Generalized Functions in Minkowski Space

Size: px
Start display at page:

Download "Generalized Functions in Minkowski Space"

Transcription

1 Geelize Ftio i Miowi Spe Chiw Ch Agt t, Mthemti Deptmet, The Uiveit of Aizo Cl DeVito Mthemti Deptmet, The Uiveit of Aizo PDF ete with FiePit pffto til veio

2 . Itoio Peioi ftio e i to m e of mthemti phi. The fmetl emple of h ftio e the fmili ie oie of tigoomet. O ppoe hee i to geelize the tigoomet ftio. I follow Dvi Shelp ie [] to itoe the lph et ftio. Thee ftio e the loge of ie oie i Miowi pe. i.e. We eple the Pthgoe theoem with fo ome itege. I m iteete i tfomig the Lple etio ito pol ooite of Miowi Spe. The lltio le to ptil iffeetil etio tht, whe, ee to Lple etio. We e eptio of vile to fi ptil oltio to thi etio. PDF ete with FiePit pffto til veio

3 . Geelize Tigoometi Ftio The ie oie ftio e peioi ftio with peio p. O t i thi etio i to ete the l of tigoometi ftio. I will fit give ief itoio to peioi ftio [6] i the iffeetil tem tht eie ie oie. Afte tht, I will follow Shelp metho [] to geete the lph et ftio... Peioi Ftio Peioi ftio o feetl. Thi of lo, o, the ight, et. B peioi we me omethig tht epet it motio i ott legth of time. Hee, ftio f i peioi if ( t T ) f $ T ' f. (..) To me moe foml mthemtil efiitio, fo ftio f : Æ, let ( f ) { T Œ f ( t T ) f } P :. (..) Clel P ( f ) oti zeo fo ftio. Now we efie f e peioi ftio if thee eit ozeo elemet i P ( f ). O the othe h, ozeo elemet T i P ( f ) i lle peioi of f. If thee eit mllet ozeo elemet T i P ( f ), the T i ofte lle the fmetl peio of.. The Diffeetil Stem Deiptio of Sie Coie f. Lie m othe peil ftio, the ie oie e efie iffeetil tem. Let oie two ftio. The the iffeetil tem Ï Ó (..) with the iitil oitio ( ),, h ie oltio i o. PDF ete with FiePit pffto til veio 3

4 .3. The Alph Bet Ftio The ie of the geelizig the ftio ito Miowi pe tt fom geelizig the iffeetil tem (..). Coie tl me, we wite Ï Ó, (.3.) Whe, (.3.) ee to (..) o we hve it ot Aw, we will ee oie.. hve m iteetig popetie imil to ie Mltiplig the two etio i (.3.) Ï Ó The left h ie of (.3.) e el, hee, we oti. (.3.). (.3.3). (.3.4) Itegtig (.3.4), we ole fo ome ott C, C. (.3.5) Set t ppl the iitil oitio i (.3.), the ott i el to oe. Hee, (.3.6) Note tht whe, thi i the fmili i o t. PDF ete with FiePit pffto til veio 4

5 .4. The Ivee Alph Bet Ftio The ehvio of e ot totll etoo. Howeve, thei ivee ftio hve ve ie epeio. We will e the ottio g to epeet the ivee ftio. Let ( ). With (.3.) (.3.6) we oti. (.4.) Solve eptig vile, we get ( ) C t Ú. (.4.) B the fmetl lw of ll the efiitio of ftio of i Ú ( ' ) 5, we ole the ivee g '. (.4.3) Simill, let o tht ( ). The we hve. (.4.4) ( ) C t Ú. (.4.5) Agi we ppl the fmetl lw of ll the efiitio of Ú ( ' ), g '. (.4.6) A iteetig popet of eve. The the iteg of limit i o ftio. Theefoe, e otie hee. Sppoe i g (.4.3) i eve o tht the itegl of the ppe i o ftio ie it ivee i o. Moeove, ie i o ee i eve We ole tht i eve ftio. PDF ete with FiePit pffto til veio i o.

6 3. Geelize Pi Miowi Spe Eveo ow wht i p, t el le to epe wh p h it vle. I ft, it i well ow tht we get eie epeio of p fom the ivee tget. I thi etio, we efie the geelize Pi the ivee lph ftio o ivee et ftio; lze the popetie of thi me. 3.. The Geelize Pi Rell i the tigoometi ftio, we hve gi g o p. We follow thi efie me p the eltio p g g Ú ( ). (3..) The p i ow the geelize Pi. Fom the eltio (3..) it i le tht Ï p p Ó. (3..) Now we hve how tht i o ftio omi of 3.. The Peioi Alph Bet efie i the itevl t p. Howeve, we ve i eve ftio whe i eve, o the e efie i the itevl p t p fo eve. I thi etio we wt to how whe i eve, e peioi ftio with peio p. We will tt howig Ï p p Ó t t. (3..) To pove (3..) i te, we wite the ight h ie of (3..) PDF ete with FiePit pffto til veio 6

7 Ú ( ) Ú ( ' ) ' Ú ( ' ) Whih i the me '. (3..) p g g. (3..3) We te g to the let pt oth ie ito the lph ftio, the Let t g p g (. (3..4) ), we hve p t. (3..5) Whih i the fit pt of (3..). Simill, fom etio (3..3) we te left pt oth ie ito the et ftio, the Let t g p g (. (3..6) ), the p t Whih i the eo pt of (3..). We oie the ftio. (3..7) t p, fom (3...) we oti p p p ( t p ) t t. (3..8) g to the Sppoe i eve, the the lph ftio i o et ftio i eve, hee p p t ( t) ( t). (3..9) PDF ete with FiePit pffto til veio 7

8 We ppl the imil metho to the et ftio. The we ole Ï Ó ( t p ) ( t p ) If we ow eple p Ï Ó ( t p ) ( t p ), whe i eve. (3..) t p i (3..) we get, whe i eve. (3..) Theefoe, lph et ftio of eve itege oe e peioi ftio with the peio p Miowi Spe Sppoe we hve two iepeet vile. We wt to e the lph et ftio to geete pol ooitee. Let Ï Ó ( ) ( ) B (.3.5), we oti. (3.3.). (3.3.) We wt to how the tfomtio (3..) ove the whole pe. We ete o etig of tigoometi ftio ~ [,p ) [, ) thi tfomtio. Hee, (3..) we e i the Miowi Spe. PDF ete with FiePit pffto til veio 8

9 9 4. Geelize Lple, Etio Lple etio i well ow thi pplitio i phi. It i t polem to hge the Lple etio to pol ooite; thi ie i oetio with the Diihlet polem, fo emple. Moeove, whe we oie o pol ooite i Miowi pe, fthemoe iteetig elt ppe. I thi etio I will fit epoe the t poee to olvig the Diihlet Polem, mel, oti the pol fom of Lple etio. The I will ete it the imil metho ito the Miowi pe peet how to get the geelize Lple etio. 4.. The Diihlet Polem Rell the Lple etio. (4..) We hve o i. O gol i to wite () i tem of. The ptil iffeetil of e Ó Ï i o, Ó Ï o i. (4..) Theefoe, we oti i o (4..3) i o i o i o (4..4) PDF ete with FiePit pffto til veio

10 o i (4..5) i o o i i o o i i o o o i i. (4..6) Some tem i ppee i. I ft, if we loo efll, we fi tht. (4..7) Hee, we get the pol fom of Lple etio. (4..8) 4.. Diihlet Polem i Miowi Spe Geelize Lple, Etio We wt to wite the etio ito the pol ooite i Miowi Spe. A we i i etio 3.3, let. The we hve Ó Ï, Ó Ï (4..) Theefoe, (4..) PDF ete with FiePit pffto til veio

11 (4..3) (4..4) (4..5) Thee e ome tem i etio (5..5) ppee i (5..) (5..3). Althogh thee PDF ete with FiePit pffto til veio

12 etio e log, we till implifie them witig ow 3 4. (4..6) Set the ove etio e zeo, we hve. (4..7) Defie ppoe, (5..7) eome (4..8) Whih i o geelize Lple Etio 4.3. The Soltio of Geelize Lple, Etio Powe Seie A the t w to olve ptil iffeetil etio, I e eptig vile to oti two oi iffeetil etio. Let (4.3.) i tivil oltio. So we e ow oette fo the e h tht. Divie oth ie, we oti (4.3.) We ge tht o oltio ee to tif the etio lthogh we v t eep ott, o v t eep ott. Theefoe, eh tem ee to e ott. A thee ott p to e zeo. Let it ott we e p with two oi iffeetil etio: PDF ete with FiePit pffto til veio

13 3 Ó Ï (4.3.3) We fit olve the e pt of the epte etio. Let  (4.3.4) Pt o powe eie fom of ito the fit etio of (5.3.3), we oti   (4.3.5)    3 (4.3.6) Compig the oeffiiet, we ole tht e it ott, Moeove, fo, we hve (4.3.7) (4.3.8) I tem of, o eie eome... (4.3.9) We gop thi ito two oe i tem of the othe ito, whih i jtifie lte, P P   m m m m m m (4.3.) PDF ete with FiePit pffto til veio

14 I thi eie ovegee? I e the tio tet to he oth tem of. m ( ) ( ) lim Æ P m ( m ) P m m ( m ) lim Æ ( ) ( ( ) ) (4.3.) lim Æ P m ( ) ( ) ( m ) m P m ( m ) m lim Æ (( ) )( ) (4.3.) Hee oth of them e oltel oveget fo. Thi jtifie o egig i (4.3.). Uig the imil metho, we fi the oltio of e pt the imil metho ( ) '  '  (4.3.3) P ( ) m m P ( m ) m m m It i le tht the two tem o the ight of (4.3.3) e ovegee fo. The eo I e to e o ott i we gop tht with o iepeet vile. Nmel, let A, B, etio (4.3.3) ee to ( ) A  B Â. (4.3.4) P ( ) m m P ( m ) m m m Let C ', D ', etio (4.3.3) ee to () ( ) C  D  (4.3.5) P ( ) m m P ( m ) m m m Coie the ftio  m ( ). (4.3.6) P m ( m ) 4 PDF ete with FiePit pffto til veio

15 Â t t t. (4.3.7) P m m m ( m ) () Â t t (4.3.8) P m () m ( m ) Â t t t (4.3.9) P m ( m ) The (4.3.4) (4.3.5) e witte Ï Ó A ( ) B ( ) C ( ) D ( ) (4.3.) Hee, ptil oltio to the geelize Lple etio h the fom ( ) ( A ( ) B ( ) )( C ( ) D ( ) ), (4.3.) Sie the geelize Lple etio i lie, we p the oltio fo oti ew oltio. Theefoe, the mot geel oltio i ( ) ( A ( ) B ( ) )( C ( ) D ( ) ), Â (4.3.) 5 PDF ete with FiePit pffto til veio

16 5. Refeee [] Dvi Shelp, A Geeliztio of the Tigoometi Ftio, Amei Mth. Mothl, pp , 959 [] Jme Stewt, Cll, foth eitio, Boo/Cole Plihig Comp, 999 [3] Iv Geogievih Petovi, Ptil Diffeetil Etio, Loo:Iliffe, 967 [4] Gett Bioff Gi Clo Rot, Oi Diffeetil Etio, Wlthm, M., Bliell P. Co.,969 [5] Fi B. Hile, Ave Cll fo Applitio, eo eitio, PetieHll, I. Eglewoo Cliff, New Jee, 976 [6] Ewi Kezig, Ave Egieeig Mthemti, eighth eitio, Joh Wile & So, I PDF ete with FiePit pffto til veio

Sequences and series Mixed exercise 3

Sequences and series Mixed exercise 3 eqees seies Mixe exeise Let = fist tem = ommo tio. tem = 7 = 7 () 6th tem = 8 = 8 () Eqtio () Eqtio (): 8 7 8 7 8 7 m to te tems 0 o 0 0 60.7 60.7 79.089 Diffeee betwee 0 = 8. 79.089 =.6 ( s.f.) 0 The

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Powe Seies Solutios Foeius Metho Septee 6, 7 Powe Seies Solutios Foeius etho L Cetto Mehil Egieeig 5AB Sei i Egieeig Alsis Otoe 6, 7 Outlie Review lst wee Powe seies solutios Geel ppoh Applitio Foeius

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

Dividing Algebraic Fractions

Dividing Algebraic Fractions Leig Eheme Tem Model Awe: Mlilig d Diidig Algei Fio Mlilig d Diidig Algei Fio d gide ) Yo e he me mehod o mlil lgei io o wold o mlil meil io. To id he meo o he we o mlil he meo o he io i he eio. Simill

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Logarithmic Sine and Cosine Transforms and Their Applications to Boundary-Value Problems Connected with Sectionally-Harmonic Functions

Logarithmic Sine and Cosine Transforms and Their Applications to Boundary-Value Problems Connected with Sectionally-Harmonic Functions pplied Mthemti 3 4 378-386 http://dx.doi.og/.436/m.3.458 Publihed Olie Febuy 3 (http://www.ip.og/joul/m) Logithmi Sie d Coie Tfom d Thei pplitio to Boudy-Vlue Poblem Coeted with Setiolly-Hmoi Futio Mitht

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid.

GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid. ALGEBA Popeties of Asote Ve Fo e mes :, + + Tige Ieqit Popeties of Itege Epoets is Assme tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fte isssio. + ( ) m m m m m m m

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

Steady State Solution of the Kuramoto-Sivashinsky PDE J. C. Sprott

Steady State Solution of the Kuramoto-Sivashinsky PDE J. C. Sprott Stey Stte Soltio of the Krmoto-Sivshisy PDE J. C. Srott The Krmoto-Sivshisy etio is simle oe-imesiol rtil ifferetil etio PDE tht ehiits hos er some oitios. I its simlest form, the etio is give y t 0 where

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

CH 45 INTRO TO FRACTIONS

CH 45 INTRO TO FRACTIONS CH INTRO TO FRACTIONS Itrotio W e re ot to erk o st of frtios. If o ve erstoo ritheti frtios efore, o ll fi tht lgeri frtios follo the se set of rles. If frtios re still ster, let s ke this the seester

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y ALGEBRA Popeties of Asoute Vue Fo e umes : 0, 0 + + Tige Iequity Popeties of Itege Epoets Ris Assume tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fute isussio. + ( )

More information

Induction. Induction and Recursion. Induction is a very useful proof technique

Induction. Induction and Recursion. Induction is a very useful proof technique Iductio Iductio is vey useul poo techique Iductio d Recusio CSC-59 Discete Stuctues I compute sciece, iductio is used to pove popeties o lgoithms Iductio d ecusio e closely elted Recusio is desciptio method

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

Viscosity Solutions with Asymptotic Behavior of Hessian Quotient Equations. Limei Dai +

Viscosity Solutions with Asymptotic Behavior of Hessian Quotient Equations. Limei Dai + Itertio oferee o ompter d Atomtio Egieerig IAE IPIT vo 44 IAIT Pre igpore OI: 776/IPIT44 ioit otio ith Amptoti ehvior of Hei Qotiet Eqtio Limei i hoo of Mthemti d Iformtio iee Weifg Uiverit Weifg 66 The

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

is monotonically decreasing function of Ω, it is also called maximally flat at the

is monotonically decreasing function of Ω, it is also called maximally flat at the Le.8 Aalog Filte Desig 8. Itodtio: Let s eview aalog filte desig sig lowpass pototype tasfomatio. This method ovets the aalog lowpass filte with a toff feqey of adia pe seod, alled the lowpass pototype,

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010 Optimal Sigal Poceig Leo 5 Chapte 7 Wiee Filte I thi chapte we will ue the model how below. The igal ito the eceive i ( ( iga. Nomally, thi igal i ditubed by additive white oie v(. The ifomatio i i (.

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Engineering Mathematics I (10 MAT11)

Engineering Mathematics I (10 MAT11) www.booksp.com VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Egieeig Mthemtics I (0 MAT) LECTURE NOTES (FOR I SEMESTER B E OF VTU) www.booksp.com VTU NOTES QUESTION PAPERS of 4 www.booksp.com VTU NOTES

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA WO INERFIL OLLINER GRIFFIH RS IN HERMO- ELSI OMOSIE MEDI h m MISHR S DS * Deme o Mheml See I Ie o eholog BHU V-5 I he oee o he le o he e e o eeg o o olle Gh e he ee o he wo ohoo mel e e e emee el. he olem

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

K owi g yourself is the begi i g of all wisdo.

K owi g yourself is the begi i g of all wisdo. I t odu tio K owi g yourself is the begi i g of all wisdo. A istotle Why You Need Insight Whe is the last ti e ou a e e e taki g ti e to thi k a out ou life, ou alues, ou d ea s o ou pu pose i ei g o this

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Fameal Joal of Mahemaic a Mahemaical Sciece Vol. 7 Ie 07 Page 5- Thi pape i aailable olie a hp://.fi.com/ Pblihe olie Jaa 0 07 CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Caolo

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Java Applets / Flash Java Applet vs. Flash

Java Applets / Flash Java Applet vs. Flash ava Alet / Flah ava Alet v. Flah oltal oblem wth Mooft hhl otable moe dfflt develomet ot a oblem le o exellet val develomet tool Alet / Flah ood fo tato volv omlex e t whee XTML t elemet ae ot adeqate

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

Chapter Introduction to Partial Differential Equations

Chapter Introduction to Partial Differential Equations hpte 10.01 Intodtion to Ptil Diffeentil Eqtions Afte eding this hpte o shold be ble to: 1. identif the diffeene between odin nd ptil diffeentil eqtions.. identif diffeent tpes of ptil diffeentil eqtions.

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

CHAPTERS 5-7 BOOKLET-2

CHAPTERS 5-7 BOOKLET-2 MATHEMATIS XI HAPTERS -7 BOOKLET- otets: Pge No hpte Bioil Theoe 7-8 hpte Stight Lies 8- hpte 7 Sequees Seies - Bioil Epessio A lgei epessio osistig of two tes with ve o ve sig etwee the is lle ioil epessio

More information

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main)

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main) AIITS-HT-VII-PM-JEE(Mai)-Sol./7 I JEE Advaced 06, FIITJEE Studets bag 6 i Top 00 AIR, 7 i Top 00 AIR, 8 i Top 00 AIR. Studets fom Log Tem lassoom/ Itegated School Pogam & Studets fom All Pogams have qualified

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu)

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu) Joul of Qulity Mesuemet d Alysis JQMA 7 0 4-5 Jul Peguu Kuliti d Alisis PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR Mslh d Sift-sift sutu Pegopesi Peme Bhu MASLINA DARUS & IMRAN FAISAL ABSTRACT

More information

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev themtil efletions, Issue 5, 015 INEQULITIES ON TIOS OF DII OF TNGENT ILES YN liev stt Some inequlities involving tios of dii of intenll tngent iles whih inteset the given line in fied points e studied

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

AN ALGEBRAIC APPROACH TO M-BAND WAVELETS CONSTRUCTION

AN ALGEBRAIC APPROACH TO M-BAND WAVELETS CONSTRUCTION AN ALGEBRAIC APPROACH TO -BAN WAELETS CONSTRUCTION Toy L Qy S Pewe Ho Ntol Lotoy o e Peeto Pe Uety Be 8 P. R. C Att T e eet le o to ott - otool welet e. A yte of ott eto ote fo - otool flte te olto e o

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Moments of Generalized Order Statistics from a General Class of Distributions

Moments of Generalized Order Statistics from a General Class of Distributions ISSN 684-843 Jol of Sttt Vole 5 28. 36-43 Moet of Geelzed Ode Sttt fo Geel l of Dtto Att Mhd Fz d Hee Ath Ode ttt eod le d eel othe odel of odeed do le e ewed el e of geelzed ode ttt go K 995. I th e exlt

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information