1. Divisors on Riemann surfaces All the Riemann surfaces in this note are assumed to be connected and compact.

Size: px
Start display at page:

Download "1. Divisors on Riemann surfaces All the Riemann surfaces in this note are assumed to be connected and compact."

Transcription

1 1. Divisors on Riemann surfaces All the Riemann surfaces in this note are assumed to be connected and compact. Let X be a Riemann surface of genus g 0 and K(X) be the field of meromorphic functions on X. The free abelian group generated by points of X is denoted by Div(X). Elements of Div(X) are called divisors on X. They are of the form (1.1) D n 1 P n k P k for some n 1,, n k Z and for some points P 1,, P k X and for some k 1. Or equivalently, D can be written as D P X n P P, where n : X Z is a function so that n P 0 except a finite number of P X. Given a divisor D of the form (1.1), its degree denoted by deg D is defined to be (1.2) deg D P X n P. The map deg : Div(X) Z sending a divisor D to its degree deg D is a group homomorphism. Let f be a nonconstant meromorphic function on X and P be a point of X. In a neighborhood of P, we write f g/h with f, g holomorphic. We set ord P f ord P g ord P h. We say that f has a zero of order ord P f if ord P f > 0 and that f has a pole of order ord P f if ord P f < 0. If P is neither a zero nor a pole, we set ord P f 0. We define a divisor (f) P X(ord P f)p. If f g/h with g, h holomorphic and relatively prime, the divisors of zero (f) 0 is defined to be (f) 0 (ord P g)p P and the divisor of poles is defined to be (f) P h)p. P X(ord Clearly, these divisors are well-defined as long as we require that g, h are relatively prime, and (f) (f) 0 (f). It is clear that the map ( ) : K(X) Div(X) sending f to its associated divisor (f) is a group homomorphism. A divisor D is called principal if there exists f K(X) such that D (f). Lemma 1.1. Let f K(X). Then deg(f) 0. Proof. If f is a constant function, (f) 0 (f) 0. Hence deg(f) 0 is obvious. Assume that f is not a constant function. Since X is compact, there are only finitely many zeros and poles of f on X. Write (f) 0 n 1 P n k P k and (f) m 1 Q m l Q l where 1

2 2 P 1,, P k, Q 1,, Q l X and n i, m j 1. Since a nonconstant meromorphic function f on X is a holomorphic mapping f : X P 1, the degree of f is defined to be deg f e P. P f 1 (Q) Here e P is the ramification index of f at P (or the multiplicity). When we choose Q 0, we get deg f n n k. When we choose Q, we obtain deg f m m l. Then deg(f) (n n k ) (m m l ) deg f deg f 0. A meromorphic one-form ω on X is also called an abelian differential. Given an abelian differential ω, we can also define its associated divisor (ω) P X(ord P ω)p. A divisor of this form is called a canonical divisor. In the next lemma, we are going to see that any two canonical divisors are linearly equivalent. Lemma 1.2. Let ω 1 and ω 2 be two abelian differentials on X with ω 1 0. Then there is a unique geomorphic function f on X such that ω 2 fω 1. Hence (ω 1 ) is linearly equivalent to (ω 2 ). Proof. Let φ : U X V C be a local chart on X. Write ω i φ(z) g i (z)dz for some meromorphic function g i on V. Set h g 2 /g 1. Then f h φ is a meomorphic function on U. Then f can be glued to a global meromorphic function on X such that ω 2 fω 1. This implies that (ω 2 ) (f) + (ω 1 ). In other words, (ω 2 ) (ω 1 ) (f) is a principal divisor. Hence (ω 1 ) and (ω 2 ) are linearly equivalent. Notice that by deg(f) 0, we have deg(ω 2 ) deg(f) + deg(ω 1 ) deg(ω 1 ). This formula tells us that every canonical divisor has the same degree. Now, let us compute the degree of a canonical divisor on a compact Riemann surface. In order to do this, we need the following lemma. Lemma 1.3. Let f : X Y be holomorphic mapping between Riemann surfaces and ω be a meromorphic one-form on Y. For a point p X, we have ord p (f ω) (1 + ord f(p) ω)e p (f) 1. Proof. Let (ψ, U) and (ϕ, V ) be local charts around p and f(p) with f(u) V, and ψ(p) 0, and ϕ(f(p)) 0 such that the local representation F ϕ f ψ 1 of f is given by the local normal form z z n where m e p (f). Assume that ω is represented by ω U (w) (c k w k + c k+1 w k+1 + )dw in the local chart (ϕ, V ) with c k 0 and k ord f(p) ω. Hence the local representation of f ω in local chart (ψ, U) is represented by F ω V F (c k w k + c k+1 w k+1 + )df w (c k z nk + c k+1 z n(k+1) + )dz n (c k z nk + c k+1 z n(k+1) + )nz n 1 dz (nc k z nk+n 1 + nc k+1 c n(k+1)+n 1 + )dz.

3 This implies that ord p (f ω) nk + n 1 (ord f(p) ω + 1)e p (f) 1 which proves our assertion. Proposition 1.1. Let X be a compact Riemann surface of genus g and K X be a canonical divisor. Then deg K X 2g 2. Proof. Let f be a nonconstant meromorphic function on X. Then f : X P 1 is a nonconstant holomorphic mapping and thus a ramified covering of P 1. Denote by d the degree of f. The Riemann-Hurwitz formula implies b p (f) 2g 2 + 2d. Let us define a one-form ω on P 1 as follows. Write P 1 C { }. Let z be the coordinate on C and w 1/z be a coordinate around. Define ω dz. Then ω dw/w 2 as a pole of order two around and no other zeros or poles. Hence (ω) 2. Denote η f ω. Then η is a meromorphic one form on X. Now let us compute the degree of (η). deg(η) (ord p η) 3 (ord p f ω) ((1 + ord f(p) ω)e p (f) 1) ((1 + ord f(p) ω)e p (f) 1) + ((1 + ord f(p) ω)e p (f) 1), f(p), f(p) We know ord q ω 0 if q and ord q ω 2 if q. Hence we have deg(η) (e p (f) 1) + ( e p (f) 1), f(p), f(p), f(p) (e p (f) 1) + 2 p f 1 ( ), f(p), f(p),f(p) e p (f) (e p (f) + 1) (e p (f) + 1),f(p), f(p) b p (f) 2d 2g 2 + 2d 2d 2g 2. Since any two canonical divisors have the same degree, we obtain that deg K X 2g 2. Let f : X Y be a nonconstant holomorphic mapping between Riemann surfaces. Given a point q Y, we define the pull back divisor f (q) by f (q) e p (f)p.

4 4 In general, given a divisor D n qq, the pull back divisor is defined to be f (D) n q f (q). Lemma 1.4. Let f : X Y be a nonconstant holomorphic map between Riemann surfaces. (1) f : Div(Y ) Div(X) is a group homomorphism. (2) The pull back of principal divisor is principal. In fact, if h is a meromorphic function on Y, then f (h) (h f). (3) If X and Y are compact, so that divisors have degrees, we have deg f D deg f deg D. Proof. It follows from the definition that f is a group homomorphism. Let h be a meromorphic function on Y. Then h f is a meromorphic function on X. Write (h) (ord q h)q. Then f (h) (ord q h)f q (ord q h)e p (f)p ord p (h f)p (h f). Here we use the fact that e p (h f) e p (f) ord f(p) h. Thus (b) is proved. Since f is linear, if D n qq, then f D n q f q n q e p (f)p. Hence deg f D n q e p (f) n q Since e p(f) deg f, we find deg f D deg f n q deg f deg D. e p (f). If f : X Y is a nonconstant holomorphic mapping, the ramification divisor of f is the divisor on X defined by R f b p (f)p. The branched divisor of f is the divisor on Y defined by B f b p (f) q. Proposition 1.2. Let f : X Y be nonconstant holomorphic map between Riemann surfaces. Let ω be a nonzero merormorphic one forms on Y. Then (f ω) f (ω) + R f.

5 5 Proof. The proof of this equation is based on the fact that ord p f ω (1 + ord f(p) ω)e p (f) 1 (ord f(p) ω)e p (f) + (e p (f) 1). We obtain (f ω) (ord p f ω)p (ord f(p) ω)e p (f)p + p (f) 1)p (e (ord q ω)e p (f)p + R f (ord q ω)f q + R f f (ω) + R f. Corollary 1.1. As above, when X and Y are compact, then 2g(X) 2 (deg f)(2g(y ) 2) + deg(r f ), where g(x) and g(y ) are genus of X and Y respectively. Proof. Computing the degree of (f ω) and using deg(ω) 2g(Y ) 2, we find deg(f ω) deg f (ω) + deg R f deg f deg ω + deg R f (deg f)(2g(y ) 2) + deg R f. Since ω is a meromorphic one form on Y, f ω is a meromorphic one form on X. Since the degree of any canonical divisor on X has degree 2g 2, deg(f ω) 2g 2. We prove our assertion. Usually we denote deg R f by B. Corollary 1.1 gives us the second proof of the Riemann- Hurwitz formula: g(x) (deg f)(g(y ) 1) B 2.

1 Structures 2. 2 Framework of Riemann surfaces Basic configuration Holomorphic functions... 3

1 Structures 2. 2 Framework of Riemann surfaces Basic configuration Holomorphic functions... 3 Compact course notes Riemann surfaces Fall 2011 Professor: S. Lvovski transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Structures 2 2 Framework of Riemann surfaces

More information

RIEMANN SURFACES. max(0, deg x f)x.

RIEMANN SURFACES. max(0, deg x f)x. RIEMANN SURFACES 10. Weeks 11 12: Riemann-Roch theorem and applications 10.1. Divisors. The notion of a divisor looks very simple. Let X be a compact Riemann surface. A divisor is an expression a x x x

More information

The Riemann Roch Theorem

The Riemann Roch Theorem The Riemann Roch Theorem Well, a Riemann surface is a certain kind of Hausdorf space You know what a Hausdorf space is, don t you? Its also compact, ok I guess it is also a manifold Surely you know what

More information

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES DOMINIC L. WYNTER Abstract. We introduce the concepts of divisors on nonsingular irreducible projective algebraic curves, the genus of such a curve,

More information

From now on we assume that K = K.

From now on we assume that K = K. Divisors From now on we assume that K = K. Definition The (additively written) free abelian group generated by P F is denoted by D F and is called the divisor group of F/K. The elements of D F are called

More information

DIVISORS ON NONSINGULAR CURVES

DIVISORS ON NONSINGULAR CURVES DIVISORS ON NONSINGULAR CURVES BRIAN OSSERMAN We now begin a closer study of the behavior of projective nonsingular curves, and morphisms between them, as well as to projective space. To this end, we introduce

More information

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending 2. The canonical divisor In this section we will introduce one of the most important invariants in the birational classification of varieties. Definition 2.1. Let X be a normal quasi-projective variety

More information

COMPACT RIEMANN SURFACES: A THREEFOLD CATEGORICAL EQUIVALENCE

COMPACT RIEMANN SURFACES: A THREEFOLD CATEGORICAL EQUIVALENCE COMPACT RIEMANN SURACES: A THREEOLD CATEGORICAL EQUIVALENCE ZACHARY SMITH Abstract. We define and prove basic properties of Riemann surfaces, which we follow with a discussion of divisors and an elementary

More information

Riemann Surfaces and Algebraic Curves

Riemann Surfaces and Algebraic Curves Riemann Surfaces and Algebraic Curves JWR Tuesday December 11, 2001, 9:03 AM We describe the relation between algebraic curves and Riemann surfaces. An elementary reference for this material is [1]. 1

More information

DIFFERENTIAL FORMS AND COHOMOLOGY

DIFFERENTIAL FORMS AND COHOMOLOGY DIFFERENIAL FORMS AND COHOMOLOGY ONY PERKINS Goals 1. Differential forms We want to be able to integrate (holomorphic functions) on manifolds. Obtain a version of Stokes heorem - a generalization of the

More information

Math 213br HW 12 solutions

Math 213br HW 12 solutions Math 213br HW 12 solutions May 5 2014 Throughout X is a compact Riemann surface. Problem 1 Consider the Fermat quartic defined by X 4 + Y 4 + Z 4 = 0. It can be built from 12 regular Euclidean octagons

More information

AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE. We describe points on the unit circle with coordinate satisfying

AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE. We describe points on the unit circle with coordinate satisfying AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE 1. RATIONAL POINTS ON CIRCLE We start by asking us: How many integers x, y, z) can satisfy x 2 + y 2 = z 2? Can we describe all of them? First we can divide

More information

RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2015/2016.

RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2015/2016. RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2015/2016. A PRELIMINARY AND PROBABLY VERY RAW VERSION. OLEKSANDR IENA Contents Some prerequisites for the whole lecture course. 5 1. Lecture 1 5 1.1. Definition

More information

RIEMANN S INEQUALITY AND RIEMANN-ROCH

RIEMANN S INEQUALITY AND RIEMANN-ROCH RIEMANN S INEQUALITY AND RIEMANN-ROCH DONU ARAPURA Fix a compact connected Riemann surface X of genus g. Riemann s inequality gives a sufficient condition to construct meromorphic functions with prescribed

More information

Part II. Riemann Surfaces. Year

Part II. Riemann Surfaces. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 96 Paper 2, Section II 23F State the uniformisation theorem. List without proof the Riemann surfaces which are uniformised

More information

NOTES ON DIVISORS AND RIEMANN-ROCH

NOTES ON DIVISORS AND RIEMANN-ROCH NOTES ON DIVISORS AND RIEMANN-ROCH NILAY KUMAR Recall that due to the maximum principle, there are no nonconstant holomorphic functions on a compact complex manifold. The next best objects to study, as

More information

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts.

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts. RIEMANN SURFACES 2. Week 2. Basic definitions 2.1. Smooth manifolds. Complex manifolds. Let X be a topological space. A (real) chart of X is a pair (U, f : U R n ) where U is an open subset of X and f

More information

p-adic Analysis and Rational Points on Curves Christian Hokaj Advisor: Andrei Jorza

p-adic Analysis and Rational Points on Curves Christian Hokaj Advisor: Andrei Jorza p-adic Analysis and Rational Points on Curves Christian Hokaj Advisor: Andrei Jorza A senior thesis presented in supplement of the requirements of the Honors Concentration for a B.S. in Mathematics. Mathematics

More information

Riemann surfaces. Paul Hacking and Giancarlo Urzua 1/28/10

Riemann surfaces. Paul Hacking and Giancarlo Urzua 1/28/10 Riemann surfaces Paul Hacking and Giancarlo Urzua 1/28/10 A Riemann surface (or smooth complex curve) is a complex manifold of dimension one. We will restrict to compact Riemann surfaces. It is a theorem

More information

Elliptic Curves and Elliptic Functions

Elliptic Curves and Elliptic Functions Elliptic Curves and Elliptic Functions ARASH ISLAMI Professor: Dr. Chung Pang Mok McMaster University - Math 790 June 7, 01 Abstract Elliptic curves are algebraic curves of genus 1 which can be embedded

More information

Explicit Examples of Strebel Differentials

Explicit Examples of Strebel Differentials Explicit Examples of Strebel Differentials arxiv:0910.475v [math.dg] 30 Oct 009 1 Introduction Philip Tynan November 14, 018 In this paper, we investigate Strebel differentials, which are a special class

More information

THE JACOBIAN OF A RIEMANN SURFACE

THE JACOBIAN OF A RIEMANN SURFACE THE JACOBIAN OF A RIEMANN SURFACE DONU ARAPURA Fix a compact connected Riemann surface X of genus g. The set of divisors Div(X) forms an abelian group. A divisor is called principal if it equals div(f)

More information

Riemann Surfaces Mock Exam

Riemann Surfaces Mock Exam Riemann Surfaces Mock Exam Notes: 1. Write your name and student number **clearly** on each page of written solutions you hand in. 2. You are expected to give solutions in English or Dutch. 3. You are

More information

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Let X be a topological space. We want it to look locally like C. So we make the following definition. February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

More information

Dirichlet s Theorem. Calvin Lin Zhiwei. August 18, 2007

Dirichlet s Theorem. Calvin Lin Zhiwei. August 18, 2007 Dirichlet s Theorem Calvin Lin Zhiwei August 8, 2007 Abstract This paper provides a proof of Dirichlet s theorem, which states that when (m, a) =, there are infinitely many primes uch that p a (mod m).

More information

The Riemann-Roch Theorem

The Riemann-Roch Theorem The Riemann-Roch Theorem In this lecture F/K is an algebraic function field of genus g. Definition For A D F, is called the index of specialty of A. i(a) = dim A deg A + g 1 Definition An adele of F/K

More information

MT845: ALGEBRAIC CURVES

MT845: ALGEBRAIC CURVES MT845: ALGEBRAIC CURVES DAWEI CHEN Contents 1. Sheaves and cohomology 1 2. Vector bundles, line bundles and divisors 9 3. Preliminaries on curves 16 4. Geometry of Weierstrass points 27 5. Hilbert scheme

More information

MT845: RIEMANN SURFACES FROM ANALYTIC AND ALGEBRAIC VIEWPOINTS

MT845: RIEMANN SURFACES FROM ANALYTIC AND ALGEBRAIC VIEWPOINTS MT845: RIEMANN SURFACES FROM ANALYTIC AND ALGEBRAIC VIEWPOINTS DAWEI CHEN Contents 1. Preliminaries 1 2. Sheaves and cohomology 4 3. Vector bundles, line bundles and divisors 11 4. Classical results 18

More information

arxiv:math/ v1 [math.ag] 18 Oct 2003

arxiv:math/ v1 [math.ag] 18 Oct 2003 Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 2, May 2003, pp. 139 152. Printed in India The Jacobian of a nonorientable Klein surface arxiv:math/0310288v1 [math.ag] 18 Oct 2003 PABLO ARÉS-GASTESI

More information

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

More information

Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0

Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0 Algebraic Curves/Fall 2015 Aaron Bertram 1. Introduction. What is a complex curve? (Geometry) It s a Riemann surface, that is, a compact oriented twodimensional real manifold Σ with a complex structure.

More information

Math 225AB: Elliptic Curves

Math 225AB: Elliptic Curves Math 225AB: Elliptic Curves Simon Rubinstein-Salzedo Winter and Spring 2007 0.1 Introduction These notes are based on a graduate course on elliptic curves I took from Professor Adebisi Agboola in the Winter

More information

ALGEBRAIC GEOMETRY AND RIEMANN SURFACES

ALGEBRAIC GEOMETRY AND RIEMANN SURFACES ALGEBRAIC GEOMETRY AND RIEMANN SURFACES DANIEL YING Abstract. In this thesis we will give a present survey of the various methods used in dealing with Riemann surfaces. Riemann surfaces are central in

More information

THE WEIL PAIRING ON ELLIPTIC CURVES

THE WEIL PAIRING ON ELLIPTIC CURVES THE WEIL PAIRING ON ELLIPTIC CURVES Background Non-Singular Curves. Let k be a number field, that is, a finite extension of Q; denote Q as its separable algebraic closure. The absolute Galois group G k

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

More information

Section Divisors

Section Divisors Section 2.6 - Divisors Daniel Murfet October 5, 2006 Contents 1 Weil Divisors 1 2 Divisors on Curves 9 3 Cartier Divisors 13 4 Invertible Sheaves 17 5 Examples 23 1 Weil Divisors Definition 1. We say a

More information

MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM

MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM TSOGTGEREL GANTUMUR 1. Functions holomorphic on an annulus Let A = D R \D r be an annulus centered at 0 with 0 < r < R

More information

Topics in Number Theory: Elliptic Curves

Topics in Number Theory: Elliptic Curves Topics in Number Theory: Elliptic Curves Yujo Chen April 29, 2016 C O N T E N T S 0.1 Motivation 3 0.2 Summary and Purpose 3 1 algebraic varieties 5 1.1 Affine Varieties 5 1.2 Projective Varieties 7 1.3

More information

Geometry Qualifying Exam Notes

Geometry Qualifying Exam Notes Geometry Qualifying Exam Notes F 1 F 1 x 1 x n Definition: The Jacobian matrix of a map f : N M is.. F m F m x 1 x n square matrix, its determinant is called the Jacobian determinant.. When this is a Definition:

More information

Algorithmic Number Theory in Function Fields

Algorithmic Number Theory in Function Fields Algorithmic Number Theory in Function Fields Renate Scheidler UNCG Summer School in Computational Number Theory 2016: Function Fields May 30 June 3, 2016 References Henning Stichtenoth, Algebraic Function

More information

Introduction to Arithmetic Geometry Fall 2013 Problem Set #10 Due: 12/3/2013

Introduction to Arithmetic Geometry Fall 2013 Problem Set #10 Due: 12/3/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Problem Set #10 Due: 12/3/2013 These problems are related to the material covered in Lectures 21-22. I have made every effort to proof-read them, but

More information

Boris Springborn Riemann Surfaces Mini Lecture Notes

Boris Springborn Riemann Surfaces Mini Lecture Notes Boris Springborn Riemann Surfaces Mini Lecture Notes Technische Universität München Winter Semester 2012/13 Version February 7, 2013 Disclaimer. This is not (and not meant to be) a textbook. It is more

More information

Notes on Compact Riemann Surfaces. Michael Taylor

Notes on Compact Riemann Surfaces. Michael Taylor Notes on Compact Riemann Surfaces Michael Taylor Contents 1. Introduction 2. Hyperelliptic Riemann surfaces 3. Holomorphic differentials, period lattice, and Jacobi variety 4. Abel s theorem and the Jacobi

More information

Picard Groups of Affine Curves

Picard Groups of Affine Curves Picard Groups of Affine Curves Victor I. Piercey University of Arizona Math 518 May 7, 2008 Abstract We will develop a purely algebraic definition for the Picard group of an affine variety. We will then

More information

The Riemann Hypothesis for Function Fields

The Riemann Hypothesis for Function Fields The Riemann Hypothesis for Function Fields Trevor Vilardi MthSc 952 1 Function Fields Let F = F q be the finite field with q elements (q is a prime power). Definiton 1. Let K/F (x) be an extension of F.

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

MATH 255 TERM PAPER: FAY S TRISECANT IDENTITY

MATH 255 TERM PAPER: FAY S TRISECANT IDENTITY MATH 255 TERM PAPER: FAY S TRISECANT IDENTITY GUS SCHRADER Introduction The purpose of this term paper is to give an accessible exposition of Fay s trisecant identity [1]. Fay s identity is a relation

More information

Height Functions. Michael Tepper February 14, 2006

Height Functions. Michael Tepper February 14, 2006 Height Functions Michael Tepper February 14, 2006 Definition 1. Let Y P n be a quasi-projective variety. A function f : Y k is regular at a point P Y if there is an open neighborhood U with P U Y, and

More information

Symplectic critical surfaces in Kähler surfaces

Symplectic critical surfaces in Kähler surfaces Symplectic critical surfaces in Kähler surfaces Jiayu Li ( Joint work with X. Han) ICTP-UNESCO and AMSS-CAS November, 2008 Symplectic surfaces Let M be a compact Kähler surface, let ω be the Kähler form.

More information

Complex Analysis. Chapter V. Singularities V.3. The Argument Principle Proofs of Theorems. August 8, () Complex Analysis August 8, / 7

Complex Analysis. Chapter V. Singularities V.3. The Argument Principle Proofs of Theorems. August 8, () Complex Analysis August 8, / 7 Complex Analysis Chapter V. Singularities V.3. The Argument Principle Proofs of Theorems August 8, 2017 () Complex Analysis August 8, 2017 1 / 7 Table of contents 1 Theorem V.3.4. Argument Principle 2

More information

Some consequences of the Riemann-Roch theorem

Some consequences of the Riemann-Roch theorem Some consequences of the Riemann-Roch theorem Proposition Let g 0 Z and W 0 D F be such that for all A D F, dim A = deg A + 1 g 0 + dim(w 0 A). Then g 0 = g and W 0 is a canonical divisor. Proof We have

More information

18 The analytic class number formula

18 The analytic class number formula 18.785 Number theory I Lecture #18 Fall 2015 11/12/2015 18 The analytic class number formula The following theorem is usually attributed to Dirichlet, although he originally proved it only for quadratic

More information

CHAPTER 1. TOPOLOGY OF ALGEBRAIC VARIETIES, HODGE DECOMPOSITION, AND APPLICATIONS. Contents

CHAPTER 1. TOPOLOGY OF ALGEBRAIC VARIETIES, HODGE DECOMPOSITION, AND APPLICATIONS. Contents CHAPTER 1. TOPOLOGY OF ALGEBRAIC VARIETIES, HODGE DECOMPOSITION, AND APPLICATIONS Contents 1. The Lefschetz hyperplane theorem 1 2. The Hodge decomposition 4 3. Hodge numbers in smooth families 6 4. Birationally

More information

Part IB Complex Analysis

Part IB Complex Analysis Part IB Complex Analysis Theorems Based on lectures by I. Smith Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

More information

ALGEBRAIC GEOMETRY I, FALL 2016.

ALGEBRAIC GEOMETRY I, FALL 2016. ALGEBRAIC GEOMETRY I, FALL 2016. DIVISORS. 1. Weil and Cartier divisors Let X be an algebraic variety. Define a Weil divisor on X as a formal (finite) linear combination of irreducible subvarieties of

More information

arxiv: v2 [math.dg] 10 Aug 2009

arxiv: v2 [math.dg] 10 Aug 2009 VALUE DISTRIBUTION OF THE HYPERBOLIC GAUSS MAPS FOR FLAT FRONTS IN HYPERBOLIC THREE-SPACE arxiv:0908.307v2 [math.dg] 0 Aug 2009 YU KAWAKAMI Abstract. We give an effective estimate for the totally ramified

More information

Elliptic Functions and Modular Forms

Elliptic Functions and Modular Forms Elliptic Functions and Modular Forms DRAFT, Release 0.8 March 22, 2018 2 I have prepared these notes for the students of my lecture. The lecture took place during the winter term 2017/18 at the mathematical

More information

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS YIFEI ZHAO Contents. The Weierstrass factorization theorem 2. The Weierstrass preparation theorem 6 3. The Weierstrass division theorem 8 References

More information

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ).

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ). ensities Although differential forms are natural objects to integrate on manifolds, and are essential for use in Stoke s theorem, they have the disadvantage of requiring oriented manifolds in order for

More information

Math 797W Homework 4

Math 797W Homework 4 Math 797W Homework 4 Paul Hacking December 5, 2016 We work over an algebraically closed field k. (1) Let F be a sheaf of abelian groups on a topological space X, and p X a point. Recall the definition

More information

GLUING STABILITY CONDITIONS

GLUING STABILITY CONDITIONS GLUING STABILITY CONDITIONS JOHN COLLINS AND ALEXANDER POLISHCHUK Stability conditions Definition. A stability condition σ is given by a pair (Z, P ), where Z : K 0 (D) C is a homomorphism from the Grothendieck

More information

Curves, Surfaces, and Abelian Varieties. Donu Arapura

Curves, Surfaces, and Abelian Varieties. Donu Arapura Curves, Surfaces, and Abelian Varieties Donu Arapura April 27, 2017 Contents 1 Basic curve theory 2 1.1 Hyperelliptic curves......................... 2 1.2 Topological genus...........................

More information

Geometry dictates arithmetic

Geometry dictates arithmetic Geometry dictates arithmetic Ronald van Luijk February 21, 2013 Utrecht Curves Example. Circle given by x 2 + y 2 = 1 (or projective closure in P 2 ). Curves Example. Circle given by x 2 + y 2 = 1 (or

More information

Lecture 2: Elliptic curves

Lecture 2: Elliptic curves Lecture 2: Elliptic curves This lecture covers the basics of elliptic curves. I begin with a brief review of algebraic curves. I then define elliptic curves, and talk about their group structure and defining

More information

Exercises for algebraic curves

Exercises for algebraic curves Exercises for algebraic curves Christophe Ritzenthaler February 18, 2019 1 Exercise Lecture 1 1.1 Exercise Show that V = {(x, y) C 2 s.t. y = sin x} is not an algebraic set. Solutions. Let us assume that

More information

Polynomial Rings. (Last Updated: December 8, 2017)

Polynomial Rings. (Last Updated: December 8, 2017) Polynomial Rings (Last Updated: December 8, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from Chapters

More information

Locally Free Sheaves

Locally Free Sheaves Locally Free Sheaves Patrick Morandi Algebra Seminar, Spring 2002 In these talks we will discuss several important examples of locally free sheaves and see the connection between locally free sheaves and

More information

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015 The Canonical Sheaf Stefano Filipazzi September 14, 015 These notes are supposed to be a handout for the student seminar in algebraic geometry at the University of Utah. In this seminar, we will go over

More information

Holomorphic line bundles

Holomorphic line bundles Chapter 2 Holomorphic line bundles In the absence of non-constant holomorphic functions X! C on a compact complex manifold, we turn to the next best thing, holomorphic sections of line bundles (i.e., rank

More information

RINGS: SUMMARY OF MATERIAL

RINGS: SUMMARY OF MATERIAL RINGS: SUMMARY OF MATERIAL BRIAN OSSERMAN This is a summary of terms used and main results proved in the subject of rings, from Chapters 11-13 of Artin. Definitions not included here may be considered

More information

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism 1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

More information

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X 2. Preliminaries 2.1. Divisors and line bundles. Let X be an irreducible complex variety of dimension n. The group of k-cycles on X is Z k (X) = fz linear combinations of subvarieties of dimension kg:

More information

ALGEBRAIC FUNCTIONS WITH EVEN MONODROMY

ALGEBRAIC FUNCTIONS WITH EVEN MONODROMY ALGEBRAIC FUNCTIONS WITH EVEN MONODROMY MICHELA ARTEBANI AND GIAN PIETRO PIROLA Abstract. Let X be a compact Riemann surface of genus g and d 12g+4 be an integer. We show that X admits meromorphic functions

More information

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS KEITH CONRAD A (monic) polynomial in Z[T ], 1. Introduction f(t ) = T n + c n 1 T n 1 + + c 1 T + c 0, is Eisenstein at a prime p when each coefficient

More information

Basic curve theory. Chapter Hyperelliptic curves

Basic curve theory. Chapter Hyperelliptic curves Chapter 1 Basic curve theory 1.1 Hyperelliptic curves As all of us learn in calculus, integrals involving square roots of quadratic polynomials can be evaluated by elementary methods. For higher degree

More information

POLYNOMIAL BASINS OF INFINITY

POLYNOMIAL BASINS OF INFINITY POLYNOMIAL BASINS OF INFINITY LAURA DEMARCO AND KEVIN M. PILGRIM Abstract. We study the projection π : M d B d which sends an affine conjugacy class of polynomial f : C C to the holomorphic conjugacy class

More information

RIEMANN MAPPING THEOREM

RIEMANN MAPPING THEOREM RIEMANN MAPPING THEOREM VED V. DATAR Recall that two domains are called conformally equivalent if there exists a holomorphic bijection from one to the other. This automatically implies that there is an

More information

A MORE GENERAL ABC CONJECTURE. Paul Vojta. University of California, Berkeley. 2 December 1998

A MORE GENERAL ABC CONJECTURE. Paul Vojta. University of California, Berkeley. 2 December 1998 A MORE GENERAL ABC CONJECTURE Paul Vojta University of California, Berkeley 2 December 1998 In this note we formulate a conjecture generalizing both the abc conjecture of Masser-Oesterlé and the author

More information

An invitation to log geometry p.1

An invitation to log geometry p.1 An invitation to log geometry James M c Kernan UCSB An invitation to log geometry p.1 An easy integral Everyone knows how to evaluate the following integral: 1 0 1 1 x 2 dx. An invitation to log geometry

More information

Section III.6. Factorization in Polynomial Rings

Section III.6. Factorization in Polynomial Rings III.6. Factorization in Polynomial Rings 1 Section III.6. Factorization in Polynomial Rings Note. We push several of the results in Section III.3 (such as divisibility, irreducibility, and unique factorization)

More information

where c R and the content of f is one. 1

where c R and the content of f is one. 1 9. Gauss Lemma Obviously it would be nice to have some more general methods of proving that a given polynomial is irreducible. The first is rather beautiful and due to Gauss. The basic idea is as follows.

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18. PIDs Definition 1 A principal ideal domain (PID) is an integral

More information

Math 213a: Complex analysis Notes on doubly periodic functions

Math 213a: Complex analysis Notes on doubly periodic functions Math 213a: Complex analysis Notes on doubly periodic functions Lattices. Let V be a real vector space of dimension n. A subgroup L V is said to be a lattice if it satisfies one of the following equivalent

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

More information

Average Height Of Isogenous Abelian Varieties

Average Height Of Isogenous Abelian Varieties N.V.A.Aryasomayajula Average Height Of Isogenous Abelian Varieties Master s thesis, defended on June 2, 2007 Thesis advisor: Dr. R.S. de Jong Mathematisch Instituut Universiteit Leiden Contents Faltings

More information

APPROXIMABILITY OF DYNAMICAL SYSTEMS BETWEEN TREES OF SPHERES

APPROXIMABILITY OF DYNAMICAL SYSTEMS BETWEEN TREES OF SPHERES APPROXIMABILITY OF DYNAMICAL SYSTEMS BETWEEN TREES OF SPHERES MATTHIEU ARFEUX arxiv:1408.2118v2 [math.ds] 13 Sep 2017 Abstract. We study sequences of analytic conjugacy classes of rational maps which diverge

More information

The Uniformization Theorem. Donald E. Marshall

The Uniformization Theorem. Donald E. Marshall The Uniformization Theorem Donald E. Marshall The Koebe uniformization theorem is a generalization of the Riemann mapping Theorem. It says that a simply connected Riemann surface is conformally equivalent

More information

ON THE MOVEMENT OF THE POINCARÉ METRIC WITH THE PSEUDOCONVEX DEFORMATION OF OPEN RIEMANN SURFACES

ON THE MOVEMENT OF THE POINCARÉ METRIC WITH THE PSEUDOCONVEX DEFORMATION OF OPEN RIEMANN SURFACES Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 20, 1995, 327 331 ON THE MOVEMENT OF THE POINCARÉ METRIC WITH THE PSEUDOCONVEX DEFORMATION OF OPEN RIEMANN SURFACES Takashi Kizuka

More information

The Moduli Space of Branched Superminimal Surfaces of a Fixed Degree, Genus and Conformal Structure in the Four-sphere

The Moduli Space of Branched Superminimal Surfaces of a Fixed Degree, Genus and Conformal Structure in the Four-sphere The Moduli Space of Branched Superminimal Surfaces of a Fixed Degree, Genus and Conformal Structure in the Four-sphere Quo-Shin Chi Xiaokang Mo January 19, 2008 0. Introduction. Minimal immersions from

More information

Divisors on a surface

Divisors on a surface Chapter 2 Divisors on a surface 2.1 Bezout s theorem Given distinct irreducible curves C, D P 2 C, C \ D is finite. The naive guess is that the number of points is the product of the degrees of (the defining

More information

Houston Journal of Mathematics. c 2008 University of Houston Volume 34, No. 4, 2008

Houston Journal of Mathematics. c 2008 University of Houston Volume 34, No. 4, 2008 Houston Journal of Mathematics c 2008 University of Houston Volume 34, No. 4, 2008 SHARING SET AND NORMAL FAMILIES OF ENTIRE FUNCTIONS AND THEIR DERIVATIVES FENG LÜ AND JUNFENG XU Communicated by Min Ru

More information

Class Field Theory. Anna Haensch. Spring 2012

Class Field Theory. Anna Haensch. Spring 2012 Class Field Theory Anna Haensch Spring 202 These are my own notes put together from a reading of Class Field Theory by N. Childress [], along with other references, [2], [4], and [6]. Goals and Origins

More information

Differential forms. Proposition 3 Let X be a Riemann surface, a X and (U, z = x + iy) a coordinate neighborhood of a.

Differential forms. Proposition 3 Let X be a Riemann surface, a X and (U, z = x + iy) a coordinate neighborhood of a. Differential forms Proposition 3 Let X be a Riemann surface, a X and (U, z = x + iy) a coordinate neighborhood of a. 1. The elements d a x and d a y form a basis of the cotangent space T (1) a. 2. If f

More information

8. Desingularization in the plane

8. Desingularization in the plane 112 I. Normal forms and desingularization Problem 7.5. Assume that the first k eigenvalues λ 1,..., λ k from the spectrum of a holomorphic vector field F D(C n, 0), k n, are real, and the others are not.

More information

b 0 + b 1 z b d z d

b 0 + b 1 z b d z d I. Introduction Definition 1. For z C, a rational function of degree d is any with a d, b d not both equal to 0. R(z) = P (z) Q(z) = a 0 + a 1 z +... + a d z d b 0 + b 1 z +... + b d z d It is exactly

More information

Atiyah-Singer Revisited

Atiyah-Singer Revisited Atiyah-Singer Revisited Paul Baum Penn State Texas A&M Universty College Station, Texas, USA April 1, 2014 From E 1, E 2,..., E n obtain : 1) The Dirac operator of R n D = n j=1 E j x j 2) The Bott generator

More information

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces Algebraic Curves and Riemann Surfaces Rick Miranda Graduate Studies in Mathematics Volume 5 If American Mathematical Society Contents Preface xix Chapter I. Riemann Surfaces: Basic Definitions 1 1. Complex

More information

Section II.1. Free Abelian Groups

Section II.1. Free Abelian Groups II.1. Free Abelian Groups 1 Section II.1. Free Abelian Groups Note. This section and the next, are independent of the rest of this chapter. The primary use of the results of this chapter is in the proof

More information

Introduction to Minimal Surface Theory: Lecture 2

Introduction to Minimal Surface Theory: Lecture 2 Introduction to Minimal Surface Theory: Lecture 2 Brian White July 2, 2013 (Park City) Other characterizations of 2d minimal surfaces in R 3 By a theorem of Morrey, every surface admits local isothermal

More information