8.6 Order-Recursive LS s[n]

Size: px
Start display at page:

Download "8.6 Order-Recursive LS s[n]"

Transcription

1 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry eac model, loo at J mi wic oe wor bet J mi p Cotat Lie Quadratic Cubic p 3 4 # of parameter i model

2 Cooig te Bet Model Order Q: Sould you pic te order p tat give te mallet J mi?? A: O!!!! Fact: J mi p i mootoically o-icreaig a order p icreae If you ave ay data poit you ca perfectly fit a p model to tem!!!! [] poit defie a lie 3 poit defie a quadratic 4 poit defie a cubic poit defie a a - - a a 0 Warig: Do t Fit te oie!!

3 Cooig te Order i ractice ractice: ue implet model tat adequately decribe te data Sceme: Oly icreae order if cot reductio i igificat " Icreae to order p oly if J mi p J mi p > ε uer-et treold " Alo, i practice you may ave ome idea of te epected level of error tu ave ome idea of epected J mi ue order p uc tat J mi p Epected J mi Wateful to idepedetly compute te LS olutio for eac order Drive eed for: Efficiet way to compute LS for may model Q: If we ave computed p-order model, ca we ue it to recurively compute p-order model? A: YES!! Order-Recurive LS 3

4 4 Defie Geeral Order-Icreaig Model Defie: p [ p p ],, 3,... Etc. 3 Order-Recurive LS wit Ortoormal Colum If all i are EASY!!!! p p p

5 Order-Recurive Solutio for Geeral If i are ot arder, but oible! Baic Idea: Give curret-order etimate: map ew colum of ito a O verio ue it to fid ew etimate, te traform to correct for ortogoalizatio Quote ere becaue ti etimate i for te ortogoalized model Ortogoalized verio of S -D pace paed by & Rage ote: i ot ow ere it i i a iger dimeioal pace!! 5

6 Geometrical Developmet of Order-Recurive LS e Geometry of Vector Space i idipeable for DS! Curret-Order [... ] ot ecearily Recall: %"""" $ """"# rojector oto S Rage Give et colum: Fid, wic i to S See App. 8A for Algebraic Developmet Yu! Geometry i Eaier! I %"$"# S ŝ 3 S 6

7 7 So our approac i ow: project oto ad te add to ŝ e projectio of oto i give by!, calar ue " "# " %" $ Divide by orm to ormalize θ ow add ti to curret igal etimate:

8 8 " "# " "$ % I θ θ Scalar ca move ere ad trapoe Write out calar defie a b for coveiece ow we ave: Write out. ad ue tat i idempotet [ ] b b b b θ θ %"$"# Fially: Clearly ti i θ

9 9 θ θ Order-Recurive LS Solutio Drawbac: eed Iverio Eac Recurio See Eq. 8.9 ad 8.30 for a way to avoid iverio Commet:. If implifie problem a we ve ee i equatio implifie to our earlier reult. ote: above i reidual of -order model part of ot modeled by -order model Update recurio wor olely wit ti Mae See!!!

10 8.7 Sequetial LS I Lat Sectio: Data Stay Fied Model Order Icreae I i Sectio: Data Legt Icreae Model Order Stay Fied You ave received ew data ample! Say we ave θ[ ] baed o {[0],..., [-]} If we get [] ca we compute θ [ ] baed o θ [ ] ad []? w/o olvig uig full data et! We wat θ [ ] f θ [ ], [ ] Approac ere:. Derive for DC-Level cae. Iterpret Reult 3. Write Dow Geeral Reult w/o roof 0

11 Sequetial LS for DC-Level Cae 0 ] [ A We ow ti: Re-Write ] [ ] [ ] [ ] [ 0 0 A A %$# ad ti: "" " # "" %" $ %$# %$# predictio error te ew data predictio of old etimate ] [ A A A

12 Weigted Sequetial LS for DC-Level Cae i i a eve better illutratio Aumed model: Stadard WLS give: [ ] A w[ ] var{ w[ ]} σ A 0 0 [ ] Wit maipulatio imilar to te above cae we get: σ σ w[] a uow DF but a ow timedepedet variace A A %$# old etimate σ 0 %"$"# σ [ ] A %"" $ "# " predictio error i a Gai term tat reflect goode of ew data

13 Eplorig e Gai erm We ow tat we get tat var A 0 σ var A var A ad uig it i & σ variace of te ew data poore of curret etimate poore of ew data ote: 0 K[] Gai deped o Relative Goode Betwee: o Curret Etimate o ew Data oit 3

14 Etreme Cae for e Gai erm A [ ] % A[ "$"# ] K[ ] [ ] A[ ] %"" $ """ # old etimate predictio error If var A[ ] << σ Good Etimate Bad Data K[ ] 0 ew Data a Little Ue Mae Little "Correctio" Baed o ew Data If var A[ ] >> σ Bad Etimate Good Data K[ ] ew Data Very Ueful Mae Large "Correctio" Baed o ew Data 4

15 Geeral Sequetial LS Reult At time ide - we ave: θ Σ [ [0] [] ' [ ] ] LS Etimate uig cov θ w { } θ quality meaure of etimate C 0 diag{ σ, σ,', σ See App. 8C for derivatio } Diagoal Covariace Sequetial LS require ti At time ide we get []: θ w θ w ac o row at bottom to ow ow θ map to [] 5

16 Iterate tee Equatio: Give te Followig: θ Σ [ ] σ Update te Etimate: θ θ [ ] θ %"$"# Compute te Gai: σ Σ Σ redictio of [] uig curret parameter etimate Update te Et. Cov.: Σ I Σ Iitializatio: Aume p parameter Collect firt p data ample [0],..., [p-] Ue Batc LS to compute: θ p Σ p e tart equetial proceig Gai a ame id of depedece o Relative Goode betwee: o Curret Etimate o ew Data oit 6

17 Sequetial LS Bloc Diagram Σ,, σ Obervatio Compute Gai Updated Etimate [] Σ [ ] θ Σ θ [ ] θ θ θ θ z - redicted Obervatio reviou Etimate 7

13.4 Scalar Kalman Filter

13.4 Scalar Kalman Filter 13.4 Scalar Kalma Filter Data Model o derive the Kalma filter we eed the data model: a 1 + u < State quatio > + w < Obervatio quatio > Aumptio 1. u i zero mea Gauia, White, u } σ. w i zero mea Gauia, White,

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS ME 40 MECHANICAL ENGINEERING REGRESSION ANALYSIS Regreio problem deal with the relatiohip betwee the frequec ditributio of oe (depedet) variable ad aother (idepedet) variable() which i (are) held fied

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS. If g( is cotiuous i [a,b], te uder wat coditio te iterative (or iteratio metod = g( as a uique solutio i [a,b]? '( i [a,b].. Wat

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w: Stat 400, ectio 7. Large Sample Cofidece Iterval ote by Tim Pilachowki a Large-Sample Two-ided Cofidece Iterval for a Populatio Mea ectio 7.1 redux The poit etimate for a populatio mea µ will be a ample

More information

Hidden Markov Model Parameters

Hidden Markov Model Parameters .PPT 5/04/00 Lecture 6 HMM Traiig Traiig Hidde Markov Model Iitial model etimate Viterbi traiig Baum-Welch traiig 8.7.PPT 5/04/00 8.8 Hidde Markov Model Parameter c c c 3 a a a 3 t t t 3 c a t A Hidde

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former) Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC 1 Advaced Digital Sigal Proceig Sidelobe Caceller (Beam Former) Erick L. Obertar 001 Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC

More information

Brief Review of Linear System Theory

Brief Review of Linear System Theory Brief Review of Liear Sytem heory he followig iformatio i typically covered i a coure o liear ytem theory. At ISU, EE 577 i oe uch coure ad i highly recommeded for power ytem egieerig tudet. We have developed

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

18.05 Problem Set 9, Spring 2014 Solutions

18.05 Problem Set 9, Spring 2014 Solutions 18.05 Problem Set 9, Sprig 2014 Solutio Problem 1. (10 pt.) (a) We have x biomial(, θ), o E(X) =θ ad Var(X) = θ(1 θ). The rule-of-thumb variace i jut 4. So the ditributio beig plotted are biomial(250,

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

Analysis of Analytical and Numerical Methods of Epidemic Models

Analysis of Analytical and Numerical Methods of Epidemic Models Iteratioal Joural of Egieerig Reearc ad Geeral Sciece Volue, Iue, Noveber-Deceber, 05 ISSN 09-70 Aalyi of Aalytical ad Nuerical Metod of Epideic Model Pooa Kuari Aitat Profeor, Departet of Mateatic Magad

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

Inference for Two Stage Cluster Sampling: Equal SSU per PSU. Projections of SSU Random Variables on Each SSU selection.

Inference for Two Stage Cluster Sampling: Equal SSU per PSU. Projections of SSU Random Variables on Each SSU selection. Inference for Two Stage Cluter Sampling: Equal SSU per PSU Projection of SSU andom Variable on Eac SSU election By Ed Stanek Introduction We review etimating equation for PSU mean in a two tage cluter

More information

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS Available olie at www.ia.org.i/jia JOURA OF THE IDIA OIETY OF AGRIUTURA TATITI 64() 00 55-60 Variace Etimatio for te Regreio Etimator of te Mea i tratified amplig UMMARY at Gupta * ad Javid abbir Departmet

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r k s r x LTH. September Prediction Error Filter PEF (second order) from chapter 4

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r k s r x LTH. September Prediction Error Filter PEF (second order) from chapter 4 Optimal Sigal oceig Leo 5 Capte 7 Wiee Filte I ti capte we will ue te model ow below. Te igal ito te eceie i ( ( iga. Nomally, ti igal i ditubed by additie wite oie (. Te ifomatio i i (. Alo, we ofte ued

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

IntroEcono. Discrete RV. Continuous RV s

IntroEcono. Discrete RV. Continuous RV s ItroEcoo Aoc. Prof. Poga Porchaiwiekul, Ph.D... ก ก e-mail: Poga.P@chula.ac.th Homepage: http://pioeer.chula.ac.th/~ppoga (c) Poga Porchaiwiekul, Chulalogkor Uiverity Quatitative, e.g., icome, raifall

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve Statitic ad Chemical Meauremet: Quatifyig Ucertaity The bottom lie: Do we trut our reult? Should we (or ayoe ele)? Why? What i Quality Aurace? What i Quality Cotrol? Normal or Gauia Ditributio The Bell

More information

Chapter 1 Econometrics

Chapter 1 Econometrics Chapter Ecoometric There are o exercie or applicatio i Chapter. 0 Pearo Educatio, Ic. Publihig a Pretice Hall Chapter The Liear Regreio Model There are o exercie or applicatio i Chapter. 0 Pearo Educatio,

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

What is Uniform flow (normal flow)? Uniform flow means that depth (and velocity) remain constant over a certain reach of the channel.

What is Uniform flow (normal flow)? Uniform flow means that depth (and velocity) remain constant over a certain reach of the channel. Hydraulic Lecture # CWR 4 age () Lecture # Outlie: Uiform flow i rectagular cael (age 7-7) Review for tet Aoucemet: Wat i Uiform flow (ormal flow)? Uiform flow mea tat det (ad velocity) remai cotat over

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES Capter LIMITS AND DERIVATIVES. Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014 Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group

More information

LIMITS AND DERIVATIVES NCERT

LIMITS AND DERIVATIVES NCERT . Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is te epected value of f at a give

More information

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

More information

Differentiation Techniques 1: Power, Constant Multiple, Sum and Difference Rules

Differentiation Techniques 1: Power, Constant Multiple, Sum and Difference Rules Differetiatio Teciques : Power, Costat Multiple, Sum ad Differece Rules 97 Differetiatio Teciques : Power, Costat Multiple, Sum ad Differece Rules Model : Fidig te Equatio of f '() from a Grap of f ()

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

d y f f dy Numerical Solution of Ordinary Differential Equations Consider the 1 st order ordinary differential equation (ODE) . dx

d y f f dy Numerical Solution of Ordinary Differential Equations Consider the 1 st order ordinary differential equation (ODE) . dx umerical Solutio o Ordiar Dieretial Equatios Cosider te st order ordiar dieretial equatio ODE d. d Te iitial coditio ca be tae as. Te we could use a Talor series about ad obtai te complete solutio or......!!!

More information

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So, 0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

More information

Correlation and Covariance

Correlation and Covariance Correlatio ad Covariace Tom Ilveto FREC 9 What is Next? Correlatio ad Regressio Regressio We specify a depedet variable as a liear fuctio of oe or more idepedet variables, based o co-variace Regressio

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function Math 3b Sprig 005 Yum-og Siu Expliit Formula for Logarithmi Derivative of Riema Zeta Futio he expliit formula for the logarithmi derivative of the Riema zeta futio i the appliatio to it of the Perro formula

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc. 2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES 2012 Pearso Educatio, Ic. Theorem 8: Let A be a square matrix. The the followig statemets are equivalet. That is, for a give A, the statemets

More information

Velocity or 60 km/h. a labelled vector arrow, v 1

Velocity or 60 km/h. a labelled vector arrow, v 1 11.7 Velocity en you are outide and notice a brik wind blowing, or you are riding in a car at 60 km/, you are imply conidering te peed of motion a calar quantity. ometime, owever, direction i alo important

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

MATH 147 Homework 4. ( = lim. n n)( n + 1 n) n n n. 1 = lim

MATH 147 Homework 4. ( = lim. n n)( n + 1 n) n n n. 1 = lim MATH 147 Homework 4 1. Defie the sequece {a } by a =. a) Prove that a +1 a = 0. b) Prove that {a } is ot a Cauchy sequece. Solutio: a) We have: ad so we re doe. a +1 a = + 1 = + 1 + ) + 1 ) + 1 + 1 = +

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigevalues ad Eigevectors 5.3 DIAGONALIZATION DIAGONALIZATION Example 1: Let. Fid a formula for A k, give that P 1 1 = 1 2 ad, where Solutio: The stadard formula for the iverse of a 2 2 matrix yields

More information

Hilbert-Space Integration

Hilbert-Space Integration Hilbert-Space Integration. Introduction. We often tink of a PDE, like te eat equation u t u xx =, a an evolution equation a itorically wa done for ODE. In te eat equation example two pace derivative are

More information

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

More information

Stability analysis of numerical methods for stochastic systems with additive noise

Stability analysis of numerical methods for stochastic systems with additive noise Stability aalysis of umerical metods for stoctic systems wit additive oise Yosiiro SAITO Abstract Stoctic differetial equatios (SDEs) represet pysical peomea domiated by stoctic processes As for determiistic

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data.

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data. 17 3. OLS Part III I this sectio we derive some fiite-sample properties of the OLS estimator. 3.1 The Samplig Distributio of the OLS Estimator y = Xβ + ε ; ε ~ N[0, σ 2 I ] b = (X X) 1 X y = f(y) ε is

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

11/19/ Chapter 10 Overview. Chapter 10: Two-Sample Inference. + The Big Picture : Inference for Mean Difference Dependent Samples

11/19/ Chapter 10 Overview. Chapter 10: Two-Sample Inference. + The Big Picture : Inference for Mean Difference Dependent Samples /9/0 + + Chapter 0 Overview Dicoverig Statitic Eitio Daiel T. Laroe Chapter 0: Two-Sample Iferece 0. Iferece for Mea Differece Depeet Sample 0. Iferece for Two Iepeet Mea 0.3 Iferece for Two Iepeet Proportio

More information

Math E-21b Spring 2018 Homework #2

Math E-21b Spring 2018 Homework #2 Math E- Sprig 08 Homework # Prolems due Thursday, Feruary 8: Sectio : y = + 7 8 Fid the iverse of the liear trasformatio [That is, solve for, i terms of y, y ] y = + 0 Cosider the circular face i the accompayig

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Properties and Tests of Zeros of Polynomial Functions

Properties and Tests of Zeros of Polynomial Functions Properties ad Tests of Zeros of Polyomial Fuctios The Remaider ad Factor Theorems: Sythetic divisio ca be used to fid the values of polyomials i a sometimes easier way tha substitutio. This is show by

More information

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2 Tetig Hypothee COMPARISONS INVOLVING TWO SAMPLE MEANS Two type of hypothee:. H o : Null Hypothei - hypothei of o differece. or 0. H A : Alterate Hypothei hypothei of differece. or 0 Two-tail v. Oe-tail

More information

Partial Differential Equations

Partial Differential Equations EE 84 Matematical Metods i Egieerig Partial Differetial Eqatios Followig are some classical partial differetial eqatios were is assmed to be a fctio of two or more variables t (time) ad y (spatial coordiates).

More information

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014 Aigmet - Solutio ECSE 420 Parallel Computig Fall 204 ovember 2, 204. (%) Decribe briefly the followig term, expoe their caue, ad work-aroud the idutry ha udertake to overcome their coequece: (i) Memory

More information

The Performance of Feedback Control Systems

The Performance of Feedback Control Systems The Performace of Feedbac Cotrol Sytem Objective:. Secify the meaure of erformace time-domai the firt te i the deig roce Percet overhoot / Settlig time T / Time to rie / Steady-tate error e. ut igal uch

More information

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1)

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1) 5. Determiats 5.. Itroductio 5.2. Motivatio for the Choice of Axioms for a Determiat Fuctios 5.3. A Set of Axioms for a Determiat Fuctio 5.4. The Determiat of a Diagoal Matrix 5.5. The Determiat of a Upper

More information

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 4 Dr Amir G Aghdam Cocordia Uiverity Part of thee ote are adapted from the material i the followig referece: Moder Cotrol Sytem by Richard C Dorf ad Robert H Bihop, Pretice Hall

More information

Recursive Updating Fixed Parameter

Recursive Updating Fixed Parameter Recursive Udatig Fixed Parameter So far we ve cosidered the sceario where we collect a buch of data ad the use that (ad the rior PDF) to comute the coditioal PDF from which we ca the get the MAP, or ay

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Confidence Intervals. Confidence Intervals

Confidence Intervals. Confidence Intervals A overview Mot probability ditributio are idexed by oe me parameter. F example, N(µ,σ 2 ) B(, p). I igificace tet, we have ued poit etimat f parameter. F example, f iid Y 1,Y 2,...,Y N(µ,σ 2 ), Ȳ i a poit

More information

Efficient GMM LECTURE 12 GMM II

Efficient GMM LECTURE 12 GMM II DECEMBER 1 010 LECTURE 1 II Efficiet The estimator depeds o the choice of the weight matrix A. The efficiet estimator is the oe that has the smallest asymptotic variace amog all estimators defied by differet

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information

x c the remainder is Pc ().

x c the remainder is Pc (). Algebra, Polyomial ad Ratioal Fuctios Page 1 K.Paulk Notes Chapter 3, Sectio 3.1 to 3.4 Summary Sectio Theorem Notes 3.1 Zeros of a Fuctio Set the fuctio to zero ad solve for x. The fuctio is zero at these

More information

NUMERICAL DIFFERENTIAL 1

NUMERICAL DIFFERENTIAL 1 NUMERICAL DIFFERENTIAL Ruge-Kutta Metods Ruge-Kutta metods are ver popular ecause o teir good eiciec; ad are used i most computer programs or dieretial equatios. Te are sigle-step metods as te Euler metods.

More information

Essential Microeconomics EXISTENCE OF EQUILIBRIUM Core ideas: continuity of excess demand functions, Fixed point theorems

Essential Microeconomics EXISTENCE OF EQUILIBRIUM Core ideas: continuity of excess demand functions, Fixed point theorems Essetial Microecoomics -- 5.3 EXISTENCE OF EQUILIBRIUM Core ideas: cotiuity of excess demad fuctios, Fixed oit teorems Two commodity excage ecoomy 2 Excage ecoomy wit may commodities 5 Discotiuous demad

More information

TUTORIAL 6. Review of Electrostatic

TUTORIAL 6. Review of Electrostatic TUTOIAL 6 eview of Electrotatic Outlie Some mathematic Coulomb Law Gau Law Potulatio for electrotatic Electric potetial Poio equatio Boudar coditio Capacitace Some mathematic Del operator A operator work

More information

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15.

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15. TARGET IIT-JEE t [ACCELERATION] V0 to V BATCH ADVANCED TEST DATE : - 09-06 ANSWER KEY WITH SOLUTION PAPER - MATHEMATICS SECTION A. B. B. D. C 5. B 6. C 7. C 8. B 9. B 0. D. C. C. A. B 5. C 6. D 7. A 8.

More information

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c Notes for March 31 Fields: A field is a set of umbers with two (biary) operatios (usually called additio [+] ad multiplicatio [ ]) such that the followig properties hold: Additio: Name Descriptio Commutativity

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

The Advection-Diffusion equation!

The Advection-Diffusion equation! ttp://www.d.edu/~gtryggva/cf-course/! Te Advectio-iffusio equatio! Grétar Tryggvaso! Sprig 3! Navier-Stokes equatios! Summary! u t + u u x + v u y = P ρ x + µ u + u ρ y Hyperbolic part! u x + v y = Elliptic

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

orig For example, if we dilute ml of the M stock solution to ml, C new is M and the relative uncertainty in C new is

orig For example, if we dilute ml of the M stock solution to ml, C new is M and the relative uncertainty in C new is hapter 5 May of the problem i thi chapter require a regreio aalyi lthough equatio for thee calculatio are highlighted i the olutio to the firt uch problem, for the remaiig problem, both here ad elewhere

More information