JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson
|
|
- Evelyn Austen O’Brien’
- 3 years ago
- Views:
Transcription
1 JUST THE MATHS UNIT NUMBER 15.3 ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) by A.J.Hobson Linear equations Bernouilli s equation Exercises Answers to exercises
2 UNIT ORDINARY DIFFERENTIAL EQUATIONS 3 FIRST ORDER EQUATIONS (C) LINEAR EQUATIONS For certain kinds of first order differential equation, it is possible to multiply the equation throughout by a suitable factor which converts it into an exact differential equation. For instance, the equation may be multiplied throughout by x to give + 1 x y = x2 It may now be written x + y = x3. and, hence, it has general solution d (xy) = x3 where C is an arbitrary constant. Notes: xy = x4 4 + C, (i) The factor, x which has multiplied both sides of the differential equation serves as an integrating factor, but such factors cannot always be found by inspection. (ii) In the discussion which follows, we shall develop a formula for determining integrating factors, in general, for what are known as linear differential equations. 1
3 DEFINITION A differential equation of the form + P (x)y = Q(x) is said to be linear. RESULT Given the linear differential equation the function + P (x)y = Q(x), e P (x) is always an integrating factor; and, on multiplying the differential equation throughout by this factor, its left hand side becomes Proof d [ ] y e P (x). Suppose that the function, R(x), is an integrating factor; then, in the equation R(x) + R(x)P (x)y = R(x)Q(x), the left hand side must be the exact derivative of some function of x. Using the formula for differentiating the product of two functions of x, we can make it the derivative of R(x)y provided we can arrange that R(x)P (x) = d [R(x)]. 2
4 But this requirement can be interpreted as a differential equation in which the variables R(x) and x may be separated as follows: 1 R(x) dr(x) = P (x). Hence, ln R(x) = P (x). That is, R(x) = e P (x), as required. The solution is obtained by integrating the formula d [y R(x)] = R(x)P (x). Note: There is no need to include an arbitrary constant, C, when P (x) is integrated, since it would only serve to introduce a constant factor of e C in the above result, which would then immediately cancel out on multiplying the differential equation by R(x). EXAMPLES 1. Determine the general solution of the differential equation Solution An integrating factor is + 1 x y = x2. e 1 x = e ln x = x. 3
5 On multiplying throughout by the integrating factor, we obtain and so, d [y x] = x3 ; where C is an arbitrary constant. yx = x4 4 + C, 2. Determine the general solution of the differential equation Solution An integrating factor is Hence, giving where C is an arbitrary constant. + 2xy = 2e x2. e 2x = e x2. d [ y e x 2] = 2, ye x2 = 2x + C, BERNOUILLI S EQUATION A similar type of differential equation to that in the previous section has the form + P (x)y = Q(x)yn. 4
6 It is called Bernouilli s Equation and may be converted to a linear differential equation by making the substitution z = y 1 n. Proof The differential equation may be rewritten as Also, n y + P (x)y1 n = Q(x). dz Hence the differential equation becomes That is, which is a linear differential equation. = (1 n)y n. 1 dz + P (x)z = Q(x). 1 n dz + (1 n)p (x)z = (1 n)q(x), Note: It is better not to regard this as a standard formula, but to apply the method of obtaining it in the case of particular examples. EXAMPLES 1. Determine the general solution of the differential equation xy = y3 e x2. 5
7 Solution The differential equation may be rewritten Substituting z = y 2, we obtain dz 3 y + x.y 2 = e x2. = 2y 3 and, hence, or 1 dz + xz = e x2 2 An integrating factor for this equation is Thus, giving where C is an arbitrary constant. Finally, replacing z by y 2, dz + 2xz = 2e x2. e 2x = e x2. d ( ze x 2) = 2, ze x2 = 2x + C, y 2 = ex2 2x + C. 2. Determine the general solution of the differential equation + y x = xy2. 6
8 Solution The differential equation may be rewritten On substituting z = y 1 we obtain dz or An integrating factor for this equation is 2 y + 1 x.y 1 = x. = y 2 dz + 1 x.z = x dz 1.z = x. x so that 1 e ( x) = e ln x = 1 x. Hence, ( d z 1 ) = 1, x giving where C is an arbitrary constant. z x = x + C, The general solution of the given differential equation is therefore 1 xy = x + C or y = 1 Cx x EXERCISES Use an integrating factor to solve the following differential equations subject to the given boundary condition: 1. where y = 10 when x = y = 0, 7
9 2. where y = 4 when x = where y = 2 when x = where y = 0 when x = where y = 5 when x = π where y = 0 when x = where y = 1 when x = where y 3 = 14 when x = y = 10, + y x = 3x, + y 1 x = 1 x2, + y cot x = cos x, (x 2 + 1) xy = x, 3y 2 = y3 e 4x, 2y x = x(x 1)y4, 8
10 ANSWERS TO EXERCISES 1. y = 10e 2 3 x. 2. y = 6e 5 3 x yx = x y = 1 2 (1 x)(1 + x) y = sin x 2 y = 1 + x sin x. 2(1 + x 2 ) y 3 = y 2 = 7e3x e 7x x 6 21x 6 24x
JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson
JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables
mathcentre community project
community project mathcentre community project First Order Ordinary All mccp resourcesdifferential are released under a Creative Equation Commons licence Introduction mccp-richard- Prerequisites: You will
JUST THE MATHS UNIT NUMBER PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) A.J.Hobson
JUST THE MATHS UNIT NUMBER 14.1 PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) by A.J.Hobson 14.1.1 Functions of several variables 14.1.2 The definition of a partial derivative 14.1.3
JUST THE MATHS UNIT NUMBER 1.6. ALGEBRA 6 (Formulae and algebraic equations) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.6 ALGEBRA 6 (Formulae and algebraic equations) by A.J.Hobson 1.6.1 Transposition of formulae 1.6. of linear equations 1.6.3 of quadratic equations 1.6. Exercises 1.6.5 Answers
Series Solutions Near a Regular Singular Point
Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known
1 Series Solutions Near Regular Singular Points
1 Series Solutions Near Regular Singular Points All of the work here will be directed toward finding series solutions of a second order linear homogeneous ordinary differential equation: P xy + Qxy + Rxy
Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv
V Problem 1 (Equations with the dependent variable missing) By means of the substitutions v = dy dt, dv dt = d2 y dt 2 solve the following second-order differential equations 1. t 2 d2 y dt + 2tdy 1 =
JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson
JUST THE MATHS UNIT NUMBER 16.3 LAPLACE TRANSFORMS 3 (Differential equations) by A.J.Hobson 16.3.1 Examples of solving differential equations 16.3.2 The general solution of a differential equation 16.3.3
JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 4 (Second order equations (A)) A.J.Hobson
JUST THE MATHS UNIT NUMBER 15.4 ORDINARY DIFFERENTIAL EQUATIONS 4 (Second order equations (A)) by A.J.Hobson 15.4.1 Introduction 15.4.2 Second order homogeneous equations 15.4.3 Special cases of the auxiliary
Techniques of Integration
Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos
Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.
Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an
Ordinary Differential Equations
Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 25 First order ODE s We will now discuss
JUST THE MATHS UNIT NUMBER 1.5. ALGEBRA 5 (Manipulation of algebraic expressions) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.5 ALGEBRA 5 (Manipulation of algebraic expressions) by A.J.Hobson 1.5.1 Simplification of expressions 1.5.2 Factorisation 1.5.3 Completing the square in a quadratic expression
Chapter 4. Higher-Order Differential Equations
Chapter 4 Higher-Order Differential Equations i THEOREM 4.1.1 (Existence of a Unique Solution) Let a n (x), a n,, a, a 0 (x) and g(x) be continuous on an interval I and let a n (x) 0 for every x in this
4 Differential Equations
Advanced Calculus Chapter 4 Differential Equations 65 4 Differential Equations 4.1 Terminology Let U R n, and let y : U R. A differential equation in y is an equation involving y and its (partial) derivatives.
Chapter 2. First-Order Differential Equations
Chapter 2 First-Order Differential Equations i Let M(x, y) + N(x, y) = 0 Some equations can be written in the form A(x) + B(y) = 0 DEFINITION 2.2. (Separable Equation) A first-order differential equation
Series Solution of Linear Ordinary Differential Equations
Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.
JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson
JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers
Introduction to Differential Equations
Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt
JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson
JUST THE MATHS UNIT NUMBER 2. INTEGRATION (Elementary indefinite integrals) by A.J.Hobson 2.. The definition of an integral 2..2 Elementary techniques of integration 2..3 Exercises 2..4 Answers to exercises
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =
Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3
Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt
17.2 Nonhomogeneous Linear Equations. 27 September 2007
17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given
P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.
? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>
2 ODEs Integrating Factors and Homogeneous Equations
2 ODEs Integrating Factors an Homogeneous Equations We begin with a slightly ifferent type of equation: 2.1 Exact Equations These are ODEs whose general solution can be obtaine by simply integrating both
Solutions to Exercises, Section 2.4
Instructor s Solutions Manual, Section 2.4 Exercise 1 Solutions to Exercises, Section 2.4 Suppose p(x) = x 2 + 5x + 2, q(x) = 2x 3 3x + 1, s(x) = 4x 3 2. In Exercises 1 18, write the indicated expression
JUST THE MATHS SLIDES NUMBER ORDINARY DIFFERENTIAL EQUATIONS 4 (Second order equations (A)) A.J.Hobson
JUST THE MATHS SLIDES NUMBER 15.4 ORDINARY DIFFERENTIAL EQUATIONS 4 (Second order equations (A)) by A.J.Hobson 15.4.1 Introduction 15.4.2 Second order homogeneous equations 15.4.3 Special cases of the
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =
4 Exact Equations. F x + F. dy dx = 0
Chapter 1: First Order Differential Equations 4 Exact Equations Discussion: The general solution to a first order equation has 1 arbitrary constant. If we solve for that constant, we can write the general
Tangent Plane. Linear Approximation. The Gradient
Calculus 3 Lia Vas Tangent Plane. Linear Approximation. The Gradient The tangent plane. Let z = f(x, y) be a function of two variables with continuous partial derivatives. Recall that the vectors 1, 0,
7.3 Singular points and the method of Frobenius
284 CHAPTER 7. POWER SERIES METHODS 7.3 Singular points and the method of Frobenius Note: or.5 lectures, 8.4 and 8.5 in [EP], 5.4 5.7 in [BD] While behaviour of ODEs at singular points is more complicated,
II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa
382 4 7 q X
Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University
Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something
Math 10C - Fall Final Exam
Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient
Series Solutions of Linear Differential Equations
Differential Equations Massoud Malek Series Solutions of Linear Differential Equations In this chapter we shall solve some second-order linear differential equation about an initial point using The Taylor
Differential Equations DIRECT INTEGRATION. Graham S McDonald
Differential Equations DIRECT INTEGRATION Graham S McDonald A Tutorial Module introducing ordinary differential equations and the method of direct integration Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
Two Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
12d. Regular Singular Points
October 22, 2012 12d-1 12d. Regular Singular Points We have studied solutions to the linear second order differential equations of the form P (x)y + Q(x)y + R(x)y = 0 (1) in the cases with P, Q, R real
Title: Solving Ordinary Differential Equations (ODE s)
... Mathematics Support Centre Title: Solving Ordinary Differential Equations (ODE s) Target: On completion of this workbook you should be able to recognise and apply the appropriate method for solving
A Brief Review of Elementary Ordinary Differential Equations
A A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on
1.11 Some Higher-Order Differential Equations
page 99. Some Higher-Order Differential Equations 99. Some Higher-Order Differential Equations So far we have developed analytical techniques only for solving special types of firstorder differential equations.
Sect Least Common Denominator
4 Sect.3 - Least Common Denominator Concept #1 Writing Equivalent Rational Expressions Two fractions are equivalent if they are equal. In other words, they are equivalent if they both reduce to the same
Ordinary Differential Equations
Chapter 10 Ordinary Differential Equations 10.1 Introduction Relationship between rate of change of variables rather than variables themselves gives rise to differential equations. Mathematical formulation
Math 2163, Practice Exam II, Solution
Math 63, Practice Exam II, Solution. (a) f =< f s, f t >=< s e t, s e t >, an v v = , so D v f(, ) =< ()e, e > =< 4, 4 > = 4. (b) f =< xy 3, 3x y 4y 3 > an v =< cos π, sin π >=, so
Practice Midterm 2 Math 2153
Practice Midterm 2 Math 23. Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers. (a) ( point) If both partial derivatives f x and f y exist
Series Solutions of ODEs. Special Functions
C05.tex 6/4/0 3: 5 Page 65 Chap. 5 Series Solutions of ODEs. Special Functions We continue our studies of ODEs with Legendre s, Bessel s, and the hypergeometric equations. These ODEs have variable coefficients
Math 240 Calculus III
Calculus III Summer 2015, Session II Monday, August 3, 2015 Agenda 1. 2. Introduction The reduction of technique, which applies to second- linear differential equations, allows us to go beyond equations
2.3 Linear Equations 69
2.3 Linear Equations 69 2.3 Linear Equations An equation y = fx,y) is called first-order linear or a linear equation provided it can be rewritten in the special form 1) y + px)y = rx) for some functions
Homework #6 Solutions
Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly
6 Second Order Linear Differential Equations
6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.
3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:
3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable
First Order Differential Equations
Chapter 2 First Order Differential Equations Introduction Any first order differential equation can be written as F (x, y, y )=0 by moving all nonzero terms to the left hand side of the equation. Of course,
JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson
JUST THE MATHS UNIT NUMBER 10.3 DIFFERENTIATION 3 (Elementary techniques of differentiation) by A.J.Hobson 10.3.1 Standard derivatives 10.3.2 Rules of differentiation 10.3.3 Exercises 10.3.4 Answers to
MATH 312 Section 6.2: Series Solutions about Singular Points
MATH 312 Section 6.2: Series Solutions about Singular Points Prof. Jonathan Duncan Walla Walla University Spring Quarter, 2008 Outline 1 Classifying Singular Points 2 The Method of Frobenius 3 Conclusions
NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT ,
NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS Material Available with Question papers CONTACT 8486 17507, 70108 65319 TEST BACTH SATURDAY & SUNDAY NATIONAL ACADEMY DHARMAPURI http://www.trbtnpsc.com/013/07/trb-questions-and-stu-materials.html
Series Solutions of Differential Equations
Chapter 6 Series Solutions of Differential Equations In this chapter we consider methods for solving differential equations using power series. Sequences and infinite series are also involved in this treatment.
Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics
3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS NON-LINEAR LINEAR (in y) LINEAR W/ CST COEFFs (in y) FIRST- ORDER 4(y ) 2 +x cos y = x 2 4x 2 y + y cos x = x 2 4y + 3y = cos x ORDINARY DIFF EQs SECOND- ORDER
Par$al Fac$on Decomposi$on. Academic Resource Center
Par$al Fac$on Decomposi$on Academic Resource Center Table of Contents. What is Par$al Frac$on Decomposi$on 2. Finding the Par$al Fac$on Decomposi$on 3. Examples 4. Exercises 5. Integra$on with Par$al Fac$ons
ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0
ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x
Math 222 Spring 2013 Exam 3 Review Problem Answers
. (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w
Final Review Accelerated Advanced Algebra
Name: ate: 1. What are the factors of z + z 2 + 25z + 25? 5. Factor completely: (7x + 2) 2 6 (z + 1)(z + 5)(z 5) (z 1)(z + 5i) 2 (49x + 1)(x 8) (7x 4)(7x + 8) (7x + 4)(7x 8) (7x + 4)(x 9) (z 1)(z + 5i)(z
JUST THE MATHS UNIT NUMBER NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) A.J.Hobson
JUST THE MATHS UNIT NUMBER 17.6 NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) by A.J.Hobson 17.6.1 Euler s unmodified method 17.6.2 Euler s modified method 17.6.3
(4.2) Equivalence Relations. 151 Math Exercises. Malek Zein AL-Abidin. King Saud University College of Science Department of Mathematics
King Saud University College of Science Department of Mathematics 151 Math Exercises (4.2) Equivalence Relations Malek Zein AL-Abidin 1440 ه 2018 Equivalence Relations DEFINITION 1 A relation on a set
2. Second-order Linear Ordinary Differential Equations
Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients
DIFFERENTIAL EQUATIONS
Mr. Isaac Akpor Adjei (MSc. Mathematics, MSc. Biostats) isaac.adjei@gmail.com April 7, 2017 ORDINARY In many physical situation, equation arise which involve differential coefficients. For example: 1 The
MEMORIAL UNIVERSITY OF NEWFOUNDLAND
MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x
Math 212-Lecture 8. The chain rule with one independent variable
Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle
MATH115. Indeterminate Forms and Improper Integrals. Paolo Lorenzo Bautista. June 24, De La Salle University
MATH115 Indeterminate Forms and Improper Integrals Paolo Lorenzo Bautista De La Salle University June 24, 2014 PLBautista (DLSU) MATH115 June 24, 2014 1 / 25 Theorem (Mean-Value Theorem) Let f be a function
JUST THE MATHS UNIT NUMBER 1.3. ALGEBRA 3 (Indices and radicals (or surds)) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1 ALGEBRA (Indices and radicals (or surds)) by AJHobson 11 Indices 12 Radicals (or Surds) 1 Exercises 14 Answers to exercises UNIT 1 - ALGEBRA - INDICES AND RADICALS (or Surds)
12x + 18y = 50. 2x + v = 12. (x, v) = (6 + k, 2k), k Z.
Math 3, Fall 010 Assignment 3 Solutions Exercise 1. Find all the integral solutions of the following linear diophantine equations. Be sure to justify your answers. (i) 3x + y = 7. (ii) 1x + 18y = 50. (iii)
A. H. Hall, 33, 35 &37, Lendoi
7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9
JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson
JUST THE MATHS UNIT NUMBER 9.9 MATRICES 9 (Modal & spectral matrices) by A.J.Hobson 9.9. Assumptions and definitions 9.9.2 Diagonalisation of a matrix 9.9.3 Exercises 9.9.4 Answers to exercises UNIT 9.9
Chapter 3 Second Order Linear Equations
Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,
Math Applied Differential Equations
Math 256 - Applied Differential Equations Notes Basic Definitions and Concepts A differential equation is an equation that involves one or more of the derivatives (first derivative, second derivative,
Equations with regular-singular points (Sect. 5.5).
Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The
4.5 Integration of Rational Functions by Partial Fractions
4.5 Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something like this, 2 x + 1 + 3 x 3 = 2(x 3) (x + 1)(x 3) + 3(x + 1) (x
Chapter 2: First Order DE 2.6 Exact DE and Integrating Fa
Chapter 2: First Order DE 2.6 Exact DE and Integrating Factor First Order DE Recall the general form of the First Order DEs (FODE): dy dx = f(x, y) (1) (In this section x is the independent variable; not
JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson
JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises
كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية
الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا
HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016
HOMEWORK SOLUTIONS MATH 191 Sections 8., 8., 8.5 Fall 16 Problem 8..19 Evaluate using methods similar to those that apply to integral tan m xsec n x. cot x SOLUTION. Using the reduction formula for cot
CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s
A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL
Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA
Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you
Elementary ODE Review
Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques
Solutions to Exercises, Section 2.5
Instructor s Solutions Manual, Section 2.5 Exercise 1 Solutions to Exercises, Section 2.5 For Exercises 1 4, write the domain of the given function r as a union of intervals. 1. r(x) 5x3 12x 2 + 13 x 2
Practice Problems: Integration by Parts
Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try
Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt
Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain
CHAPTER 3 BOOLEAN ALGEBRA
CHAPTER 3 BOOLEAN ALGEBRA (continued) This chapter in the book includes: Objectives Study Guide 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operations 3.3 The Consensus
A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:
Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under
Here are some solutions to the sample problems assigned for Chapter 4. Solution: Consider a function of 3 (independent) variables. treating as real.
Lecture 11 Appendix B: Some sample problems from Boas Here are some solutions to the sample problems assigned for Chapter 4. 4.1: 3 Solution: Consider a function of 3 (independent) variables,, ln z u v
CALCULUS ASSESSMENT REVIEW
CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness
2 Series Solutions near a Regular Singular Point
McGill University Math 325A: Differential Equations LECTURE 17: SERIES SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS II 1 Introduction Text: Chap. 8 In this lecture we investigate series solutions for the
Section 5.2 Series Solution Near Ordinary Point
DE Section 5.2 Series Solution Near Ordinary Point Page 1 of 5 Section 5.2 Series Solution Near Ordinary Point We are interested in second order homogeneous linear differential equations with variable
LOWELL WEEKLY JOURNAL
Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q
Linear DifferentiaL Equation
Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace
Solved Examples. (Highest power of x in numerator and denominator is ½. Dividing numerator and denominator by x)
Solved Examples Example 1: (i) (ii) lim x (x 4 + 2x 3 +3) / (2x 4 -x+2) lim x x ( (x+c)- x) (iii) lim n (1-2+3-4+...(2n-1)-2n)/ (n 2 +1) (iv) lim x 0 ((1+x) 5-1)/3x+5x 2 (v) lim x 2 ( (x+7)-3 (2x-3))/((x+6)