Sequences Arising From Prudent Self-Avoiding Walks Shanzhen Gao, Heinrich Niederhausen Florida Atlantic University, Boca Raton, Florida 33431

Size: px
Start display at page:

Download "Sequences Arising From Prudent Self-Avoiding Walks Shanzhen Gao, Heinrich Niederhausen Florida Atlantic University, Boca Raton, Florida 33431"

Transcription

1 Seqences Arising From Prden Self-Avoiding Walks Shanzhen Gao, Heinrich Niederhasen Florida Alanic Universiy, Boca Raon, Florida Absrac A self-avoiding walk (SAW) is a seqence of moves on a laice no visiing he same poin more han once. A SAW on he sqare laice is prden if i never akes a sep owards a verex i has already visied. Prden walks di er from mos sb-classes of SAWs ha have been coned so far in ha hey can wind arond heir saring poin. Some problems and some seqences arising from prden walks are discssed in his paper. Keywords Self-avoiding walk, prden self-avoiding walk, generaing fncion, kernel mehod 1 Inrodcion A well-known long sanding problem in combinaorics and saisical mechanics is o nd he generaing fncion for self-avoiding walks (SAW) on a wo-dimensional laice, enmeraed by perimeer. A SAW is a seqence of moves on a sqare laice which does no visi he same poin more han once. I has been considered by more han one hndred researchers in he pass one hndred years, inclding George Polya, Tony Gmann, Laszlo Lovasz, Donald Knh, Richard Sanley, Doron Zeilberger, Mireille Bosqe-Mélo, Thomas Prellberg, Neal Madras, Gordon Slade, Agnes Diel, E.J. Janse van Rensbrg, Harry Kesen, Sar G. Whiingon, Lincoln Chayes, Iwan Jensen, Arhr T. Benjamin, and ohers. More han hree hndred papers and a few volmes of books were pblished in his area. A SAW is ineresing for simlaions becase is properies canno be calclaed analyically. Calclaing he nmber of self-avoiding walks is a common compaional problem [1], [8], [9]. In he pas few decades, many mahemaicians have sdied he following wo problems Problem 1 Wha is he nmber of SAWs from (0; 0) o (n 1; n 1) in an n n grid, aking seps from f"; #; ;!g? Donald Knh claimed ha he nmber is beween and for n = 11 and he did no believe ha he wold ever in his lifeime know he exac answer o his problem in However, afer a few years, Richard Schroeppel poined o ha he exac vale is 1; 568; 758; 030; 464; 750; 013; 14; 100 = [1], [10], [5]. I is sill an nsolved problem for n > 5 Problem Wha is he nmber f(n) of n-sep SAWs, on he sqare laice, aking seps from f"; #; ;!g? The nmber f(n) is known for n 71 [10], [11], [3], [1]. A recenly proposed model called prden self-avoiding walks (PSAW) was rs inrodced o he mahemaics commniy in an npblished manscrip of Préa, who called 1

2 hem exerior walks. A prden walk is a conneced pah on sqare laice sch ha, a each sep, he exension of ha sep along is crren rajecory will never inersec any previosly occpied verex. Sch walks are clearly self-avoiding [6], [13], [4], [7], []. We will alk abo some seqences arising from PSAWs in he following. Prden Self-Avoiding Walks De niions and Examples A PSAW is a proper sbse of SAWs on he sqare laice. The walk sars a (0; 0), and he empy walk is a PSAW. A PSAW grows by adding a sep o he end poin of a PSAW sch ha he exension of his sep - by any disance - never inersecs he walk. Hence he name prden. The walk is so carefl o be self-avoiding ha i refses o ake a single sep in any direcion where i can see - no maer how far away - an occpied verex. The following walk is a PSAW..1 Properies of a PSAW Unlike SAW, PSAW are sally no reversible. There is sch an example in he following gre. Each PSAW possesses a minimm bonding recangle, which we call box. Less obviosly, he endpoin of a prden walk is always a poin on he bondary of he box. Each new sep eiher in aes he box or walks (prdenly) along he border. Afer an in aing sep, here are 3 possibiliies for a walk o go on. Oherwise, only. In a one-sided PSAW, he endpoin lies always on he op side of he box. The walk is parially direced. A prden walk is wo-sided if is endpoin lies always on he op side, or on he righ side of he box. The walk in he following gre is a wo-sided PSAW.

3 3 Some Seqences Arising from One-sided PSAWs Seqence 1 Wha is he nmber (say f(n) ) of one-sided n-sep prden walks, aking seps from f "; ;!g? The generaing fncion eqals Also, X f (n) n = n = f(n) = f(n 1) + f(n ) = (1 p ) n + (1 + p ) n = 1 0 Xn+1 n k 0 k=0 k! 1 0 We obain seqence A of he On-Line Encyclopedia of Ineger Seqences. Seqence The nmber of one-sided n-sep prden walks, saring from (0; 0) and ending on y-axis, aking seps from f"; ;!g is 1 + b(n X 1)=cminfn k=1 X i=1 k;kg n k + 1 k 1 n k i i k i k We obain seqence A Seqence 3 Consider he nmber of one-sided prden walks saring from (0; 0) o (x; y), aking seps from f"; ;!g. The nmber of sch walks wih k + x righ! seps, k lef seps and y p " seps, is X minfy;k+xg i=1 y + 1 k + x 1 y + k i k + x i k If k = and x = y = n, we obain seqence A i

4 Seqence 4 The nmber of one-sided n-sep prden walks, from (0; 0) o (x; y), ( n x y is even) aking seps from f"; ;!g is minfy; X n+x y g i=0 y + 1 i n+x y 1 n+x y i n x+y i n x y If x = y = 3, we obain seqence A Seqence 5 Wha is he nmber of he one-sided n-sep prden walks, avoiding k or more consecive eas seps,! k? The generaing fncion eqals 1 + k 1 + k+1 If k =, we obain seqence A006356, coning he nmber of pahs for a ray of ligh ha eners wo layers of glass and hen is re eced exacly n imes before leaving he layers of glass. If k = 3, we obain seqence A (see also page 44 in [14]). Seqence 6 The nmber of one-sided n-sep prden walks, aking seps from f"; ;!; %g eqals 5 + p 17 p p 17! n 5 p 17 p 17 3 p! n 17 We obain seqence A Seqence 7 Wha is he nmber of one-sided n-sep prden walks, aking seps from f!; ; "; %; &g? The generaing fncion is We obain seqence A Seqence 8 Wha is he nmber of one-sided n-sep prden walks in he rs qadran, saring from (0; 0) and ending on he y-axis, aking seps from f"; ;!g? The generaing fncion is 1 3 ((1 + ) (1 ) p (1 4 ) (1 )) Seqence 9 Wha is he nmber of one-sided n-sep prden walks exacly avoiding =k, aking seps from f"; ;!g? 4

5 The generaing fncion eqals 1 + k + k k+1 k+ If k = 1; we obain seqence A Seqence 10 Wha is he nmber of one-sided n-sep prden walks exacly avoiding =k and " =k (boh a he same ime)? The generaing fncion is 1 + k + k k+1 k+ also, For k = 1, f(n) = n+ ( 1) bn=c + ( 1) b(n+1)=c =5; This is seqence A f(n) = f(n 1) f(n ) + f(n 3) wih f(1) = 1; f() = 3; f(3) = 7 4 Some Seqences Arising from Two-sided PSAWs Wha is he nmber of wo-sided, n-sep prden walks ending on he op side of heir box avoiding boh paerns, # (boh a he same ime), aking seps from f"; #; ;!g? Theorem 1 The generaing fncion (say T (; ) ) of he above wo-sided prden walks ending on he op side of heir box sais es 1 T (; ) = T (; ) ; (1) where cons he disance beween he endpoin and he norh-eas (NE) corner of he box. For insance, in he following gre, a walk akes 5 seps, and he disance beween he endpoin and he norh-eas corner is 3. So we can se 5 3 o con his walk. Oline of he proof of he heorem Case 1 Neiher he op nor he righ side has ever moved; he walk is only a wes sep. This case conribes 1 o he generaing fncion. 5

6 Case The las in aing sep goes eas. This implies ha he endpoin of he walk was on he righ side of he box before ha sep. Afer ha eas sep, he walk has made a seqence of norh seps o reach he op side of he box. Observe ha, by symmery, he series T (; ) also cons walks ending on he righ side of he box by he lengh and he disance beween he endpoin and he norh-eas corner. These wo observaions give he generaing fncion for his class as T (; ). Case 3 The las in aing sep goes norh. Afer his sep, here is eiher a wes sep or a bonded seqence of Eas seps. This gives he generaion fncion for his class as + T (; ) T (; ) Ping he hree cases ogeher, we ge he generaing fncion (1) for T (; ). Solve his generaing fncion for T (; ) sing he Kernel Mehod From 1 T (; ) = T (; ) ; we can ge (1 ) + 3 T (; ) = ()(1 )(1 + ) T (; ) (1 ) ( ) Se (1 ) ( + 3 ) = 0, hen here is only one power series solion for = q(1 3 3 ) 4 4 Le U be his solion, Se and replace by U From U = U() = q(1 3 ) 4 4 () (1 + )()(1 ) + T (; ) (1 ) () = 0; U T (; ) = (1 + U) (U ) (3) (1 ) + 3 T (; ) = ()(1 )(1 + ) T (; ) (1 ) ( ) ge T (; ) = ( )(1 )(1 + ) + T (; ) (1 ) ( ) (1 ) ( + 3 ) 6

7 Replace T (; ) by (3). Now T (; ) = (1 + )() + 3 (1 + U) (U ) (1 ) () (U ) (1 ) ( + 3 ) where U() has been de ned in (). Seqence 11 Noice ha T (; 1) is he generaing fncion of he nmber of wo-sided n-sep prden walks ending on he op side of heir box avoiding boh paerns, #, aking seps from f"; #; ;!g, hs T (; 1) = q (1 ) (1 ) (1 3 ) 4 4 (1 + ) ( ) (1 + 3 ) (1 3 ) = Seqence 1 Noe ha T (; 0) is he generaing fncion of he nmber of wo-sided n-sep prden walks ending a he norh-eas corner of heir box avoiding boh paerns, #, aking seps from f"; #; ;!g, so T (; 0) = (1 ) q (1 3 ) (1 3 ) = Seqence 13 Frhermore, T (; 1) T (; 0) is he generaing fncion of he nmber of wo-sided n- sep prden walks ending on he op side or righ side of heir box avoiding boh paerns, #, aking seps from f"; #; ;!g, hs T (; 1) T (; 0) = (1 ) q(1 3 ) (1 + 3 ) (1 3 ) = Open Problem 1 Wha is he nmber of wo-sided n-sep prden walks, ending on he op side of heir box, avoiding boh k, and # k (k > ) aking seps from f"; #; ;!g? The generaing fncion sais es 1 1 k k 1 T (; ) = k k 1 + T (; ); 7

8 where cons he disance beween he endpoin and he norh-eas corner of he box. For k = 3, i.e., T (; ) = T (; ) ( )T (; ) = ( )() + () T (; ) Se + (1 + 3 ) + ( 4 ) + ( 5 3 ) = 0, and solve for, as a power series of. We obained he rs one hndred erms for, beginning wih = Using his, we can ge many examples for he seqence. Open Problem Wha is he nmber of wo-sided n-sep prden walks, ending on he op side of heir box, exacly avoiding boh =, # =, aking seps from f"; #; ;!g? The generaing fncion is ( )T (; ) = 1 1 We do no have a solion o his eqaion. + T (; ) References [1] M. Bosqe-Mélo, A.J. Gmann and I. Jensen, Self-avoiding walks crossing a sqare, J. Phys. A 38 (005) [] M. Bosqe-Mélo, Families of prden self-avoiding walks, J. of Combinaorial Theory, Series A 117 (010) [3] A.R. Conway and A.J. Gmann, Sqare laice self-avoiding walks and correcions o scaling, Phys. Rev. Le. 77 (1996), [4] J.C. Dehridge and A.J. Gmann, Prden self-avoiding walks, Enropy 10 (008), [5] K.E. Donald, Science 194 (1976) 135. [6] E. Dchi, On some classes of prden walks. In Proceedings of he FPSAC 05, Taormina, Ialy, (005). 8

9 [7] T.M. Garoni, A.J. Gmann, I. Jensen and J.C. Dehridge, Prden walks and polygons, J. Phys. A 4 (009), [8] L.F. Gregory, Inersecions of Random Walks. Birkhäser (1996). [9] A.J. Gmann (Ed.), Polygons, Polyominoes and Polycbes, Springer (009). [10] J. Iwan, Enmeraion of self-avoiding walks on he sqare laice J. Phys. A 37 (004) [11] E.J. Janse van Rensbrg, Mone Carlo mehods for he self-avoiding walk, (Topical Review) J. Phys. A 4 (009), [1] M. Neal and S. Gordon, The Self-Avoiding Walk. Birkhäser (1996). [13] P. Préa, Exerior self-avoiding walks on he sqare laice, (1997) (manscrip). [14] R. P. Sanley, Enmeraive Combinaorics I, Wadsworh & Brooks/Cole (1986). 9

Srednicki Chapter 20

Srednicki Chapter 20 Srednicki Chaper QFT Problems & Solions. George Ocober 4, Srednicki.. Verify eqaion.7. Using eqaion.7,., and he fac ha m = in his limi, or ask is o evalae his inegral:! x x x dx dx dx x sx + x + x + x

More information

Some Ramsey results for the n-cube

Some Ramsey results for the n-cube Some Ramsey resuls for he n-cube Ron Graham Universiy of California, San Diego Jozsef Solymosi Universiy of Briish Columbia, Vancouver, Canada Absrac In his noe we esablish a Ramsey-ype resul for cerain

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Scalar Conservation Laws

Scalar Conservation Laws MATH-459 Nmerical Mehods for Conservaion Laws by Prof. Jan S. Heshaven Solion se : Scalar Conservaion Laws Eercise. The inegral form of he scalar conservaion law + f ) = is given in Eq. below. ˆ 2, 2 )

More information

Explore 2 Proving the Vertical Angles Theorem

Explore 2 Proving the Vertical Angles Theorem Explore 2 Proving he Verical Angles Theorem The conjecure from he Explore abou verical angles can be proven so i can be saed as a heorem. The Verical Angles Theorem If wo angles are verical angles, hen

More information

Tackling Sequences From Prudent Self-Avoiding Walks

Tackling Sequences From Prudent Self-Avoiding Walks Taclng Sequences From Pruden Self-Avodng Wals Shanzhen Gao, Keh-Hsun Chen Deparmen of Compuer Scence, College of Compung and Informacs Unversy of Norh Carolna a Charloe, Charloe, NC 83, USA Emal: sgao3@unccedu,

More information

Solutions to the Olympiad Cayley Paper

Solutions to the Olympiad Cayley Paper Soluions o he Olympiad Cayley Paper C1. How many hree-digi muliples of 9 consis only of odd digis? Soluion We use he fac ha an ineger is a muliple of 9 when he sum of is digis is a muliple of 9, and no

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

DESIGN OF TENSION MEMBERS

DESIGN OF TENSION MEMBERS CHAPTER Srcral Seel Design LRFD Mehod DESIGN OF TENSION MEMBERS Third Ediion A. J. Clark School of Engineering Deparmen of Civil and Environmenal Engineering Par II Srcral Seel Design and Analysis 4 FALL

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions Derivaives of Inverse Trig Fncions Ne we will look a he erivaives of he inverse rig fncions. The formlas may look complicae, b I hink yo will fin ha hey are no oo har o se. Yo will js have o be carefl

More information

CSE 5365 Computer Graphics. Take Home Test #1

CSE 5365 Computer Graphics. Take Home Test #1 CSE 5365 Comper Graphics Take Home Tes #1 Fall/1996 Tae-Hoon Kim roblem #1) A bi-cbic parameric srface is defined by Hermie geomery in he direcion of parameer. In he direcion, he geomery ecor is defined

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n Lecure 3 - Kövari-Sós-Turán Theorem Jacques Versraëe jacques@ucsd.edu We jus finished he Erdős-Sone Theorem, and ex(n, F ) ( /(χ(f ) )) ( n 2). So we have asympoics when χ(f ) 3 bu no when χ(f ) = 2 i.e.

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

CSE-4303/CSE-5365 Computer Graphics Fall 1996 Take home Test

CSE-4303/CSE-5365 Computer Graphics Fall 1996 Take home Test Comper Graphics roblem #1) A bi-cbic parameric srface is defined by Hermie geomery in he direcion of parameer. In he direcion, he geomery ecor is defined by a poin @0, a poin @0.5, a angen ecor @1 and

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0 Nework flow The problem Seing flow nework G = (V, E, c), a orce and a ink no in E implie c(, ) = 0 Flow from o capaciy conrain kew-ymmery flow-coneraion ale of he flow jfj = P 2V Find a maximm flow from

More information

A Direct Method for Solving Nonlinear PDEs and. New Exact Solutions for Some Examples

A Direct Method for Solving Nonlinear PDEs and. New Exact Solutions for Some Examples In. J. Conemp. Mah. Sciences, Vol. 6, 011, no. 46, 83-90 A Direc Mehod for Solving Nonlinear PDEs and New Eac Solions for Some Eamples Ameina S. Nseir Jordan Universiy of Science and Technology Deparmen

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Differential Geometry: Revisiting Curvatures

Differential Geometry: Revisiting Curvatures Differenial Geomery: Reisiing Curaures Curaure and Graphs Recall: hus, up o a roaion in he x-y plane, we hae: f 1 ( x, y) x y he alues 1 and are he principal curaures a p and he corresponding direcions

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Mat 267 Engineering Calculus III Updated on 04/30/ x 4y 4z 8x 16y / 4 0. x y z x y. 4x 4y 4z 24x 16y 8z.

Mat 267 Engineering Calculus III Updated on 04/30/ x 4y 4z 8x 16y / 4 0. x y z x y. 4x 4y 4z 24x 16y 8z. Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz Tes solion:. a) Find he cener and radis of he sphere 4 4 4z 8 6 0 z ( ) ( ) z / 4 The cener is a (, -, 0), and radis b) Find he cener and radis of

More information

ON JENSEN S INEQUALITY FOR g-expectation

ON JENSEN S INEQUALITY FOR g-expectation Chin. Ann. Mah. 25B:3(2004),401 412. ON JENSEN S INEQUALITY FOR g-expectation JIANG Long CHEN Zengjing Absrac Briand e al. gave a conerexample showing ha given g, Jensen s ineqaliy for g-expecaion sally

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Congruent Numbers and Elliptic Curves

Congruent Numbers and Elliptic Curves Congruen Numbers and Ellipic Curves Pan Yan pyan@oksaeedu Sepember 30, 014 1 Problem In an Arab manuscrip of he 10h cenury, a mahemaician saed ha he principal objec of raional righ riangles is he following

More information

Section 1.2 Angles and Angle Measure

Section 1.2 Angles and Angle Measure Sec.. ngles and ngle Measure LSSIFITION OF NGLES Secion. ngles and ngle Measure. Righ angles are angles which. Sraigh angles are angles which measure measure 90. 80. Every line forms a sraigh angle. 90

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

Key Chemistry 102 Discussion #4, Chapter 11 and 12 Student name TA name Section. ; u= M. and T(red)=2*T(yellow) ; t(yellow)=4*t(red) or

Key Chemistry 102 Discussion #4, Chapter 11 and 12 Student name TA name Section. ; u= M. and T(red)=2*T(yellow) ; t(yellow)=4*t(red) or Key Chemisry 0 Discssion #4, Chaper and Sden name TA name Secion. Two idenical conainers, one red and one yellow, are inflaed wih differen gases a he same volme and pressre. Boh conainers have an idenically

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Lesson 3.1 Recursive Sequences

Lesson 3.1 Recursive Sequences Lesson 3.1 Recursive Sequences 1) 1. Evaluae he epression 2(3 for each value of. a. 9 b. 2 c. 1 d. 1 2. Consider he sequence of figures made from riangles. Figure 1 Figure 2 Figure 3 Figure a. Complee

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

The Paradox of Twins Described in a Three-dimensional Space-time Frame

The Paradox of Twins Described in a Three-dimensional Space-time Frame The Paradox of Twins Described in a Three-dimensional Space-ime Frame Tower Chen E_mail: chen@uguam.uog.edu Division of Mahemaical Sciences Universiy of Guam, USA Zeon Chen E_mail: zeon_chen@yahoo.com

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Fishing limits and the Logistic Equation. 1

Fishing limits and the Logistic Equation. 1 Fishing limis and he Logisic Equaion. 1 1. The Logisic Equaion. The logisic equaion is an equaion governing populaion growh for populaions in an environmen wih a limied amoun of resources (for insance,

More information

Existence of positive solutions of a third order nonlinear differential equation with positive and negative terms

Existence of positive solutions of a third order nonlinear differential equation with positive and negative terms Lo Advances in Difference Eqaions 208) 208:87 hps://doi.org/0.86/s3662-08-520-3 R E S E A R C H Open Access Exisence of posiive solions of a hird order nonlinear differenial eqaion wih posiive and negaive

More information

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function STA 114: Saisics Noes 2. Saisical Models and he Likelihood Funcion Describing Daa & Saisical Models A physicis has a heory ha makes a precise predicion of wha s o be observed in daa. If he daa doesn mach

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

PH2130 Mathematical Methods Lab 3. z x

PH2130 Mathematical Methods Lab 3. z x PH130 Mahemaical Mehods Lab 3 This scrip shold keep yo bsy for he ne wo weeks. Yo shold aim o creae a idy and well-srcred Mahemaica Noebook. Do inclde plenifl annoaions o show ha yo know wha yo are doing,

More information

Section 1.2 Angles and Angle Measure

Section 1.2 Angles and Angle Measure Sec.. ngles and ngle Measure LSSIFITION OF NGLES Secion. ngles and ngle Measure. Righ angles are angles which. Sraigh angles are angles which measure measure 90. 80. Every line forms a sraigh angle. 90

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Effects of Coordinate Curvature on Integration

Effects of Coordinate Curvature on Integration Effecs of Coordinae Curvaure on Inegraion Chrisopher A. Lafore clafore@gmail.com Absrac In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure of he manifold

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Integration Over Manifolds with Variable Coordinate Density

Integration Over Manifolds with Variable Coordinate Density Inegraion Over Manifolds wih Variable Coordinae Densiy Absrac Chrisopher A. Lafore clafore@gmail.com In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure

More information

Chapter 2 Summary. Carnegie Learning

Chapter 2 Summary. Carnegie Learning Chaper Summary Key Terms inducion (.1) deducion (.1) counerexample (.1) condiional saemen (.1) proposiional form (.1) proposiional variables (.1) hypohesis (.1) conclusion (.1) ruh value (.1) ruh able

More information

, u denotes uxt (,) and u. mean first partial derivatives of u with respect to x and t, respectively. Equation (1.1) can be simply written as

, u denotes uxt (,) and u. mean first partial derivatives of u with respect to x and t, respectively. Equation (1.1) can be simply written as Proceedings of he rd IMT-GT Regional Conference on Mahemaics Saisics and Applicaions Universii Sains Malaysia ANALYSIS ON () + () () = G( ( ) ()) Jessada Tanhanch School of Mahemaics Insie of Science Sranaree

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

HYPOTHESIS TESTING. four steps. 1. State the hypothesis. 2. Set the criterion for rejecting. 3. Compute the test statistics. 4. Interpret the results.

HYPOTHESIS TESTING. four steps. 1. State the hypothesis. 2. Set the criterion for rejecting. 3. Compute the test statistics. 4. Interpret the results. Inrodcion o Saisics in Psychology PSY Professor Greg Francis Lecre 23 Hypohesis esing for correlaions Is here a correlaion beween homework and exam grades? for seps. Sae he hypohesis. 2. Se he crierion

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Huazhong Tang 1 and Gerald Warnecke Introduction ANOTEON(2K + 1)-POINT CONSERVATIVE MONOTONE SCHEMES

Huazhong Tang 1 and Gerald Warnecke Introduction ANOTEON(2K + 1)-POINT CONSERVATIVE MONOTONE SCHEMES ESAIM: MAN Vol. 38, N o, 4, pp. 345 357 DOI:.5/man:46 ESAIM: Mahemaical Modelling and Nmerical Analysis ANOTEON(K + )-POINT CONSERVATIVE MONOTONE SCHEMES Hazhong Tang and Gerald Warnecke Absrac. Firs order

More information

A Mathematical model to Solve Reaction Diffusion Equation using Differential Transformation Method

A Mathematical model to Solve Reaction Diffusion Equation using Differential Transformation Method Inernaional Jornal of Mahemaics Trends and Technology- Volme Isse- A Mahemaical model o Solve Reacion Diffsion Eqaion sing Differenial Transformaion Mehod Rahl Bhadaria # A.K. Singh * D.P Singh # #Deparmen

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

Math 221: Mathematical Notation

Math 221: Mathematical Notation Mah 221: Mahemaical Noaion Purpose: One goal in any course is o properly use he language o ha subjec. These noaions summarize some o he major conceps and more diicul opics o he uni. Typing hem helps you

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Asymptotic Solution of the Anti-Plane Problem for a Two-Dimensional Lattice

Asymptotic Solution of the Anti-Plane Problem for a Two-Dimensional Lattice Asympoic Solion of he Ani-Plane Problem for a Two-Dimensional Laice N.I. Aleksandrova N.A. Chinakal Insie of Mining, Siberian Branch, Rssian Academy of Sciences, Krasnyi pr. 91, Novosibirsk, 6391 Rssia,

More information

HYPOTHESIS TESTING. four steps. 1. State the hypothesis and the criterion. 2. Compute the test statistic. 3. Compute the p-value. 4.

HYPOTHESIS TESTING. four steps. 1. State the hypothesis and the criterion. 2. Compute the test statistic. 3. Compute the p-value. 4. Inrodcion o Saisics in Psychology PSY Professor Greg Francis Lecre 24 Hypohesis esing for correlaions Is here a correlaion beween homework and exam grades? for seps. Sae he hypohesis and he crierion 2.

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

1 First Order Partial Differential Equations

1 First Order Partial Differential Equations Firs Order Parial Differenial Eqaions The profond sdy of nare is he mos ferile sorce of mahemaical discoveries. - Joseph Forier (768-830). Inrodcion We begin or sdy of parial differenial eqaions wih firs

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Optimal Control. Lecture 5. Prof. Daniela Iacoviello

Optimal Control. Lecture 5. Prof. Daniela Iacoviello Opimal Conrol ecre 5 Pro. Daniela Iacoviello THESE SIDES ARE NOT SUFFICIENT FOR THE EXAM: YOU MUST STUDY ON THE BOOKS Par o he slides has been aken rom he Reerences indicaed below Pro. D.Iacoviello - Opimal

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response.

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response. Experimen 4:he Sdies of ransiional processes of 1. Prpose firs-order circi a) Use he oscilloscope o observe he ransiional processes of firs-order circi. b) Use he oscilloscope o measre he ime consan of

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Compers and Mahemaics wih Applicaions 59 (00) 80 809 Conens liss available a ScienceDirec Compers and Mahemaics wih Applicaions jornal homepage: www.elsevier.com/locae/camwa Solving fracional bondary vale

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Analyze patterns and relationships. 3. Generate two numerical patterns using AC

Analyze patterns and relationships. 3. Generate two numerical patterns using AC envision ah 2.0 5h Grade ah Curriculum Quarer 1 Quarer 2 Quarer 3 Quarer 4 andards: =ajor =upporing =Addiional Firs 30 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 andards: Operaions and Algebraic Thinking

More information

Physics 131- Fundamentals of Physics for Biologists I

Physics 131- Fundamentals of Physics for Biologists I 10/3/2012 - Fundamenals of Physics for iologiss I Professor: Wolfgang Loser 10/3/2012 Miderm review -How can we describe moion (Kinemaics) - Wha is responsible for moion (Dynamics) wloser@umd.edu Movie

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information