Elementary ODE Review

Size: px
Start display at page:

Download "Elementary ODE Review"

Transcription

1 Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques to solve these type of equations and main methods are: (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) separable linear Bernoulli Ricatti homogeneous linear fractional exact Legendre transfmations. Separable Equations A separable first der differential equation has the fm: f (x)g(y) (2) The general solution is found by separating the differential equation and integrating including a single constant of integration, i.e. g(y) f (x) + c. F example, to solve y xy + x + 2y + 2,

2 it is necessary to rewrite it as y (x + 2)(y + ). Separating variables and writing in integral fm gives y + x + 2, and integrating yields ln y + x2 2 Letting c ln(k) and solving f y gives + 2x + c. y k e x2 /2+2x. As a second example, consider Separating variables gives and integrating yields Letting c 2 ln(k) and solving f x gives Imposing the initial condition gives which gives on solving f k which gives the solution dt x(2 x), x(0) x 0. x(2 x) dt, (ln x ln 2 x ) t + c. 2 x x 0 2ke2t + ke 2t. 2k + k, k x 0 2 x 0, x 0 2, x(t) 2x 0 e 2t 2 x 0 + x 0 e 2t. In the case where x 0 2, then the solution is x(t) 2 f all t. 2

3 .2 Linear Equations Equations of this type are in the fm To solve this, we introduce the integrating fact + p(x)y q(x). (3) µ e p(x). (4) This is created so that when both sides of (3) are multiplied by µ, the left side (3) is a derivative of a product, that is, it becomes ( ) µ + py d (µy), and then (3) can be integrated. F example, if then p(x) 2 x, so that µ On multiplying (5) by µ gives 2y x 2x3, (5) e 2 x e 2 ln x x 2. x 2 2y x 3 2x x 2, which simplifies to Integrating gives and solving f y gives ( ) d x 2 y 2x x 2. x 2 y x2 + x + c, y x 4 + x + cx 2..3 Bernoulli Equations of the fm + p(x)y q(x)yn (n 0, ) (6) 3

4 are called Bernoulli equations. Dividing both sides of (6) by y n gives Let v, then dv y n into (7) gives y n + p(x) q(x) (7) yn ( n) y n dv ( n) y n dv + p(x)v q(x) n. Upon making this substitution which is linear. So Bernoulli equations can be reduced to linear equations. Example Consider y 2x y3. This is an example of a Bernoulli equation where n 3. Putting this into standard fm gives Letting v y 2, then dv 2 y 3 y 3 2x y 2 (8), and (8) is transfmed to 2 dv 2x v, dv + v x 2. As this is linear, then p(x) x, and the integrating fact f this is x, so that x dv + v d (xv) 2x, and thus So that xv x 2 + c, v x + c x. y 2 x + c x, y ± x + c x. 4

5 .4 Ricatti Equations Ricatti equations have the fm: a(x)y2 + b(x)y + c(x). (9) To find a general solution to this requires having one solution first. Given this solution, it is possible to change equation (9) to a linear equation. If we let y y 0 + u, where y 0 is a solution to (9), then (9) is transfmed to the linear equation u (2a(x)y 0 + b(x)) u a(x), which is linear. To illustrate, we consider the following example y2 x 2 + y +. (0) x Since y 0 x is a solution to this equation, let y x + u, and (0) becomes u u 2 (x 2 x xu + u ) 2 + ( x + ) +. x u Simplifying gives u u 2 xu x 2 u 2, and multiplying by u 2 and rearranging gives rise to the linear equation u x u x 2. () Here p(x) x so this has the integrating fact µ e x and upon integration gives Since y x + u, this gives y as y x + u x u x 2 d ( u ) x x 3, u x 2x 2 + c, u cx 2x. cx 2x. x, so () becomes 5

6 .5 Homogeneous Equations Equations of the fm ( y ) F x are called homogeneous equations. Substituting y xu will yield the equation (2) which separates to x du + u F (u). du F(u) u x. Consider the previous example, If we let y xu, then (3) becomes y2 x 2 + y +. (3) x d(xu) u 2 + u +, and simplifying and separating gives Integrating gives Since y xu this gives solving f y leads to the solution x du + u u2 + u + du u 2 x. 2 ln u + u ln x + ln c, 2 u + u cx2. y x + y x cx2, y + x y x cx2, y cx3 + x cx 2. 6

7 .6 Linear Fractional Equations that have the fm are called linear fractional. Under a change of variables, ax + by + e cx + + f, (4) x x + α, y ȳ + β, we can change equation (4) to one that is either homogeneous (if ad bc 0) to one that is separable (if ad bc 0). The following examples illustrate. Consider If we let 2x 3y + 8 3x 2y + 7. (5) x x + α, y ȳ + β, then (5) becomes Choosing dȳ d x 2 x 3ȳ + 2α 3β x 2ȳ + 3α 2β α 3β + 8 0, 3α 2β + 7 0, (6) leads to dȳ d x 2 x 3ȳ 3 x 2ȳ, (7) a homogeneous equation. The natural question is, does (6) have a solution? In this case, it does and we can find that the solution is α and β 2. The solution of (7) is x 2 3 xȳ + ȳ 2 c (8) and from our change of variables (x x, y ȳ + 2) we find the solution to (5) is As a second example, consider (x + ) 2 3(x + )(y 2) + (y 2) 2 c. (9) 4x 2y + 8 2x y + 7. (20) If we let x x + α, y ȳ + β, 7

8 then We choose dȳ d x 4 x 2ȳ + 4α 2β x ȳ + 2α β α 2β + 8 0, 2α β + 7 0, but this has no solution! However, if we let u 2x y, then (20) becomes which is separable! Its solution is given by du 6 u + 7, u 2 + 4u 2x + c, and upon back substitution, we obtain the solution of (20) as (2x y) 2 + 4(2x y) 2x + c,.7 Exact Equations An dinary differential equation of the fm F(x, y), (2) has the alternate fm M(x, y) + N(x, y) 0. (22) If M and N have continuous partial derivatives of first der in some region R and M y N x, then the ODE (22) is said to be exact and can be integrated by setting φ x M, and φ y N. F example, consider the differential equation 2xy x 2 + y 2, (23) which can be written as 2xy + (x 2 + y 2 ) 0. (24) 8

9 If we identify that M and N are so so (24) is exact. Setting and integrating the first gives M 2xy and N x 2 + y 2, φ x M y 2x N x, 2xy, and φ y x2 + y 2, φ x 2 y + g(y), taking the partial of this with respect to y gives Comparing this to φ y x2 + y 2 gives that φ y x2 + g (y). g (y) y 2, so so that From Cal III we know that but in this case this is g(y) y3 3 + c, φ x 2 y + y3 3 + c. dφ φ x + φ y, dφ 2xy + (x 2 + y 2 ) 0 so φ is a constant. Thus we have as solutions to 2xy + (x 2 + y 2 ) 0 φ k x 2 y + y3 3 + c k, and absbing the constant k into c gives as the set of possible solutions to (23). x 2 y + y3 3 + c 0 9

10 .7. Legendre Transfmations Sometimes it is necessary to solve me general equations of the fm F(x, y, y ) 0, (25) say, f example y 2 xy + 3y 0. (26) One possibility is to introduce a contact transfmation that enables one to solve a given equation. Contact transfmations, in general, are of the fm with the contact condition that x F(X, Y, Y ), y G(X, Y, Y ), y H(X, Y, Y ), (27) G X + G Y y + G Y Y F X + F Y y + F Y Y H. One such contact transfmation is called a Legendre transfmation and is given by One can verify that x dy dx, Substitution of (28) in (26) gives a linear ODE! Solving gives ( d dx Substituting (30) back into (28) gives Solving the first of (3) f X 2 gives d dx y X dy dx Y, y X. (28) X dy ) dx ( ) Y dy dx X d2 Y dx 2 d 2 Y dx 2 X. 2X dy dx 3Y + X2 0 (29) Y CX 3 2 X 2. (30) x 3 2 cx 2 2X, y 2 cx 3 2 X 2. (3) X 3c ± 9c x 2, (32) 8 and from the second of (3) gives ( y c 3c ± ) 3 ( 9c x 3c ± ) 4 9c x, the exact solution of (26). 0

Math 4381 / 6378 Symmetry Analysis

Math 4381 / 6378 Symmetry Analysis Math 438 / 6378 Smmetr Analsis Elementar ODE Review First Order Equations Ordinar differential equations of the form = F(x, ( are called first order ordinar differential equations. There are a variet of

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 25 First order ODE s We will now discuss

More information

mathcentre community project

mathcentre community project community project mathcentre community project First Order Ordinary All mccp resourcesdifferential are released under a Creative Equation Commons licence Introduction mccp-richard- Prerequisites: You will

More information

First-Order ODE: Separable Equations, Exact Equations and Integrating Factor

First-Order ODE: Separable Equations, Exact Equations and Integrating Factor First-Order ODE: Separable Equations, Exact Equations and Integrating Factor Department of Mathematics IIT Guwahati REMARK: In the last theorem of the previous lecture, you can change the open interval

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

Math 240 Calculus III

Math 240 Calculus III Calculus III Summer 2015, Session II Monday, August 3, 2015 Agenda 1. 2. Introduction The reduction of technique, which applies to second- linear differential equations, allows us to go beyond equations

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

First order differential equations

First order differential equations First order differential equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. First

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Mathematical Methods - Lecture 7

Mathematical Methods - Lecture 7 Mathematical Methods - Lecture 7 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

Ma 530. Special Methods for First Order Equations. Separation of Variables. Consider the equation. M x,y N x,y y 0

Ma 530. Special Methods for First Order Equations. Separation of Variables. Consider the equation. M x,y N x,y y 0 Ma 530 Consider the equation Special Methods for First Order Equations Mx, Nx, 0 1 This equation is first order and first degree. The functions Mx, and Nx, are given. Often we write this as Mx, Nx,d 0

More information

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Chapter 1. Introduction Section 1.1 Background Definition Equation that contains some derivatives of an unknown function is called

More information

4 Differential Equations

4 Differential Equations Advanced Calculus Chapter 4 Differential Equations 65 4 Differential Equations 4.1 Terminology Let U R n, and let y : U R. A differential equation in y is an equation involving y and its (partial) derivatives.

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University Green Lab. 1/20 MAXIMA & ODE2 Cheng Ren, Lin Department of Marine Engineering National Kaohsiung Marine University email: crlin@mail.nkmu.edu.tw Objectives learn MAXIMA learn ODE2 2/20 ODE2 Method First

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

Title: Solving Ordinary Differential Equations (ODE s)

Title: Solving Ordinary Differential Equations (ODE s) ... Mathematics Support Centre Title: Solving Ordinary Differential Equations (ODE s) Target: On completion of this workbook you should be able to recognise and apply the appropriate method for solving

More information

Math Applied Differential Equations

Math Applied Differential Equations Math 256 - Applied Differential Equations Notes Basic Definitions and Concepts A differential equation is an equation that involves one or more of the derivatives (first derivative, second derivative,

More information

M343 Homework 3 Enrique Areyan May 17, 2013

M343 Homework 3 Enrique Areyan May 17, 2013 M343 Homework 3 Enrique Areyan May 17, 013 Section.6 3. Consider the equation: (3x xy + )dx + (6y x + 3)dy = 0. Let M(x, y) = 3x xy + and N(x, y) = 6y x + 3. Since: y = x = N We can conclude that this

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Solving First Order PDEs

Solving First Order PDEs Solving Ryan C. Trinity University Partial Differential Equations January 21, 2014 Solving the transport equation Goal: Determine every function u(x, t) that solves u t +v u x = 0, where v is a fixed constant.

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS NON-LINEAR LINEAR (in y) LINEAR W/ CST COEFFs (in y) FIRST- ORDER 4(y ) 2 +x cos y = x 2 4x 2 y + y cos x = x 2 4y + 3y = cos x ORDINARY DIFF EQs SECOND- ORDER

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations 2.1 9 10 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Equations A first order differential equation = f(x, y) is called separable if f(x, y)

More information

UNIT 3 INTEGRATION 3.0 INTRODUCTION 3.1 OBJECTIVES. Structure

UNIT 3 INTEGRATION 3.0 INTRODUCTION 3.1 OBJECTIVES. Structure Calculus UNIT 3 INTEGRATION Structure 3.0 Introduction 3.1 Objectives 3.2 Basic Integration Rules 3.3 Integration by Substitution 3.4 Integration of Rational Functions 3.5 Integration by Parts 3.6 Answers

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

First order Partial Differential equations

First order Partial Differential equations First order Partial Differential equations 0.1 Introduction Definition 0.1.1 A Partial Deferential equation is called linear if the dependent variable and all its derivatives have degree one and not multiple

More information

4 Exact Equations. F x + F. dy dx = 0

4 Exact Equations. F x + F. dy dx = 0 Chapter 1: First Order Differential Equations 4 Exact Equations Discussion: The general solution to a first order equation has 1 arbitrary constant. If we solve for that constant, we can write the general

More information

The second-order 1D wave equation

The second-order 1D wave equation C The second-order D wave equation C. Homogeneous wave equation with constant speed The simplest form of the second-order wave equation is given by: x 2 = Like the first-order wave equation, it responds

More information

Essential Ordinary Differential Equations

Essential Ordinary Differential Equations MODULE 1: MATHEMATICAL PRELIMINARIES 10 Lecture 2 Essential Ordinary Differential Equations In this lecture, we recall some methods of solving first-order IVP in ODE (separable and linear) and homogeneous

More information

ODE classification. February 7, Nasser M. Abbasi. compiled on Wednesday February 07, 2018 at 11:18 PM

ODE classification. February 7, Nasser M. Abbasi. compiled on Wednesday February 07, 2018 at 11:18 PM ODE classification Nasser M. Abbasi February 7, 2018 compiled on Wednesday February 07, 2018 at 11:18 PM 1 2 first order b(x)y + c(x)y = f(x) Integrating factor or separable (see detailed flow chart for

More information

Methods of Integration

Methods of Integration Methods of Integration Professor D. Olles January 8, 04 Substitution The derivative of a composition of functions can be found using the chain rule form d dx [f (g(x))] f (g(x)) g (x) Rewriting the derivative

More information

Handbook of Ordinary Differential Equations

Handbook of Ordinary Differential Equations Handbook of Ordinary Differential Equations Mark Sullivan July, 28 i Contents Preliminaries. Why bother?...............................2 What s so ordinary about ordinary differential equations?......

More information

More Techniques. for Solving First Order ODE'S. and. a Classification Scheme for Techniques

More Techniques. for Solving First Order ODE'S. and. a Classification Scheme for Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 1 A COLLECTION OF HANDOUTS ON FIRST ORDER ORDINARY DIFFERENTIAL

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

Solving First Order ODEs. Table of contents

Solving First Order ODEs. Table of contents Solving First Order ODEs Table of contents Solving First Order ODEs............................................... 1 1. Introduction...................................................... 1 Aside: Two ways

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

Solving First Order PDEs

Solving First Order PDEs Solving Ryan C. Trinity University Partial Differential Equations Lecture 2 Solving the transport equation Goal: Determine every function u(x, t) that solves u t +v u x = 0, where v is a fixed constant.

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

Lecture Notes on. Differential Equations. Emre Sermutlu

Lecture Notes on. Differential Equations. Emre Sermutlu Lecture Notes on Differential Equations Emre Sermutlu ISBN: Copyright Notice: To my wife Nurten and my daughters İlayda and Alara Contents Preface ix 1 First Order ODE 1 1.1 Definitions.............................

More information

Math Reading assignment for Chapter 1: Study Sections 1.1 and 1.2.

Math Reading assignment for Chapter 1: Study Sections 1.1 and 1.2. Math 3350 1 Chapter 1 Reading assignment for Chapter 1: Study Sections 1.1 and 1.2. 1.1 Material for Section 1.1 An Ordinary Differential Equation (ODE) is a relation between an independent variable x

More information

Series Solutions of Differential Equations

Series Solutions of Differential Equations Chapter 6 Series Solutions of Differential Equations In this chapter we consider methods for solving differential equations using power series. Sequences and infinite series are also involved in this treatment.

More information

Math 2a Prac Lectures on Differential Equations

Math 2a Prac Lectures on Differential Equations Math 2a Prac Lectures on Differential Equations Prof. Dinakar Ramakrishnan 272 Sloan, 253-37 Caltech Office Hours: Fridays 4 5 PM Based on notes taken in class by Stephanie Laga, with a few added comments

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π Fourier transforms We can imagine our periodic function having periodicity taken to the limits ± In this case, the function f (x) is not necessarily periodic, but we can still use Fourier transforms (related

More information

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS EXAM Exam #1 Math 3350 Summer II, 2000 July 21, 2000 ANSWERS i 100 pts. Problem 1. 1. In each part, find the general solution of the differential equation. dx = x2 e y We use the following sequence of

More information

Differential Equations Class Notes

Differential Equations Class Notes Differential Equations Class Notes Dan Wysocki Spring 213 Contents 1 Introduction 2 2 Classification of Differential Equations 6 2.1 Linear vs. Non-Linear.................................. 7 2.2 Seperable

More information

Power Series and Analytic Function

Power Series and Analytic Function Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 21 Some Reviews of Power Series Differentiation and Integration of a Power Series

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations A A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1 POLYNOMIALS A polynomial in x is an expression of the form p(x) = a 0 + a 1 x + a x +. + a n x n Where a 0, a 1, a. a n are real numbers and n is a non-negative integer and a n 0. A polynomial having only

More information

First Order Differential Equations Chapter 1

First Order Differential Equations Chapter 1 First Order Differential Equations Chapter 1 Doreen De Leon Department of Mathematics, California State University, Fresno 1 Differential Equations and Mathematical Models Section 1.1 Definitions: An equation

More information

Techniques of Integration

Techniques of Integration Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos

More information

Quadratics. SPTA Mathematics Higher Notes

Quadratics. SPTA Mathematics Higher Notes H Quadratics SPTA Mathematics Higher Notes Quadratics are expressions with degree 2 and are of the form ax 2 + bx + c, where a 0. The Graph of a Quadratic is called a Parabola, and there are 2 types as

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Mathematics 426 Robert Gross Homework 9 Answers

Mathematics 426 Robert Gross Homework 9 Answers Mathematics 4 Robert Gross Homework 9 Answers. Suppose that X is a normal random variable with mean µ and standard deviation σ. Suppose that PX > 9 PX

More information

Review for Ma 221 Final Exam

Review for Ma 221 Final Exam Review for Ma 22 Final Exam The Ma 22 Final Exam from December 995.a) Solve the initial value problem 2xcosy 3x2 y dx x 3 x 2 sin y y dy 0 y 0 2 The equation is first order, for which we have techniques

More information

Ordinary Differential Equations

Ordinary Differential Equations Chapter 10 Ordinary Differential Equations 10.1 Introduction Relationship between rate of change of variables rather than variables themselves gives rise to differential equations. Mathematical formulation

More information

MAP 2302 Midterm 1 Review Solutions 1

MAP 2302 Midterm 1 Review Solutions 1 MAP 2302 Midterm 1 Review Solutions 1 The exam will cover sections 1.2, 1.3, 2.2, 2.3, 2.4, and 2.6. All topics from this review sheet or from the suggested exercises are fair game. 1 Give explicit solutions

More information

4r 2 12r + 9 = 0. r = 24 ± y = e 3x. y = xe 3x. r 2 6r + 25 = 0. y(0) = c 1 = 3 y (0) = 3c 1 + 4c 2 = c 2 = 1

4r 2 12r + 9 = 0. r = 24 ± y = e 3x. y = xe 3x. r 2 6r + 25 = 0. y(0) = c 1 = 3 y (0) = 3c 1 + 4c 2 = c 2 = 1 Mathematics MATB44, Assignment 2 Solutions to Selected Problems Question. Solve 4y 2y + 9y = 0 Soln: The characteristic equation is The solutions are (repeated root) So the solutions are and Question 2

More information

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv V Problem 1 (Equations with the dependent variable missing) By means of the substitutions v = dy dt, dv dt = d2 y dt 2 solve the following second-order differential equations 1. t 2 d2 y dt + 2tdy 1 =

More information

Permutations and Polynomials Sarah Kitchen February 7, 2006

Permutations and Polynomials Sarah Kitchen February 7, 2006 Permutations and Polynomials Sarah Kitchen February 7, 2006 Suppose you are given the equations x + y + z = a and 1 x + 1 y + 1 z = 1 a, and are asked to prove that one of x,y, and z is equal to a. We

More information

A( x) B( x) C( x) y( x) 0, A( x) 0

A( x) B( x) C( x) y( x) 0, A( x) 0 3.1 Lexicon Revisited The nonhomogeneous nd Order ODE has the form: d y dy A( x) B( x) C( x) y( x) F( x), A( x) dx dx The homogeneous nd Order ODE has the form: d y dy A( x) B( x) C( x) y( x), A( x) dx

More information

A Concise Introduction to Ordinary Differential Equations. David Protas

A Concise Introduction to Ordinary Differential Equations. David Protas A Concise Introduction to Ordinary Differential Equations David Protas A Concise Introduction to Ordinary Differential Equations 1 David Protas California State University, Northridge Please send any

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations Introduction Any first order differential equation can be written as F (x, y, y )=0 by moving all nonzero terms to the left hand side of the equation. Of course,

More information

Nov : Lecture 20: Linear Homogeneous and Heterogeneous ODEs

Nov : Lecture 20: Linear Homogeneous and Heterogeneous ODEs 125 Nov. 09 2005: Lecture 20: Linear Homogeneous and Heterogeneous ODEs Reading: Kreyszig Sections: 1.4 (pp:19 22), 1.5 (pp:25 31), 1.6 (pp:33 38) Ordinary Differential Equations from Physical Models In

More information

11.2 Basic First-order System Methods

11.2 Basic First-order System Methods 112 Basic First-order System Methods 797 112 Basic First-order System Methods Solving 2 2 Systems It is shown here that any constant linear system u a b = A u, A = c d can be solved by one of the following

More information

MA Ordinary Differential Equations

MA Ordinary Differential Equations MA 108 - Ordinary Differential Equations Santanu Dey Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 76 dey@math.iitb.ac.in March 21, 2014 Outline of the lecture Second

More information

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y =

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y = DIFFERENTIAL EQUATIONS. Solved exercises.. Find the set of all solutions of the following first order differential equations: (a) x = t (b) y = xy (c) x = x (d) x = (e) x = t (f) x = x t (g) x = x log

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

B Ordinary Differential Equations Review

B Ordinary Differential Equations Review B Ordinary Differential Equations Review The profound study of nature is the most fertile source of mathematical discoveries. - Joseph Fourier (1768-1830) B.1 First Order Differential Equations Before

More information

Mathematics II. Tutorial 2 First order differential equations. Groups: B03 & B08

Mathematics II. Tutorial 2 First order differential equations. Groups: B03 & B08 Tutorial 2 First order differential equations Groups: B03 & B08 February 1, 2012 Department of Mathematics National University of Singapore 1/15 : First order linear differential equations In this question,

More information

Maths Higher Prelim Content

Maths Higher Prelim Content Maths Higher Prelim Content Straight Line Gradient of a line A(x 1, y 1 ), B(x 2, y 2 ), Gradient of AB m AB = y 2 y1 x 2 x 1 m = tanθ where θ is the angle the line makes with the positive direction of

More information

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5 8.4 1 8.4 Partial Fractions Consider the following integral. 13 2x (1) x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that 13 2x (2) x 2 x 2 = 3 x 2 5 x + 1 We could then

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

Department of Mathematics. MA 108 Ordinary Differential Equations

Department of Mathematics. MA 108 Ordinary Differential Equations Department of Mathematics Indian Institute of Technology, Bombay Powai, Mumbai 476, INDIA. MA 8 Ordinary Differential Equations Autumn 23 Instructor Santanu Dey Name : Roll No : Syllabus and Course Outline

More information

Unions of Solutions. Unions. Unions of solutions

Unions of Solutions. Unions. Unions of solutions Unions of Solutions We ll begin this chapter by discussing unions of sets. Then we ll focus our attention on unions of sets that are solutions of polynomial equations. Unions If B is a set, and if C is

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS Basic concepts: Find y(x) where x is the independent and y the dependent varible, based on an equation involving x, y(x), y 0 (x),...e.g.: y 00 (x) = 1+y(x) y0 (x) 1+x or,

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity 1 Second Order Ordinary Differential Equations 1.1 The harmonic oscillator Consider an ideal pendulum as shown below. θ l Fr mg l θ is the angular acceleration θ is the angular velocity A point mass m

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Mr. Isaac Akpor Adjei (MSc. Mathematics, MSc. Biostats) isaac.adjei@gmail.com April 7, 2017 ORDINARY In many physical situation, equation arise which involve differential coefficients. For example: 1 The

More information

ODE. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAP / 92

ODE. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAP / 92 ODE Philippe Rukimbira Department of Mathematics Florida International University PR (FIU) MAP 2302 1 / 92 4.4 The method of Variation of parameters 1. Second order differential equations (Normalized,

More information

Solutions to Exam 2, Math 10560

Solutions to Exam 2, Math 10560 Solutions to Exam, Math 6. Which of the following expressions gives the partial fraction decomposition of the function x + x + f(x = (x (x (x +? Solution: Notice that (x is not an irreducile factor. If

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Solutions of Math 53 Midterm Exam I

Solutions of Math 53 Midterm Exam I Solutions of Math 53 Midterm Exam I Problem 1: (1) [8 points] Draw a direction field for the given differential equation y 0 = t + y. (2) [8 points] Based on the direction field, determine the behavior

More information

Name: Partners: PreCalculus. Review 5 Version A

Name: Partners: PreCalculus. Review 5 Version A Name: Partners: PreCalculus Date: Review 5 Version A [A] Circle whether each statement is true or false. 1. 3 log 3 5x = 5x 2. log 2 16 x+3 = 4x + 3 3. ln x 6 + ln x 5 = ln x 30 4. If ln x = 4, then e

More information

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations ENGI 940 Lecture Notes 4 - Stability Analysis Page 4.01 4. Stability Analysis for Non-linear Ordinary Differential Equations A pair of simultaneous first order homogeneous linear ordinary differential

More information

2 Linear Differential Equations General Theory Linear Equations with Constant Coefficients Operator Methods...

2 Linear Differential Equations General Theory Linear Equations with Constant Coefficients Operator Methods... MA322 Ordinary Differential Equations Wong Yan Loi 2 Contents First Order Differential Equations 5 Introduction 5 2 Exact Equations, Integrating Factors 8 3 First Order Linear Equations 4 First Order Implicit

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information