NATIONAL OPEN UNIVERSITY OF NIGERIA

Size: px
Start display at page:

Download "NATIONAL OPEN UNIVERSITY OF NIGERIA"

Transcription

1 NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH - COURSE TITLE: ELEMENTARY DIFFERENTIAL EQUATIONS II

2 MTH - ELEMENTARY DIFFERENTIAL EQUATIONS II Couse Te: D. O.J. Adei Wite UNI. of Agi. Abeout D. Bole Abiol Edito NOUN D. Bole Abiol Poge Lede NOUN D S.O. Ajibol Couse Coodito NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA

3 CONTENT Module : Seies Solutio of Odi Diffeetil Equtio UNIT : Seies Solutio of Diffeetil Equtio UNIT: Eule Equtio UNIT: Idiil Equtio with Diffeee of Roots- Positive Itege d Logithi se UNIT 4: Boud Vlue Pobles UNIT 5: Stu d Liouville Poble ODULE : SERIES SOLUTION OF ORDINARY DIFFERENTIAL EQUATION UNIT : SERIES SOLUTION OF DIFFERENTIAL EQUATIONS. Itodutio. Objetives. Mi Cotet.. Seies Solutio of Diffeetil Equtio. Method of fidig dius of Covegee. Odi poits d Sigul poits of the Diffeetil Equtio.. Solutio e Odi Poit 4. Colusio 5. Su 6. Tuto Med Assiget 7. Refeees/ Futhe Redigs.. Itodutio: A lge lss of odi diffeetil equtios possesses solutio epessible, ove eti itevl, i tes of powe seies. I this uit we e goig to ivestigte ethods of obtiig suh solutios... Objetives: At the ed of this uit ou should be ble to - deteie dius of ovegee of seies - ppl seies solutio ethod to solvig diffeetil equtio - deteie odi poit, d sigul poits of the diffeetil equtio

4 . MAIN CONTENT.. Seies Solutio of Odi Diffeetil Equtio A epessio of the fo A A A A... is lled the powe seies. To deteie fo wht vlues of the seies oveges we use tio test ρ A li A li T T L Whee A li A L The seies is oveget whe ρ <, diveget whe ρ >. The test fils if ρ. The seies oveges whe L < R dius of ovegee L diveges whe > R L ρ is lled the dius of ovegee i If L is zeo, the seies oveges fo ll Vlues of ii If L is ifiite, the seies oveges ol t the poit iii If L is fiite, the the seies oveges, whe < R dius of ovegee d diveges if L > L If d b Covege to f d g espetivel, fo < ρ dius of ovegee ρ >, the the followig e tue fo < ρ. itwo seies be dded d subtted te wise, d

5 f b ± g ii The seies be ultiplied d g b C C b b b... b f Whee If g, the seies f g d lthough foul fo d is oplited if f otiuous hs deivtes of ll odes fo < ρ. d f, f, f b diffeetitig the seies. Thus f f o f!! is lled the Tlo seies fo futio f t A futio f tht hs Tlo seies epsio bout f f L,the f is be oputed. With dius of ovegee ρ > is sid to be lti t. The poloil is lti t eve poit, thus sus, diffeees, poduts, quotiets eepts t the zeoes of the deoito of poloils e lti t eve poit. i Deteie the dius of ovegee of the powe seies i A iv ρ li v A ii f ρ iii ρ li li li.. Deteiig the Rdius of Covegee If we obti the Tlo seies of futio f bout poit, the the dius of ovegee of the seies is equl to the diste of the poit fo the eest sigulit.

6 Re bout hge i the ide of sutio b d p p. Odi Poits d Sigul Poits of the Diffeetil Equtios We oside the diffeetil equtio d d P Q R 4 d d we ssue tht P, Q d R e poloils if P, the is odi poit of the equtio, o Q R P, Q R P, P, Q e lti t the poit, the is the odi poit of the equtio. b If the futios P, Q d R e poloils hvig o oo ftos, the sigul poits of equtio e the poits fo whih P 5 If li Q P is fiite d li Q P is fiite The the poit is lled the REGULAR SINGULAR POINT of equtio

7 d A sigul poit of equtio tht is ot egul sigul poit is lled iegul sigul poit... Solutio Ne A Odi Poit Let us oside the equtio P Q R 6 Whee P, Q d R e poloils. is the odi poit of the equtio 6. Assuig tht is solutio of 6 d hs Tlo Seies Now we ow tht! 8 We wite P q Q R whee P, q R P P q 9 o p P q q It is tul to ssue tht, t d,, we esil lulte the oeffiiet, povided tht we ould opute ifiitel deivtives of p d q eistig t. Thus p d q ust hve soe oditio fo lie lultio of. It hs bee poved tht. 7 Q P, R R P q e lti t., the the geel solutio of 6 is Whee d e bit d e liel idepedet seies solutios whih e lti t.

8 We shll illustte the ethod b eples. Eple. Solve the equtio 4 e the odi poit Solutio: we ssue the solutio s Substitutig these vlues i the equtio ields 4 o 4 4 o [ 4 ] 5 Beuse the fist two tes of the fist su i 4 e zeo. We ow use the ft tht fo powe seies to vish idetill ove itevl, eh oeffiiet i the seies ust be zeo Reuee eltio : o 4 4, Now we lulte i oeffiiets 4 4, 4, 4, , Fo bove we hve ! 4 4,!! Hee we wite i solutio

9 [ ] [ ] Si Cos!!! 4! 4 Eple : Solve the equtio 4 6 e the odi poit Solutio: we ssue the solutio The ol sigul poits of the equtio i the fiite ple e d. Hee we show tht the solutio is vlid i < with d bit oeffiiets 4 6 o 4 5 o 4 Let us shift the ide the seod seies. I equtio, the oeffiiet of eh powe of ust the zeo., fo is lled euee eltio. A euee eltio is speil id of diffeee equtio.,4,6,... d,...,5,7 4,

10 .. Siill, Hee the solutio [ ] [ ] Eple. Solve the equtio 4 bout the odi poit Solutio: we ssue the solutio We fist tslte the es, puttig u, d d d du du d. d d du d. The equtio beoes 4 u du d u du d The we ssue the solutio u 4 u u u Colletig the tes 4 u u Shiftig the ide fo to i the seod seies

11 u 7 u Theefoe d e bit d fo eide, we hve 7 bit bit ,, : [ ] [ ][ ] 6 [ ] u [ ][ ] 4 [ u u 4 Now substitute u [ [ ] 4 u u u [ ][ ] 4 4. Colusio: I this uit we hve ttepted the seies solutio ethod to Odi Diffeetil Equtios. I the subsequet uit we e goig to disuss oe bout this ethod i gete detils. You e supposed to ste this uit popel to be well equipped fo the et uit. 5. Su: Rell tht i this uit we disuss powe seies d dius of ovegee fo the seies. We lso pplied the seies to solve diffeetil equtios. We deived the sigul d odi poits fo eh of the seies solutios. Stud this uit popel befoe goig to the et uit.

12 6.. Tuto Med Assigets. Deteie lowe boud fo the dius of ovegee of seies solutio bout eh give poit fo eh of the followig diffeetil equtios. i 4, 4, 4 d ii 4,, d. Deteie whethe eh of the poits, d is odi poit, o egul sigul poit o iegul sigul poit fo the followig diffeetil equtio, 4 i ii 7. REFERENCES/FURTHER READINGS EARL. A. CODDINGTON: A Itodutio to Odi Diffeetil Equtios. Petie-Hll of Idi FRANCIS B. HILDEBRAND: Adved Clulus fo Applitios, Petie-Hll, New Jese EINAR HILLE: Letues o Odi Diffeetil Equtios, Addiso Wesle Publishig Cop, Lodo.

13 UNIT : EULER EQUATION.. Itodutio. Objetives. Mi Cotet.. Eule Equtio. Seies solutio e egul poit. Idiil equtio with equl oots.4 Idiil equtio with diffeee of oots, positive itege d No- Logithi se. 4. Colusio 5. Su 6. Tuto Med Assiget 7. Refeees/ Futhe Redigs. Itodutio: I this uit we del with lss of diffeetil equtio oll efe to s Eule Equtio. This tpe of equtio usull possesses solutios tht e lssified s egul sigul poits of the diffeetil equtios. Seies solutio of this lss of equtio ust be ttepted with diffeet ppoh. We shll see this i ou tetet of this sste of equtio i this uit.. Objetive: At the ed of this uit ou should be ble to - diffeetite Eule equtios fo othes. - use seies solutio ppoh to solve these tegoies of equtios - solve pobles eltig to Eule equtio.. MAIN CONTENT.. Eule Equtio d d L α β d d is ow s Eule equtio. It is es to see tht is egul sigul poit of I itevl ot iludig the oigi, hs geel solutio of the fo., d e lie, idepedet solutio. Hee we ssue tht hs solutio of the fo

14 L α β F Whee F α β If is oot of the equtio α α uβ α α uβ 4 F Cse I α 4β >, the the oots e el d uequl d W, is o-vishig fo d >. Thus the geel solutio is > se ll α 4β, the d we hve ol oe solutio α of the diffeetil equtio. We obti the seod solutio b the ethod of edutio. We oside diffeet ppoh to obti the solutio. L F If, the L F Now F, if we diffeetite F i.e F d the set, if give F,it suggest tht L [ F ] L log log F We set, thus L log log > is the seod solutio of Thus the geel solutio is log, > Cse III α 4β <, i this se, the oot e ople, s λ iµ, λ iµ

15 Thus the geel solutio is λ iµ λ iµ λ iµ iµ [ ] λ iµ log iµ log [ e e ] λ [ os µ log si log µ ] It is lws possible to obti el vlued solutio of Eule equtio i the itevl, b ig the followig hges d d d ξ, d d d dξ i the equtio, we hve d u du ξ ξ βu, ξ ξ > dξ dξ It is obtied s bove. Sie fo > ξ fo > It follows tht we ed oe, to eple fo b i the bove solutio to obti el vlued solutio vlid i itevl ot otiig the oigi To solve the Eule equtio α β i itevl ot otiig the oigi substitute oot d of the equtio d opute the F α β If the oots e el d uequl If the oots e el d equl log If the oots e ople λ os µ log si µ log Fo Eule equtio of the fo

16 α β Chge the idepedet vible b t o o suppose the solutio o Note: The situtio fo geel seod ode diffeetil equtio with egul sigul poit is siil to tht fo Eule equtio.. Aothe ethod of obtiig the solutio of Eule Equtio α β z Solutio: We e the hge of vible e o z log d >. d d dz d d dz d dz d d dz d d dz d dz Substitutig thee vlue i the equtio d dz α β d d This is equtio with ostts oeffiiets The uili equtio is α β i If d z z e el d uequl. e e z ii If the oots e equl i.e z e. log α iii If the oots e ople λ z e os µ z sih z λ os µ log si log µ. Seies solutio e egul sigul poit Coside the equtio P Q R

17 Assue tht is egul sigul poit of es tht Q P P R d q hve fiite liits s d e ltis t fo P soe itevl bout the oigi i But be witte [ p ] [ q ] p P q q [ p......] o p p [ q q... q...] If ll the oeffiiet use zeos, eept P d q, the edues to Eule equtio, whih ws disussed peviousl. If soe of the P d q. will ot be zeo. Howeve the essetil hte of the solutio eis the se. It is tul to see the solutio of the fo of Eule Solutio the powe seies. As pt of ou poble we hve to deteie The vlues of fo whih equtio hs solutio of the fo The euee eltio fo the The dius of ovegee of the seies We shll illustte the ethod b eple Eple I: Fid the seies solutio of the equtio Solutio: is the egul sigul poit of the equtio. We ssue lie solutio

18 Diet substitutio of i give z Now we shift the ide of the seod seies i. We get l Oe oe we eso tht the totl oeffiiet of eh powe of i the left ebe of 4 ust vish. The seod sutio does stt the otibutio, util. Hee the equtio deteits d e give b is lled the idiil equtio., v Reuee eltio 7 i Te [ ]... 5] [ ][ ]

19 Oittig the ostt, we wite the ptiul solutio s z 8 Net ts is to fid the solutio oespodig to the oot. The euee eltio beoes. b b b b. b. b.5 b b b b b b b b b if b if b b, b b b 6 6 The solutio is b[ ] The geel solutio is A B Note: The oots of idiil equtio e uequl d do ot diffe b itege.idiil equtio with equl oots Eple. Solve the equtio Solutio: is egul sigul poit of i We ssue the solutio

20 Substitutig this vlue i, we hve Shiftig the ide [ ] The idiil equtio The euee eltio is 4, I whih, [... ] 5,, 6 i whih, 7 [... ] Let s wite L The of equtio 6 hs bee so deteied tht fo tht the Eight ebe of 8 edued to sigle te the. Thus L 8 A solutio of the oigil diffeetil equtio is futio fo whih L. Now tig l es L [, ] Now diffeetite eh ebe of 9 with espet to [, ] [ d l[, ] d ] log

21 Fo 9 d, it be see el tht the two solutio of the equtio L e [, ] [, d [, ],, ] d log, log log [... ] log log [log...log [... ], we obti We wite H... The solutios e! [ log H... ] ]! The geel solutio, vlid fo ll fiite log is A B.

22 .: Idiil Equtio with diffeee of Roots Positive Itege, o Logithi se Solve lie equtio 4 Solutio: We ssue the solutio L 6 The Idiil equtio is 5, 5 s 5 5 We eso tht we hope fo two powe seies solutios, oe sttig with 5 d te, oe with te. If we use the loge oot 5, the the te would eve ete. Thus we use the slle oots, the the til solutio of the fo. hs he of piig up both solutios beuse the 5 5 oti L 5 L L o o s te does

23 [ ] Theefoe, with d 5 6 [ _ [ ] 5 4 bit, the geel solutio be witte Eple Solve the equtio 4 Solutio is the egul sigul poit of. We ssue the solutio L 4 L

24 , we get the idiil equtio, L Usig the slle oot L 4 Reuee eltio is o > l t 9 6 This is the equied solutio 4.. Colusio We hve looed t vious pobles ivolvig Eule equtios i this uit thei vious fo of idiil equtios. I the et uit we shll oside idiil equtio of positive itege d logithi se.

25 5. Su You will ell i this uit tht geel fo of Eule equtio ws give. We lso oside vious fo of Eule equtios. You e equied to ste this uit ve well befoe poeedig to othe uits. 6.. Tuto Med Assiget:. Solve the equtio.solve the equtio 4 7. REFERENCES/FURTHER READINGS. EARL. A. CODDINGTON: A Itodutio to Odi Diffeetil Equtios. Petie-Hll of Idi. FRANCIS B. HILDEBRAND: Adved Clulus fo Applitios, Petie-Hll, New Jese. EINAR HILLE: Letues o Odi Diffeetil Equtios, Addiso Wesle Publishig Cop, Lodo.

26 UNIT: INDICIAL EQUATION WITH DIFFERENCE OF ROOTS A POSITIVE INTEGER, LOGARITHMIC CASE. Itodutio. Objetives. Mi Cotet.. Idiil Equtio with diffeee of oots, positive itege d logithi se. Fouie Seies. Othogolit of set of seies d osies 4. Colusio 5. Su 6. Tuto Med Assiget 7. Refeees/ Futhe Redigs.. Itodutio I uit we hve osideed idiil equtios whee logith se is ot osideed. We shll udete to oside the positive d logith ses i this uit.. Objetives At the ed of this uit ou should be ble to - to solve diffeetil equtio whose idiil equtio hs positive itege - to solve diffeetil equtio whose idiil equtio hs oots with logithi se... MAIN CONTENT.. Idiil Equtio with Diffeee of oots positive itege, logithi se. We illustte this ethod b eple Solve the equtio Solutio: We ssue the solutio L 9

27 The idiil equtio is Puttig,, the euee eltio [... ] [... ] It follows tht L o Fo, ol oe solutio be obtied. Note: fo, sie thee is o powe seies with sillig, we suspet the pesee. Choose, we hve, [... ] We obti two solutios with espet to Fo whih L [, We use the se guet s tht of equl oots Puttig, [, ], [... ] 4 Diffeetite with espet to., log 4 { } { u

28 ... [... Puttig e, get ] [..... o ] [... }... { } { log! ] ] [ log H Poble: Fid lie geel seies solutio of the D.E 6 4 d d d d d show tht it be epessed i lie fo Solutio: is egul sigul poit of D.E. Assuig the solutio Substitutig i the D.E Chgig the ide. The idiil equtio is,, The euee eltio is ] [..... o

29 , i, the, 45 Thus! Hee the solutio is h!! Si ii,, the ! os ] Hee the geel solutio is ACos BSi

30 .. Fouie seies. Othogolit: A set of futio is { f, f,... f,...} sid to be othogol set with espet to the weight futio w ove the itevl b if b w f f d fo fo Othogolit is popet widel eouteed i eti bhes of thetis. Muh use is de of the epesettio of futios i seies of the fo f I whih the e ueil oeffiiets d { f } is othogol set is. Othogolit of set of seies d osies: We shll oside the set of futio Si π,,,.... π Cos, o,,,... Si π, Si π, Si π, Si π. π, Cos, π Cos, π π Cos, Cos.. is othogol with espet to the weight futio w ove the itevl i.e. π π Si Cos d, whee. : Befoe we pove the esult, we give soe defiitio to shote the poof. Eve futio: A futio g is sid to be eve g g Fo ll. b Odd futio: A futio h is odd if h h Fo ll.

31 Eple: Si is odd futio Cos is eve futio Most futio e eithe eve o odd eple. is i oe futio f d If g is eve futio the s well s eve g d Coside the itegl. g d π π I Si Cos d fo ll d. Follows t oe fo the fts tht the itegd is odd futio of. It does ot depedet upo oe ft d d e iteges π π I Si Si d, Te π β, d dβ π π π Cos β Cos β ] dβ π λπ π Si Si β π [ β ] π π Sie d e ve iteges. Fill we oside the itegl Whee,,....., Si β Si β π [ ] π π λπ SiβSiβdβ π I 4 Si d Si d let f the otiuous d diffeetible t eve poit i itevl eept fo ost fiite ube of poits d t oe poits, let f d f hve ight d left-hd liits Note:

32 The ottio f is used to deote lie ight-hd liit of s f fo loe, i.e. f d f Siill li f f li Deotes, the liit of f s ppohes. Sie Fouie seies fo f ot ovege to the vlue f eve whee. It is usto to eple the equls sig i equtio 8 b the sbol ~whih be ed hs fo its Fouie Seies we wite π π f ~ os Whee b si, d b e give b d Eple: Costut the Fouie seies, ove the itevl, fo the futio defied b f,,, < < Solutio: Now π π f ~ os b si I whih d π f os d;,,... π b f si d;,,... π os d π os d If, the π π π [si [ si os π π π os π π ] ]

33 Fo, fo, we get b Thus we wite π π f ~ [ os si ]. π π Eple Obti the Fouie seies ove the itevl π toπ fo the futio Solutio: We ow ~ π π π π π [ os os d; b si ] fo π < < π, whee,,,... b si d;,,,... π is eve futio, si is odd futio, thus si is odd futio Hee. b. fo eve. π si os si π [ ] π π fo Fo whih π os π 4 [ ],,,... π π osπ 4 [ ],,... π fo π π π [ π d π Theefoe, i the itevl; π < < π π os ~ 4 Ideed, beuse of oditio of lie futio ivolved, we wite π os ~ 4, fo π π.

34 . Fouie Sie Seies: Soeties it is desible to epd the futio f i seies ivolvig Sie futio ol. I ode to get Sie seies fo f we itodued futio g defied s follows g f < < f < < Thus g is odd futio ove the itevl < < Hee π g ~ os d.,,,... It follows tht π g os d Note itegd is odd futio d tht,,... b Thus π g si d π f si π f ~ b si o < < π f Whee b f si d,, Eple: Epd f i Fouie Sie Seies ove the itevl < < Solutio: At oe we wite, fo < ~ I whih b b si π si πd os π si π π os π π π <

35 osπ [ π osπ π osπ π Hee the Fouie Sie Seies, ove < < fo is os π [ ] π π π. Fouie Cosie Seies: I ode to epd the futio f i seies ivolvig osie futio ol, suh seies is lled Fouie Cosie Seies. We defie h f < < f < < It follows tht h is eve futio of. π π h ~ os b si π π h d f d os os < < i π But b h si d Thus we hve f ~ π f os d i whih π f os d Eple: Solutio: At oe we hve π f ~ os i whih i whih π os d. π π [ si os ] π π

36 . [ os π π ] π os π, π The oeffiiet is edil obtied d Thus the Fouie Cosie Seies ove the itevl < < the futio f is u f π ~ os π 4.. Colusio: You hve let bout idiil equtios whee the oots e positive d logithi. You hve lso let bout Fouie seies d odd futios. 5. Su: You e equied to stud teils i this uit ve well befoe poeedig to the et uits. 6. Tuto Med Assigets:. Fid the geel seies solutio of the D.E d d 4 6 d d.costut the Fouie seies, ove the itevl, fo the futio defied b f,,, < < 7. REFERENCES/FURTHER READINGS. EARL. A. CODDINGTON: A Itodutio to Odi Diffeetil Equtios. Petie-Hll of Idi. FRANCIS B. HILDEBRAND: Adved Clulus fo Applitios, Petie-Hll, New Jese. EINAR HILLE: Letues o Odi Diffeetil Equtios, Addiso Wesle Publishig Cop, Lodo.

37 UNIT 4: BOUNDARY VALUE PROBLEMS. Itodutio. Objetives. Mi Cotet.. Boud Vlue Pobles. Eige Vlues d Eige Futios 4. Colusio 5. Su 6. Tuto Med Assiget 7. Refeees/ Futhe Redigs. Itodutio I this uit, we will disuss soe of the popeties of boud vlve pobles fo lie seod ode equtio. This lss of diffeetil equtios is ve useful fo ptil pplitios. We shll devote soe tie i studig the i this uit.. Objetives: At the ed of this uit ou should be ble to - lssif seod ode diffeetil equtios ito hoogeeous d o-hoogeeous. - diffeetite betwee eige vlues d eige futios - solve elted eige vlue pobles. MAIN CONTENT. Boud Vlue Pobles The lie diffeetil equtio P Q R g ws lssified hoogeeous if, g, d o-hoogeeous othewise. Siill, lie boud oditio A boud vlue poble is hoogeeous if both its diffeetil equtio d i boud oditios e hoogeeous. If ot the it is ohoogeeous.

38 A tpil lie hoogeeous seod ode boud vlue poble is of the fo. P Q R < <, 4 b I b 5 Most of the pobles, we will disuss e of the fo give b to 5... Eige Vlues d Eige Futios Coside the diffeetil equtio p, λ q, λ < < The boud oditios b I b Whee λ is bit pete. Clel the solutio of depeds o d λ d be witte s, λ, λ, 4 Whee d e fudetl solutio of. Substitutig fo i the boud oditio d, ield. [ o, λ o, λ] [, λ] 5 b i, λ b i, λ] [ b i, λ] 6 [ A set of two lie hoogeeous lgebi equtios fo the ostt. Suh set hs solutios othe th if d ol if the deteit of oeffiiets Dλ vishes i.e.

39 [ o, λ o, λ] o, λ o, λ D λ b i, λ b i, ] b i, λ b i, ] λ λ Vlues stisfig this deteit equtio e the eigevlues of the boud- vlue pobles, d Coespodig to Eige futio eh Eige vlue is t lest oe o- tivil solutio. A Note: We will oside pobles el ol el eige vlue Eple I oside the equtio λ, Solutio: λ, the solutio is si, os B the boud oditios si λ is the solutio si λ λ π,,, o λ π, 4π 4 4 gives the eige vlues of. If we oside λ os si b si I b Hee λ is the eige -futio The eige futio e si π,,.... is bit ostt. 5

40 Eple : Fid the el eige vlues eige -futio of the boud vlue poble λ l.the solutio is λ os λ, give. Also os λ os λ But l, ields λ os λ l λ osl π λl, l,, gives eige vlue π si[ ], l,, gives eige futios Eples λ Solutio: The solutio is λ si λ os si λ os λ µ os µ µ os µ Thus the eige vlue e give b the equtio µ t µ. µ µ si µ If µ is the oot of, the eige futio is si µ µ os 4 µ

41 If λ, the the solutio is Hee the solutio is thus λ is lso eige vlue µ t µ λ ~ 4.49, Eple 5. Solutio λ N π ~ λ, os λ si λ, λ ot λ λ os The eige vlues e give b equtio. The eige futio e λ Whee the oot of is λ is the oot of the equtio λ ot λ λ, ot λ λ π,,..... λ π fo lge Eple 6. Coside the poble λ, Show tht if,d e eige futio oespodig to the eige vlue λ d λ Respetivel, the

42 d l Povided tht λ λ. Solutio: λ λ λ λ λ d d l l λ d d l l λ 4 d d l l l λ d d o l l l o l ] [ λ o B boud vlue oditios d d l l λ 5 Subtt 4 fo 5, we hve d l λ λ If λ λ, the d l Eple 4. Hpeboli futio os e e, sih e e sih osh d d osh si h d d

43 Solutio of the poble is 4 λ, Te λ 4 4 µ 4 µ The solutio is os µ si µ µ os µ sih µ The boud oditio d si µ 4 si µ l si µ l 4 sih µ l si µ 4 si µ l si µ l 4 sih µ l si µ 4 si µ l si µ l 4 sih µ l si µ 4 si µ l si µ l 4 sih µ l si µ l sih µ l,, si µ l π π si,, l Is the eige-futio 4. Colusio We hve bee ble to stud soe eige-vlue pobles i this uit. This uit ust be steed popel befoe ovig to the et uit. 5. Su Rell tht the lie diffeetil equtio P Q R g ws lssified hoogeeous if, g, d o-hoogeeous othewise. Siill, lie boud oditio

44 A boud vlue poble is hoogeeous if both its diffeetil equtio d i boud oditios e hoogeeous. If ot the it is ohoogeeous. We lso lssified soe equtios ito eige vlue poble depedig upo whethe the deteit of the eige vlue of the poble is zeo o ot. Red efull d e wo ll eeises d pobles i this uit fo bette udestdig. 6. Tuto Med Assiget:. Coside the poble λ, Show tht if,d e eige futio oespodig to the eige vlue λ d λ Respetivel, the l d Povided tht λ λ.. Fid the el eige- vlues d eige -futio of the boud vlue poble λ l 7. REFERENCES/FURTHER READINGS. EARL. A. CODDINGTON: A Itodutio to Odi Diffeetil Equtios. Petie-Hll of Idi. FRANCIS B. HILDEBRAND: Adved Clulus fo Applitios, Petie-Hll, New Jese. EINAR HILLE: Letues o Odi Diffeetil Equtios, Addiso Wesle Publishig Cop, Lodo.

45 Module : Stu Liouville Boud Vlue Pobles d Speil Futios UNIT: Stu d Liouville Poble. Itodutio. Objetives. Mi Cotet.. Stu d Lioville Pobles 4. Colusio 5. Su 6. Tuto Med Assiget 7. Refeees/ Futhe Redigs.. Itodutio We solved soe ptil diffeetil equtios b the ethod of septio of vibles. I the lst step we epded eti futio i Fouie seies, i.e. s the su of ifiite seies of sie d osie futios. It is of fudetl ipote tht the eige futios of oe geel lss of boud vlues pobles be used s bsis fo seies epsios, whih hve popeties siil to Fouie Seies. Suh eige- futios seies e useful i etedig the ethod of septio of vlues to lge lss of pobles i ptil diffeetil equtio. The lss of boud vlue poble we will disuss is ssoited with the es of Stu d Liouville.. Objetives: Afte studig this uit ou should be ble - to solve ptil diffeetil equtio usig Stu d Liouville ethods - solve oetl the ssoited Tuto Med Assigets. MAIN CONTENT.. Stu d Liouville Poble We itodue the opeto L [ ] [ p ] q L [ ] λ

46 [ P ] q λ o the itevl < <, togethe with the boud oditio 4 b I b 5 We shll ssue tht p, q d e otiuous futios i the itevl [,]. P >, > fo ll i. i Lgge s idetit: let u d v be futios hvig otiuous seod deivtives o the itevl. The UL [ U ] UL[ u] d p [ u u u u ] 6 Solutio : UL [ U ] d { u[ p u q u} d u p u p u { u pu uqu} d ul [ u] UL[ U ] d p[ u u u u This is ow s Lgge s idetit if u d u stisf 5 d 4 R.H.S p [ u u u u ] p [ u u u u ] b b p [ u u u u] b b Thus we hve p [ u u { u [ u] ul[ u] d u u] ii Show tht ll the eige vlue of the Stu-Liouville poble

47 L λ A With boud oditios B b I b e el. Poof: let us suppose thee eists ople eige vlue λ µ iv will v d oespodig to this vlue is the eige futio Q U IV Whee t lest oe of the is ot idetill zeo. Now Q stisfies the diffeetil equtio L[ Q λq L[ Q] πrq o u Q d u Q { QL Q QL Q] d Q Q d λ λ o [ V V d. Sie > fo ll i v This otdits the oigil hpothesis. Hee the eige vlue of Stu- Liouville poble e el. iii If Q d Q e eigevlues of the Stu-Liouville poble A d B, oespodig to eige vlves λ d λ, espetivel, d λ λ, the Q Q d [ is lled the weight futio d it is othogol popet of eigefutio] Poof: - L[ Q ] λ Q

48 L[ Q ] λ Q If we let U Q d U Q { ul [ U ] UL[ U ]} d λ λ Q Q d the Hee the esult iv Let us ow oside oe geel boud vlue poble fo the diffeetil equtio L[ ] λm[ ], < < Whee L d M e lie hoogeeous diffeetil opetios of odes d espetivel. L[ ] p p... p p M[ ]... Whee >. I dditio to the diffeetil equtio set of lie hoogeeous boud oditios t, is lso pesibed. If the eltios ul [ u] ul[ u] d um [ u] um[ u] d e lie fo eve pi of futios u d u, whih e lies otiuousl diffeetible o, l d whih stisf u give boud oditios, the the give boud vlve poble is sid to be self djoit. Poble I. Show tht the Stu-Liouville pobles L [ P ] q M λ i [ UM [ u] um[ u] d [ U λ u uλ u] d Fo eve pi of u, u

49 [ UL [ u] ul[ u] d s show peviousl. Hee it is self-djoit Poble, I Solutio L i [ U u u u u u u u d u ud, e tue fo eve pi of futio u d u, whih e - ties otiuousl diffeetible o [ o, l] whih stisf u give boud vlue poble is sid to be self-djoit. Solutio: Stu-Liouville pobles L [ p ] q M λ i [ UM u um u] d [ U λ uλ ] d s show peviousl. Hee it is ot self-djoit. Poble, I \ Solutio L, I [ U u u u u u u u] d [ UL u ul u] d s show pevious. Hee it self-djoit Poble Poble, I \ Solutio L, I [ U u u u u u u u] d

50 u ud, u d u e otiuous i the itevl. Hee it is ot zeo. Thus it is ot self-djoit. Pobleb, L U,, L M [ U [ u u u u] d It is Stu-Liouville poble. λ, Solutio L M i um µ UM µ d uu uu d ii u u U µ d] u u u u d u u uu [ u u u u [ u u u u ] [ u u u I u The ight side is ot zeo. Hee it is ot self-djoit. Poble Coside the diffeetil equtio λ \ With boud oditios

51 I, Show tht the poble is self-djoit eve though it is ot Stu- Liouville poble. b Fid ll eigevlues d eigefutios of the give poble Solutio: L M i [ UM u u u d] ii [ U u u u] d [ u uu uu ] d u u u u d u u u u d [ u I u I u I ] [ u u u] [ u u u] [ u u u] Hee it is self-djoit The solutio of the equtio is os si λ Applig the boud oditios, we hve λ si λ si λ os λ os λ si λ Thus λ si λ λ os λ os λ si λ O λ os λ λ o λ π,,,..... λ ϕ

52 λ π Q os π, si π, Q os π, si π, osπ, π os π, W os π π si π si π π os π π os π π si π π Betwee Thus the eige futios e liig idepedet. Poble 5: Coside the Stu-Liouville pobles [ p ] q λ, b, b Whee p, q d z otiuous futio i the itevl. show tht if λ is eige-vlue d ϕ oespodig eige futio, the b λ eq d p q d p p b Povided tht b How this esult be odified if b b Show tht if q d if. d b e o-egtive, the the eige-vlue λ Is o egtive Show tht the eige-vlue λ is stitl ude q fo eh i,, Solutio λ Q [ p Q ] Q q Q Thus

53 λ Q d qq p Q Q d Itegtig b pts, we hve qq d Q[ p Q ] pq d Fo boud oditio, we hve obti the esult b Q Q b Q Q Puttig these vlues o the ight side d we obti the esult if o o b, the the fist boud oditio edues to Q o Q o The esult edues to λ o b Q d qq pq d b p Q I λ Q d qq pq d Q Q I b I Stu Lioville poble, we lws ssue tht p >, >, B give oditio > fo ll i Q > fo ll. Now we ipose oditio, so tht ight side of the equtio i is b The seod d thid te e ve d e o-egtives b ve Now qq d is ve i ode tht

54 If q fo ll the λ is stitl. 4. Colusio We hve studied the Stu Lioville poble i this uit. You e to ste this uit popel so tht ou will be ble to solve the pobles tht follow. 5. Su Rell tht Stu Lioville pobles e usull pobles ssoited with eige vlues pobles of ptil diffeetil equtios whih we hve delt with i this uit. I ou subsequet ouse i thetis i this Poge, we will hve use to del with it gi ptiull whe will shll stud Ptil Diffeetil Equtio. 6. Tuto Med Assiget Coside the poble λ u Y, Show tht this poble is ot self-djoit Show tht ll eigevlues e el Show tht the eigefutios e ot othogol. with espet to the weight futio isig fo the oeffiiets of.. i the diffeetil equtio. 7. REFERENCES/FURTHER READINGS. EARL. A. CODDINGTON: A Itodutio to Odi Diffeetil Equtios. Petie-Hll of Idi. FRANCIS B. HILDEBRAND: Adved Clulus fo Applitios, Petie-Hll, New Jese. EINAR HILLE: Letues o Odi Diffeetil Equtios, Addiso Wesle Publishig Cop, Lodo.

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Powe Seies Solutios Foeius Metho Septee 6, 7 Powe Seies Solutios Foeius etho L Cetto Mehil Egieeig 5AB Sei i Egieeig Alsis Otoe 6, 7 Outlie Review lst wee Powe seies solutios Geel ppoh Applitio Foeius

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

STUDY PACKAGE. Subject : Mathematics Topic : DETERMINANTS & MATRICES Available Online :

STUDY PACKAGE. Subject : Mathematics Topic : DETERMINANTS & MATRICES Available Online : o/u opkj Hkh# tu] ugh vkjehks dke] oi s[k NksM+s qj e/;e eu dj ';kea iq#"k lg ldyi dj] lgs oi vusd] ^uk^ u NksM+s /;s; dks] j?kqj jk[ks VsdAA jp% ekuo /kez iz.ksk l~q# Jh j.knksm+klth egkjkt STUDY PAKAGE

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MSS SEQUENCE AND SERIES CA SEQUENCE A sequece is fuctio of tul ubes with codoi is the set of el ubes (Coplex ubes. If Rge is subset of el ubes (Coplex ubes the it is clled el sequece (Coplex sequece. Exple

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication Nottio d Sols Tpes of Nues Ntul Nues (Coutig Nues): N = {,, 3, 4, 5, 6,...} Wole Nues: W = { 0,,, 3, 4, 5, 6,...} Iteges: Z = {..., 4, 3,,, 0,,, 3, 4,...} Rtiol Nues: tiol ue is ue tt e witte i te fo of

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Faulty of Siees ad Matheatis, Uivesity of Niš, Sebia Available at: http://www.pf.i.a.yu/filoat Filoat 22:2 (28), 59 64 SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Saee Ahad Gupai Abstat. The sequee

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Multi-Electron Atoms-Helium

Multi-Electron Atoms-Helium Multi-lecto Atos-Heliu He - se s H but with Z He - electos. No exct solutio of.. but c use H wve fuctios d eegy levels s sttig poit ucleus sceeed d so Zeffective is < sceeig is ~se s e-e epulsio fo He,

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev themtil efletions, Issue 5, 015 INEQULITIES ON TIOS OF DII OF TNGENT ILES YN liev stt Some inequlities involving tios of dii of intenll tngent iles whih inteset the given line in fied points e studied

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method Rtig: Itesetios Bkwd Tig COC 4328/5327 ott A. Kig Bsi R Cstig iels i see hoot fom the ee though the iel. Fid losest -ojet itesetio. Get olo t itesetio Bsi R Cstig iels i see hoot fom the ee though the

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

The rabbit reproduction model. Partitions. Leonardo Fibonacci. Solve in integers. Recurrences and Continued Fractions. x 1 + x x 5 = 40 x k rk;

The rabbit reproduction model. Partitions. Leonardo Fibonacci. Solve in integers. Recurrences and Continued Fractions. x 1 + x x 5 = 40 x k rk; V. Amchi D. Sleto Get Theoeticl Ies I Comute Sciece CS 5-5 Sig Lectue 8 Fe, Cegie Mello Uivesit Recueces Cotiue Fctios Solve i iteges + + + 5 = ; = + + + 5 = 5 ; 9 Ptitios Solve i iteges + + z = ; ; z

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

CHAPTERS 5-7 BOOKLET-2

CHAPTERS 5-7 BOOKLET-2 MATHEMATIS XI HAPTERS -7 BOOKLET- otets: Pge No hpte Bioil Theoe 7-8 hpte Stight Lies 8- hpte 7 Sequees Seies - Bioil Epessio A lgei epessio osistig of two tes with ve o ve sig etwee the is lle ioil epessio

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Equations from the Millennium Theory of Inertia and Gravity. Copyright 2004 Joseph A. Rybczyk

Equations from the Millennium Theory of Inertia and Gravity. Copyright 2004 Joseph A. Rybczyk Equtions fo the illenniu heoy of Ineti nd vity Copyight 004 Joseph A. Rybzyk ollowing is oplete list of ll of the equtions used o deived in the illenniu heoy of Ineti nd vity. o ese of efeene the equtions

More information

Generalized Functions in Minkowski Space

Generalized Functions in Minkowski Space Geelize Ftio i Miowi Spe Chiw Ch Agt t, Mthemti Deptmet, The Uiveit of Aizo Cl DeVito Mthemti Deptmet, The Uiveit of Aizo PDF ete with FiePit pffto til veio http://www.fiepit.om . Itoio Peioi ftio e i

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y ALGEBRA Popeties of Asoute Vue Fo e umes : 0, 0 + + Tige Iequity Popeties of Itege Epoets Ris Assume tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fute isussio. + ( )

More information

Name: Period: Date: 2.1 Rules of Exponents

Name: Period: Date: 2.1 Rules of Exponents SM NOTES Ne: Period: Dte:.1 Rules of Epoets The followig properties re true for ll rel ubers d b d ll itegers d, provided tht o deoitors re 0 d tht 0 0 is ot cosidered. 1 s epoet: 1 1 1 = e.g.) 7 = 7,

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 3. Fid the geel solutio of the diffeetil equtio blk d si y ycos si si, d givig you swe i the fom y = f(). (8) 6 *M3544A068* PhysicsAdMthsTuto.com Jue

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs ht High Od i ODEs. Hoogous i ODEs A li qutio: is lld ohoogous. is lld hoogous. Tho. Sus d ostt ultils of solutios of o so o itvl I gi solutios of o I. Dfiitio. futios lld lil iddt o so itvl I if th qutio

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

Quantum Mechanics Lecture Notes 10 April 2007 Meg Noah

Quantum Mechanics Lecture Notes 10 April 2007 Meg Noah The -Patice syste: ˆ H V This is difficut to sove. y V 1 ˆ H V 1 1 1 1 ˆ = ad with 1 1 Hˆ Cete of Mass ˆ fo Patice i fee space He Reative Haitoia eative coodiate of the tota oetu Pˆ the tota oetu tota

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

DIFFUSION IN A SOLID CYLINDER PART I: ADVANCING MODEL

DIFFUSION IN A SOLID CYLINDER PART I: ADVANCING MODEL Joul of Mie Siee d Tehology, Vol. 3, No., pp. 33-4 (5 33 DOI:.69/JMST-4-7- DIFFUSION IN A SOLID CYLINDER PART I: ADVANCING MODEL Cho-Lig Tsi d Chig-Chg Li Key wods: dvig odel, diffusio. ABSTRACT A dved

More information

I. Exponential Function

I. Exponential Function MATH & STAT Ch. Eoetil Fuctios JCCSS I. Eoetil Fuctio A. Defiitio f () =, whee ( > 0 ) d is the bse d the ideedet vible is the eoet. [ = 1 4 4 4L 4 ] ties (Resf () = is owe fuctio i which the bse is the

More information

Sequences and series Mixed exercise 3

Sequences and series Mixed exercise 3 eqees seies Mixe exeise Let = fist tem = ommo tio. tem = 7 = 7 () 6th tem = 8 = 8 () Eqtio () Eqtio (): 8 7 8 7 8 7 m to te tems 0 o 0 0 60.7 60.7 79.089 Diffeee betwee 0 = 8. 79.089 =.6 ( s.f.) 0 The

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

Mathematical Induction (selected questions)

Mathematical Induction (selected questions) Mtheticl Iductio (selected questios). () Let P() e the propositio : For P(), L.H.S. R.H.S., P() is true. Assue P() is true for soe turl uer, tht is, () For P( ),, y () By the Priciple of Mtheticl Iductio,

More information