAH KILIÇ AND HELMUT PRODINGER Abstact We coside sums of the Gaussia -biomial coefficiets with a paametic atioal

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information