JUST THE MATHS UNIT NUMBER NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) A.J.Hobson

Size: px
Start display at page:

Download "JUST THE MATHS UNIT NUMBER NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) A.J.Hobson"

Transcription

1 JUST THE MATHS UNIT NUMBER 17.6 NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) by A.J.Hobson Euler s unmodified method Euler s modified method Exercises Answers to exercises

2 UNIT NUMERICAL MATHEMATICS 6 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS (A) EULER S UNMODIFIED METHOD Every first order ordinary differential equation can be written in the form dx = f(x, y); and, if it is given that y = y 0 when x = x 0, then the solution for y in terms of x represents some curve through the point P 0 (x 0, y 0 ). Suppose that we wish to find the solution for y at x = d, where d > x 0. We sub-divide the interval from x = x 0 to x = d into n equal parts of width, δx. y O P 0 x0 x d Letting x 1, x 2, x 3,... be the points of subdivision, we have x 1 = x 0 + δx, x 2 = x 0 + 2δx, x 3 = x 0 + 3δx, d = x n = x 0 + nδx. If y 1, y 2, y 3,... are the y co-ordinates of x 1, x 2, x 3, we are required to find y n. 1

3 From elementary calculus, the increase in y, when x increases by δx, is given approximately by δx; and since, in our case, = f(x, y), we have dx dx y 1 = y 0 + f(x 0, y 0 )δx, y 2 = y 1 + f(x 1, y 1 )δx, y 3 = y 2 + f(x 2, y 2 )δx, y n = y n 1 + f(x n 1, y n 1 )δx, each stage using the previously calculated y value. Note: The method will be the same if d < x 0, except that δx will be negative. In general, each intermediate value of y is given by the formula y i+1 = y i + f(x i, y i )δx. EXAMPLE Use Euler s method with 5 sub-intervals to continue, to x = 0.5, the solution of the differential equation, dx = xy, given that y = 1 when x = 0; (that is, y(0) = 1). Solution i x i y i f(x i, y i ) y i+1 = y i + f(x i, y i )δx Accuracy The differential equation in the above example is simple to solve by an elementary method, 2

4 such as separation of the variables. It is therefore useful to compare the exact result so obtained with the approximation which comes from Eulers method. Therefore that is, y = xdx. ln y = x2 2 + C; y = Ae x2 2. At x = 0, we are told that y = 1 and, hence, A = 1, giving y = e x2 2. But a table of values of x against y in the previous interval reveals the following: x e x2 2 There is thus an error in our approximate value of , which is about 2.6%. Attempts to determine y for values of x which are greater than 0.5 would result in a very rapid growth of error EULER S MODIFIED METHOD In the previous method, we used the gradient to the solution curve at the point P 0 in order to find an approximate position for the point P 1, and so on up to P n. But the approximation turns out to be much better if, instead, we use the average of the two gradients at P 0 and P 1 for which we need use only x 0, y 0 and δx in order to calculate approximately. 3

5 y O P 0 x P 1 x 0 x 1 The gradient, m 0, at P 0, is given by m 0 = f(x 0, y 0 ). The gradient, m 1, at P 1, is given approximately by where δy 0 = f(x 0, y 0 )δx. m 1 = f(x 0 + δx, y 0 + δy 0 ), Note: We cannot call y 0 + δy 0 by the name y 1, as we did with the unmodified method, because this label is now reserved for the new and better approximation at x = x 0 + δx. The average gradient, between P 0 and P 1, is given by m 0 = 1 2 (m 0 + m 1 ). Hence, our approximation to y at the point P 1 is given by y 1 = y 0 + m 0δx. Similarly, we proceed from y 1 to y 2, and so on until we reach y n. In general, the intermediate values of y are given by y i+1 = y i + m i δx. 4

6 EXAMPLE Solve the example in the previous section using Euler s Modified method. Solution i x i y i m i = δy i = m i+1 = m i = y i+1 = 1 f(x i, y i) f(x i, y i)δx f(x i + δx, y i + δy i) 2 (mi + mi+1) yi + m i δx EXERCISES 1. (a) Taking intervals δx = 0.2, use Euler s unmodified method to determine y(1), given that dx + y = 0, and that y(0) = 1 Compare your solution with the exact solution given by y = e x. (b) Taking intervals δx = 0.1, use Euler s unmodified method to determine y(1), given that dx = x2 + y x and that y(0.5) = 0.5. Compare your solution with the exact solution given by y = x 2 + x 2. (c) Taking intervals δx = 0.2, use Euler s unmodified method to determine y(1), given that dx = y + e x, and that y(0) = 0. Compare your solution with the exact solution given by y = sinh x. 5

7 (d) Given that y(1) = 2, use Euler s unmodified method to continue the solution of the differential equation, dx = x2 + y 2, to obtain values of y for values of x from x = 1 to x = 1.5, in steps of Repeat all parts of question 1 using Euler s modified method ANSWERS TO EXERCISES 1. (a) 0.33, 0.37, 11% low; (b) % low; (c) 1.113, 1.175, 5% low; (d) , 2.200, , (a) 0.371, 0.368, 0.8% high; (b) 1.495, 1.50, 0.33% low; (c) 1.175, accurate to three decimal places; (d) 2.000, 2.216, 2.465, 2.751, 3.079, Note: In questions 1(d) and 2(d), the actual values are 2.000, 2.245, 2.496, 2.784, and 3.489, from the exact solution of the differential equation. 6

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.1 INTEGRATION APPLICATIONS 1 (Second moments of an arc) by A.J.Hobson 13.1.1 Introduction 13.1. The second moment of an arc about the y-axis 13.1.3 The second moment of an

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

JUST THE MATHS UNIT NUMBER 5.3. GEOMETRY 3 (Straight line laws) A.J.Hobson

JUST THE MATHS UNIT NUMBER 5.3. GEOMETRY 3 (Straight line laws) A.J.Hobson JUST THE MATHS UNIT NUMBER 5.3 GEOMETRY 3 (Straight line laws) by A.J.Hobson 5.3.1 Introduction 5.3.2 Laws reducible to linear form 5.3.3 The use of logarithmic graph paper 5.3.4 Exercises 5.3.5 Answers

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.3 DIFFERENTIATION 3 (Elementary techniques of differentiation) by A.J.Hobson 10.3.1 Standard derivatives 10.3.2 Rules of differentiation 10.3.3 Exercises 10.3.4 Answers to

More information

JUST THE MATHS UNIT NUMBER 1.4. ALGEBRA 4 (Logarithms) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.4. ALGEBRA 4 (Logarithms) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.4 ALGEBRA 4 (Logarithms) by A.J.Hobson 1.4.1 Common logarithms 1.4.2 Logarithms in general 1.4.3 Useful Results 1.4.4 Properties of logarithms 1.4.5 Natural logarithms 1.4.6

More information

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson JUST THE MATHS UNIT NUMBER 2. INTEGRATION (Elementary indefinite integrals) by A.J.Hobson 2.. The definition of an integral 2..2 Elementary techniques of integration 2..3 Exercises 2..4 Answers to exercises

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week The University of Sydney Math3 Integral Calculus and Modelling Semester 2 Exercises and Solutions for Week 2 2 Assumed Knowledge Sigma notation for sums. The ideas of a sequence of numbers and of the limit

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

JUST THE MATHS UNIT NUMBER 6.1. COMPLEX NUMBERS 1 (Definitions and algebra) A.J.Hobson

JUST THE MATHS UNIT NUMBER 6.1. COMPLEX NUMBERS 1 (Definitions and algebra) A.J.Hobson JUST THE MATHS UNIT NUMBER 6.1 COMPLEX NUMBERS 1 (Definitions and algebra) by A.J.Hobson 6.1.1 The definition of a complex number 6.1.2 The algebra of complex numbers 6.1.3 Exercises 6.1.4 Answers to exercises

More information

JUST THE MATHS UNIT NUMBER PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) A.J.Hobson

JUST THE MATHS UNIT NUMBER PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) A.J.Hobson JUST THE MATHS UNIT NUMBER 14.1 PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) by A.J.Hobson 14.1.1 Functions of several variables 14.1.2 The definition of a partial derivative 14.1.3

More information

Tangent Planes, Linear Approximations and Differentiability

Tangent Planes, Linear Approximations and Differentiability Jim Lambers MAT 80 Spring Semester 009-10 Lecture 5 Notes These notes correspond to Section 114 in Stewart and Section 3 in Marsden and Tromba Tangent Planes, Linear Approximations and Differentiability

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Solutions to Assignment 7.6. sin. sin

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Solutions to Assignment 7.6. sin. sin Arkansas Tech University MATH 94: Calculus II Dr. Marcel B. Finan Solutions to Assignment 7.6 Exercise We have [ 5x dx = 5 ] = 4.5 ft lb x Exercise We have ( π cos x dx = [ ( π ] sin π x = J. From x =

More information

JUST THE MATHS UNIT NUMBER 1.6. ALGEBRA 6 (Formulae and algebraic equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.6. ALGEBRA 6 (Formulae and algebraic equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.6 ALGEBRA 6 (Formulae and algebraic equations) by A.J.Hobson 1.6.1 Transposition of formulae 1.6. of linear equations 1.6.3 of quadratic equations 1.6. Exercises 1.6.5 Answers

More information

Math 115 ( ) Yum-Tong Siu 1. General Variation Formula and Weierstrass-Erdmann Corner Condition. J = x 1. F (x,y,y )dx.

Math 115 ( ) Yum-Tong Siu 1. General Variation Formula and Weierstrass-Erdmann Corner Condition. J = x 1. F (x,y,y )dx. Math 115 2006-2007 Yum-Tong Siu 1 General Variation Formula and Weierstrass-Erdmann Corner Condition General Variation Formula We take the variation of the functional F x,y,y dx with the two end-points,y

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson JUST THE MATHS UNIT NUMBER 15.3 ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) by A.J.Hobson 15.3.1 Linear equations 15.3.2 Bernouilli s equation 15.3.3 Exercises 15.3.4 Answers to exercises

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

Power Series and Analytic Function

Power Series and Analytic Function Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 21 Some Reviews of Power Series Differentiation and Integration of a Power Series

More information

Regression and Nonlinear Axes

Regression and Nonlinear Axes Introduction to Chemical Engineering Calculations Lecture 2. What is regression analysis? A technique for modeling and analyzing the relationship between 2 or more variables. Usually, 1 variable is designated

More information

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2... 3 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 6. REVIEW OF POWER SERIES REVIEW MATERIAL Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric series, tests

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

Math 104: l Hospital s rule, Differential Equations and Integration

Math 104: l Hospital s rule, Differential Equations and Integration Math 104: l Hospital s rule, and Integration Ryan Blair University of Pennsylvania Tuesday January 22, 2013 Math 104:l Hospital s rule, andtuesday Integration January 22, 2013 1 / 8 Outline 1 l Hospital

More information

Prelim 1 Solutions V2 Math 1120

Prelim 1 Solutions V2 Math 1120 Feb., Prelim Solutions V Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Problem ) ( Points) Calculate the following: x a)

More information

MAS113 CALCULUS II SPRING 2008, QUIZ 4 SOLUTIONS

MAS113 CALCULUS II SPRING 2008, QUIZ 4 SOLUTIONS MAS113 CALCULUS II SPRING 8, QUIZ 4 SOLUTIONS Quiz 4a Solutions 1 Find the area of the surface obtained by rotating the curve y = x 3 /6 + 1/x, 1/ x 1 about the x-axis. We have y = x / 1/x. Therefore,

More information

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 Math 201-203-RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 What is the Antiderivative? In a derivative problem, a function f(x) is given and you find the derivative f (x) using

More information

Module 2: Reflecting on One s Problems

Module 2: Reflecting on One s Problems MATH55 Module : Reflecting on One s Problems Main Math concepts: Translations, Reflections, Graphs of Equations, Symmetry Auxiliary ideas: Working with quadratics, Mobius maps, Calculus, Inverses I. Transformations

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

SOLUTIONS TO EXAM II, MATH f(x)dx where a table of values for the function f(x) is given below.

SOLUTIONS TO EXAM II, MATH f(x)dx where a table of values for the function f(x) is given below. SOLUTIONS TO EXAM II, MATH 56 Use Simpson s rule with n = 6 to approximate the integral f(x)dx where a table of values for the function f(x) is given below x 5 5 75 5 5 75 5 5 f(x) - - x 75 5 5 75 5 5

More information

Differential Equations DIRECT INTEGRATION. Graham S McDonald

Differential Equations DIRECT INTEGRATION. Graham S McDonald Differential Equations DIRECT INTEGRATION Graham S McDonald A Tutorial Module introducing ordinary differential equations and the method of direct integration Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

MATH 1014 Tutorial Notes 8

MATH 1014 Tutorial Notes 8 MATH4 Calculus II (8 Spring) Topics covered in tutorial 8:. Numerical integration. Approximation integration What you need to know: Midpoint rule & its error Trapezoid rule & its error Simpson s rule &

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

Math 126 Enhanced 10.3 Series with positive terms The University of Kansas 1 / 12

Math 126 Enhanced 10.3 Series with positive terms The University of Kansas 1 / 12 Section 10.3 Convergence of series with positive terms 1. Integral test 2. Error estimates for the integral test 3. Comparison test 4. Limit comparison test (LCT) Math 126 Enhanced 10.3 Series with positive

More information

MAC 2311 Calculus I Spring 2004

MAC 2311 Calculus I Spring 2004 MAC 2 Calculus I Spring 2004 Homework # Some Solutions.#. Since f (x) = d dx (ln x) =, the linearization at a = is x L(x) = f() + f ()(x ) = ln + (x ) = x. The answer is L(x) = x..#4. Since e 0 =, and

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6.

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. STAT 45: Statistical Theory Distribution Theory Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

Section 3.3: Laws of Logarithms

Section 3.3: Laws of Logarithms CHAPTER Exponential and Logarithmic Functions Section.: Laws of Logarithms Laws of Logarithms Laws of Logarithms Three Laws of Logarithms: Verifying Laws of Logarithms: 00 SECTION. Laws of Logarithms Example:

More information

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II.

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II. MTH 142 Practice Exam Chapters 9-11 Calculus II With Analytic Geometry Fall 2011 - University of Rhode Island This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

Separable Differential Equations

Separable Differential Equations Separable Differential Equations MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Fall 207 Background We have previously solved differential equations of the forms: y (t) = k y(t) (exponential

More information

14.4. Lengths of Curves and Surfaces of Revolution. Introduction. Prerequisites. Learning Outcomes

14.4. Lengths of Curves and Surfaces of Revolution. Introduction. Prerequisites. Learning Outcomes Lengths of Curves and Surfaces of Revolution 4.4 Introduction Integration can be used to find the length of a curve and the area of the surface generated when a curve is rotated around an axis. In this

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.6 INTEGRATION APPLICATIONS 6 (First moments of n rc) by A.J.Hobson 13.6.1 Introduction 13.6. First moment of n rc bout the y-xis 13.6.3 First moment of n rc bout the x-xis

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Math Refresher Course

Math Refresher Course Math Refresher Course Columbia University Department of Political Science Fall 2007 Day 2 Prepared by Jessamyn Blau 6 Calculus CONT D 6.9 Antiderivatives and Integration Integration is the reverse of differentiation.

More information

MATH1013 Calculus I. Edmund Y. M. Chiang. Department of Mathematics Hong Kong University of Science & Technology.

MATH1013 Calculus I. Edmund Y. M. Chiang. Department of Mathematics Hong Kong University of Science & Technology. 1 Based on Stewart, James, Single Variable Calculus, Early Transcendentals, 7th edition, Brooks/Coles, 2012 Briggs, Cochran and Gillett: Calculus for Scientists and Engineers: Early Transcendentals, Pearson

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION Learning outcomes EEXCEL NATIONAL CERTIFICATE UNIT MATHEMATICS FOR TECHNICIANS OUTCOME TUTORIAL 1 - INTEGRATION On completion of this unit a learner should: 1 Know how to use algebraic methods e able to

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 8 of these questions. I reserve the right to change numbers and answers on

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

Dr. Abdulla Eid. Section 3.8 Derivative of the inverse function and logarithms 3 Lecture. Dr. Abdulla Eid. MATHS 101: Calculus I. College of Science

Dr. Abdulla Eid. Section 3.8 Derivative of the inverse function and logarithms 3 Lecture. Dr. Abdulla Eid. MATHS 101: Calculus I. College of Science Section 3.8 Derivative of the inverse function and logarithms 3 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 19 Topics 1 Inverse Functions (1

More information

Calculus II/III Summer Packet

Calculus II/III Summer Packet Calculus II/III Summer Packet First of all, have a great summer! Enjoy your time away from school. Come back fired up and ready to learn. I know that I will be ready to have a great year of calculus with

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 4 (Second order equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 4 (Second order equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 15.4 ORDINARY DIFFERENTIAL EQUATIONS 4 (Second order equations (A)) by A.J.Hobson 15.4.1 Introduction 15.4.2 Second order homogeneous equations 15.4.3 Special cases of the auxiliary

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Math 116 Final Exam April 21, 2016

Math 116 Final Exam April 21, 2016 Math 6 Final Exam April 2, 206 UMID: Instructor: Initials: Section:. Do not open this exam until you are told to do so. 2. Do not write your name anywhere on this exam. 3. This exam has 4 pages including

More information

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form Second Order ODEs Second Order ODEs In general second order ODEs contain terms involving y, dy But here only consider equations of the form A d2 y dx 2 + B dy dx + Cy = 0 dx, d2 y dx 2 and F(x). where

More information

Function Practice. 1. (a) attempt to form composite (M1) (c) METHOD 1 valid approach. e.g. g 1 (5), 2, f (5) f (2) = 3 A1 N2 2

Function Practice. 1. (a) attempt to form composite (M1) (c) METHOD 1 valid approach. e.g. g 1 (5), 2, f (5) f (2) = 3 A1 N2 2 1. (a) attempt to form composite e.g. ( ) 3 g 7 x, 7 x + (g f)(x) = 10 x N (b) g 1 (x) = x 3 N1 1 (c) METHOD 1 valid approach e.g. g 1 (5),, f (5) f () = 3 N METHOD attempt to form composite of f and g

More information

Math 31A Differential and Integral Calculus. Final

Math 31A Differential and Integral Calculus. Final Math 31A Differential and Integral Calculus Final Instructions: You have 3 hours to complete this exam. There are eight questions, worth a total of??? points. This test is closed book and closed notes.

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS EEXCEL NATIONAL CERTIFICATE UNIT MATHEMATICS FOR TECHNICIANS OUTCOME - CALCULUS TUTORIAL - INTEGRATION Use the elementary rules of calculus arithmetic to solve problems that involve differentiation and

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

Show all your work. If you use the calculator, say so and explain what you did. f(x) =(2x +5) 1 3

Show all your work. If you use the calculator, say so and explain what you did. f(x) =(2x +5) 1 3 Old Exams, Math 142, Calculus, Dr. Bart Show all your work. If you use the calculator, say so and explain what you did. 1. Find the domain and range of the following functions: f(x) = p x 2 ; 4 f(x) =ln(x

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan 8. Sequences We start this section by introducing the concept of a sequence and study its convergence. Convergence of Sequences. An infinite

More information

Differentiation of x n.

Differentiation of x n. Differentiation of x n. In this unit we derive the result, from first principles, that The result is illustrated with several examples. if y = x n dx = nx n 1. In order to master the techniques explained

More information

STAT 801: Mathematical Statistics. Distribution Theory

STAT 801: Mathematical Statistics. Distribution Theory STAT 81: Mathematical Statistics Distribution Theory Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p ). Define Y g(x 1,..., X p ) to be some function of X (usually

More information

0 otherwise. Page 100 Exercise 9: Suppose that a random variable X has a discrete distribution with the following p.m.f.: { c. 2 x. 0 otherwise.

0 otherwise. Page 100 Exercise 9: Suppose that a random variable X has a discrete distribution with the following p.m.f.: { c. 2 x. 0 otherwise. Stat 42 Solutions for Homework Set 4 Page Exercise 5: Suppose that a box contains seven red balls and three blue balls. If five balls are selected at random, without replacement, determine the p.m.f. of

More information

Math 115 Calculus Exam I October 6, 1999

Math 115 Calculus Exam I October 6, 1999 Math 5 Calculus Exam I October 6, 999 Department of Mathematics University of Michigan 999 Name: Instructor: Signature: Section: General Instructions: Do not open this exam until you are told to begin.

More information

AP Calculus AB Winter Break Packet Happy Holidays!

AP Calculus AB Winter Break Packet Happy Holidays! AP Calculus AB Winter Break Packet 04 Happy Holidays! Section I NO CALCULATORS MAY BE USED IN THIS PART OF THE EXAMINATION. Directions: Solve each of the following problems. After examining the form of

More information

Vector Calculus. Dr. D. Sukumar. February 1, 2016

Vector Calculus. Dr. D. Sukumar. February 1, 2016 Vector Calculus Dr. D. Sukumar February 1, 2016 Green s Theorem Tangent form or Ciculation-Curl form c Mdx + Ndy = R ( N x M ) da y Green s Theorem Tangent form or Ciculation-Curl form Stoke s Theorem

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

5.4 Variation of Parameters

5.4 Variation of Parameters 202 5.4 Variation of Parameters The method of variation of parameters applies to solve (1) a(x)y + b(x)y + c(x)y = f(x). Continuity of a, b, c and f is assumed, plus a(x) 0. The method is important because

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise:

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise: Math 2250-004 Week 4 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

Part A: Short Answer Questions

Part A: Short Answer Questions Math 111 Practice Exam Your Grade: Fall 2015 Total Marks: 160 Instructor: Telyn Kusalik Time: 180 minutes Name: Part A: Short Answer Questions Answer each question in the blank provided. 1. If a city grows

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

Math 250 Skills Assessment Test

Math 250 Skills Assessment Test Math 5 Skills Assessment Test Page Math 5 Skills Assessment Test The purpose of this test is purely diagnostic (before beginning your review, it will be helpful to assess both strengths and weaknesses).

More information

Calculus II (Math 122) Final Exam, 19 May 2012

Calculus II (Math 122) Final Exam, 19 May 2012 Name ID number Sections C and D Calculus II (Math 122) Final Exam, 19 May 2012 This is a closed book exam. No notes or calculators are allowed. A table of trigonometric identities is attached. To receive

More information

Slope Fields, Differential Equations... and Maybe Euler s Method, Too

Slope Fields, Differential Equations... and Maybe Euler s Method, Too Slope Fields, Differential Equations... and Maybe Euler s Method, Too Chuck Garner, Ph.D. Department of Mathematics Rockdale Magnet School for Science and Technology October 10, 2014 / Georgia DOE AP Content

More information

MATH 019: Final Review December 3, 2017

MATH 019: Final Review December 3, 2017 Name: MATH 019: Final Review December 3, 2017 1. Given f(x) = x 5, use the first or second derivative test to complete the following (a) Calculate f (x). If using the second derivative test, calculate

More information

Math Notes of 1/26/18. More on DEs

Math Notes of 1/26/18. More on DEs Math 1220-3 Notes of 1/26/18 More on DEs Since DEs are so important, today let s talk some more about them rather than just going on in the textbook. There are three kinds of DEs that we know how to solve

More information

Tangent Plane. Linear Approximation. The Gradient

Tangent Plane. Linear Approximation. The Gradient Calculus 3 Lia Vas Tangent Plane. Linear Approximation. The Gradient The tangent plane. Let z = f(x, y) be a function of two variables with continuous partial derivatives. Recall that the vectors 1, 0,

More information

PONDI CHERRY UNI VERSI TY

PONDI CHERRY UNI VERSI TY B.Sc. ALLIED MATHEMATICS SYLLABUS 2009-2010 onwards PONDI CHERRY UNI VERSI TY PUDUCHERRY 605 014 B.Sc. ALLIED MATHEMATICS Syllabus for Allied Mathematics for B.Sc. Physics Main/Chemistry Main/Electronics

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.5 The Method of Least Square 1 Chapter 6. Orthogonality 6.5 The Method of Least Squares Note. In this section we consider linear systems of equations (which, ironically, sometimes involve functions which

More information

. Section: Your exam contains 4 problems. The entire exam is worth 60 points.

. Section: Your exam contains 4 problems. The entire exam is worth 60 points. Math 125 Section D (Pezzoli) Fall 2017 Midterm #1 (60 points) Name TA:. Section: Your exam contains 4 problems. The entire exam is worth 60 points. This exam is closed book. You may use one 8 1 11 sheet

More information

Contraction Mappings Consider the equation

Contraction Mappings Consider the equation Contraction Mappings Consider the equation x = cos x. If we plot the graphs of y = cos x and y = x, we see that they intersect at a unique point for x 0.7. This point is called a fixed point of the function

More information