Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs

Size: px
Start display at page:

Download "Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs"

Transcription

1 G. Math. Not Vol. No. Jauary 3 pp. 6- ISSN 9-78; Copyright ICSRS Publicatio 3 Availabl fr oli at Solutio to Voltrra Sigular Itgral Equatio ad No Homogou Tim Fractioal PDE A. Aghili ad H. Ziali Dpartmt of Applid Mathmatic Faculty of Mathmatical Scic Uivrity of Guila P.O. Bo- 8 Raht Ira arma.aghili@gmail.com homa_zialy@yahoo.com (Rcivd: 8-- / Accptd: 9--) Abtract I thi work th author implmtd Laplac traform mthod for olvig crtai partial fractioal diffrtial quatio ad Voltrra igular itgral quatio. Cotructiv ampl ar alo providd to illutrat th ida. Th rult rval that th traform mthod i vry covit ad ffctiv. Kyword: No-homogou tim fractioal hat quatio; Laplac traform; Voltrra igular itgral quatio. Itroductio I thi work th author ud Laplac traform for olvig Voltrra igular itgral quatio ad PFDE.

2 Solutio to Voltrra Sigular Itgral 7 Th Laplac traform i a altrativ mthod for olvig diffrt typ of PDE. Alo it i commoly ud to olv lctrical circuit ad ytm problm. I thi work th author implmtd traform mthod for olvig th partial fractioal hat quatio which ari i applicatio. Svral mthod hav b itroducd to olv fractioal diffrtial quatio th popular Laplac traform mthod [ ] [ ] [ 3 ] [ ] ad opratioal mthod [ ]. Howvr mot of th mthod ar uitabl for pcial typ of fractioal diffrtial quatio maily th liar with cotat cofficit. Mor dtaild iformatio about om of th rult ca b foud i a urvy papr by Kilba ad Trujillo []. Ataackovic ad Stakovic [5][6]ad Stakovic [] ud th Laplac traform i a crtai pac of ditributio to olv a ytm of partial diffrtial quatio with fractioal drivativ ad idicatd that uch a ytm may rv a a crtai modl for a vico latic rod. Oldham ad Spair I [3] ad [] rpctivly by rducig a boudary valu problm ivolvig Fick cod low i lctro aalytic chmitry to a formulatio bad o th partial Rima Liouvill fractioal with half drivativ. Oldham ad Spair [] gav othr applicatio of uch quatio for diffuio problm. K.Sharma t al i [8]driv a olutio of a gralizd fractioal Voltrra itgral quatio ivolvig K fuctio with th hlp of th Sumudo traform. Wy [] coidrd th tim fractioal diffuio ad wav quatio ad obtaid th olutio i trm of Fo fuctio.. Dfiitio ad Notatio Laplac traform of fuctio f ( t ) i a follow t L{ f ( t )} = f ( t ) d t : = F ( ). If L{ f ( t )} = F ( ) th t f ( t ) = F( ) d i c+ i ci L { F ( )} i giv by Whr F() i aalytic i th half- pla R( ) > c. For < o gt [5][6] C k ( k ) t = k = L{ D f ( t )} F ( ) f ().

3 8 A. Aghili t al. Thorm. (Effro Thorm [ 9 ]) Lt L{ f ( t )} = F ( ) ad L{ u ( t τ )} = U ( ) p( τ q ( )) ad aumig φ ( ) q( ) ar aalytic th o ha ( τ τ τ ) L f ( ) u ( t ) d = U ( ) F ( q( )). Eampl. Lt u aum that p( τ ) L{ u ( t τ )} = which lad to u t τ t W τ t U ( ) ( ) = ( ; ). = ad q ( ) = th o ha Th obtai w F ( ) L f ( τ ) W ( ; τ t ) dτ. t = Providd that th itgral i brackt covrg abolutly. Lik th Fourir traform th Laplac traform i ud i a varity of applicatio. Prhap th mot commo uag of th Laplac traform i i th olutio of iitial valu problm. Howvr thr ar othr ituatio for which th proprti of th Laplac traform ar alo vry uful uch a i th valuatio of crtai itgral ad i th olutio of fractioal igular itgral quatio of Voltrra typ. I th followig w may how om applicatio of itgral traform i valuatig crtai itgral. Lmma. Th followig rlatio hold tru - - p( co ϕ) dϕ = p( co ϕ) dϕ = I ( ) p( coϕ + y i ϕ ) dϕ = I( + y )

4 Solutio to Voltrra Sigular Itgral I ( co ϕ ) dϕ =. ( )!(!) k 3 k = k k Proof. I ordr to how th abov rlatio lt u itroduc th fuctio = g( ) p( co ϕ) dϕ w firt calculat th Laplac traform of g( ) a followig + L{ g( )} = p( ) d p( co ϕ) dϕ chagig th ordr of itgratio ad implifyig to obtai + L{ g( )} = dϕ p( + co ϕ) d = i ϕ = z At thi poit w itroduc th chag of variabl dϕ coϕ ad implifyig to gt dϕ dz L{ g( )} = = iz z + i coϕ z = Th valu of th compl itgral aftr uig Cauchy itgral formula i dz L{ g( )} = = = L{ I ( )} iz z + i z = - W ca rwrit th lft id of th quatio i th followig form + y ( coθ + y i θ ) + y + y I = dθ w itroduc a w variabl uch that + y i( + θ ) I d = θ y = i = co th + y + y ad agai itroducig th w variabl + θ = ϕ lad to + y i ϕ ϕ I = d = I ( + y ).

5 A. Aghili t al. It i obviou that if w t y = th w gt th rlatiohip ad. 3- Lt u dfi a w fuctio by th itgral = I( ) I ( co θ ) dθ takig Laplac traform of th abov rlatio w gt coθ coθ L{ I( )} = ( ) = dθ I( ). = O th othr had o ha th followig paio for modifid Bl fuctio of ordr zro k y I ( y ) = k k = ( k!) o w hav k I ( co θ ) dθ. = k k = ( k )!( k!) If w t = i th abov rlatio w gt th dird quatio. Lmma. Lt u aum that Show that th followig rlatio hold tru - f ( t ) = t t - F( ) = rf ( ) 3 - ta p( ta ) d = Ei( ) ( ( )) = ( ) = p{ (c + cc )}. L f t F d t whr Ei ( ) = dt i potial itgral ad th rlatio Ei ( ) = Γ( ) t for > i which Γ ( z ) i icomplt Gamma fuctio. Proof: - W hav = ( ) i θ F( ) dθ

6 Solutio to Voltrra Sigular Itgral ad coqutly applyig Bromwich' itgral w gt c+ i ( ) f t = dθ d i i θ t ( ) ( ) ci chagig th ordr of itgratio lad to f ( t ) = δ( t ) dθ. i θ Now w itroduc th w variabl t = w th w gt i θ f ( t ) =. t t - W tak Laplac traform of th abov quatio to obtai + t L{ f ( t )} = dt. t t Now w itroduc th w variabl t = u to gt + u { ( )} =. u + L f t du At thi poit lt u aum that + u I( ) = du I() = u + th u u u u ( ) = = + I du du u + u + = + I. Solvig th abov ODE w obtai I rf ad coqutly ( ) = ( ) F( ) = rf ( ).

7 A. Aghili t al. Lmma.3 If k ( ) ad ϕ( ) ar Laplac traformabl fuctio th w hav th followig rlatiohip + L k( t ) ϕ( t ) dt = K( ) Φ( ) whr K ( ) Φ( ) ar Laplac traform of fuctio k ( ) ϕ( ) rpctivly. Proof: S [ 9 ][ 7 ]. Solutio to Voltrra Sigular Itgral Equatio Laplac traform ca b ud to olv crtai typ of Voltrra igular itgral quatio. Problm. Lt u coidr fractioal Voltrra igular itgral quatio of th form c + λ D f ( ) = g( ) + k( t ) f ( t ) dt f ( ) = (.) i which k( t) = k( t) i th krl ad g ( ) i aumd to b a Laplac traformabl fuctio. Th (.) ha th formal olutio c+ i G( ) t f ( ) = { } d i λk( ) Solutio: Lt L( f ( )) = F( ) L( g( )) = G( ) L( k( )) = K( ) b th Laplac traform of f ( ) g( ) k( ) rpctivly th by uig Lmma.3 o gt th followig rlatiohip ci So o ca writ F( ) = G( ) + λk( ) F( ). G( ) F( ) = λk( ) (.) (.3) ad coqutly by Bromwich' itgral w gt th followig rlatio c+ i G( ) t f ( ) = { } d i λk( ) ci which ca b olvd by th u of Ridu thorm. Not that F() i aalytic i th half pla R > c. (.) Eampl.: Solv th followig igular itgral quatio c + λ (.5) D f ( ) = p( a ) + J ( ( t ) ) f ( t ) dt f ( ) =.

8 Solutio to Voltrra Sigular Itgral 3 Solutio: Laplac-traform of th abov itgral quatio lad to ad coqutly F( ) = + λ( ) F( ) + a (.6) λ Uig Bromwich' itgral yild F( ) = + a. (.7) + c+ i f ( ) = d. i (.8) ci ( a )( λ ) Now lt u coidr th ca: =.5 th rlatio (.8) bcom c+ i f ( ) = d. 3 i ci ( + a )( λ + ) (.9) So w may apply Laplac traform of covolutio of fuctio ad uig th fact that a( η) L = d { ; } η ( + a) (.) ad alo th followig rlatiohip L { } = L { ( ) + ( )...} = 3 3 λ λ 3 ad + λ k 3k k k = L { + ( ) λ } k= L { ( ) } ( ) ( ) ( ) I ( k ). k 3k 3k k k k k + λ = δ + λ 3k k = k = k (.)

9 A. Aghili t al. From rlatiohip (.9)-(.) o gt th formal olutio a follow a( η ) 3k k k f ( ) = { dη}*{ δ ( ) + ( ) λ ( ) I 3k ( k)} k k = which ca b calculatd a bllow w a( η w) 3k k k w η δ λ 3k w k = k f ( ) = { d }{ ( w) + ( ) ( ) I ( k( w))} dw(.) Problm. Solvig th ytm of fractioal igular itgral quatio of th form + c D φ( ) = g( ) λ k( t ) ψ ( t ) dt (.3) + c D ψ ( ) = h( ) + λ k( t ) φ( t ) dt with coditio φ( ) = ψ( ) =. Solutio: Multiplyig cod quatio by i ad addig to th firt quatio lad to c + D ( φ + i ψ ) = ( g + ih)( ) + i λ k( t)( φ + i ψ )( t) dt. (.) Now lt ( φ + iψ )( ) = ξ( )( g + ih)( ) = f ( ) iλ = γ th o ca rwrit th abov quatio i th form c + D ξ ( ) = f ( ) + γ k( t) ξ ( t) dt. (.5) At thi poit w ca apply prviou ampl to thi o a bllow. Takig Laplac traform of quatio (.5) lad to Φ ( ) = F( ) + γ K( ) Φ ( ) whr Φ( ) F( ) K( ) ar Laplac traform of fuctio ξ( ) f ( ) k( ) rpctivly. Hc o gt th followig rlatiohip

10 Solutio to Voltrra Sigular Itgral 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) G K H + λ H + λ K Φ = + i G λ ( K( )) + λ ( K( )) + whr G( ) H( ) ar Laplac traform of g( ) h( ) rpctivly. So o gt ɶ ( ) ( ) ( ) ( ) ( ) ( ) ( ) G K H ( ) λ H λ φ = + ψ = + K G. λ ( K( )) + ɶ λ ( K( )) + Ad fially by uig ivrio formula th olutio will b c+ i G + λk H d (.6) λ + ci ( ) ( ) ( ) φ( ) = i ( K( )) c+ i H( ) + λk( ) G( ) ψ ( ) = d. i λ ( K( )) + ci Eampl. coidr th followig ytm 3 + c D φ( ) = ( t ) dt ψ ( t ) + c D ψ ( ) = + ( t ) dt φ ( t ) th w hav H ( ) = G ( ) = K ( ) = o by uig rlatiohip (.6) o gt φ ( ) = δ ( ) ψ ( ) = co Problm.3 Lt u coidr fractioal Voltrra igular itgral quatio of th form c D φ( ) = f ( ) + λ l( t) φ( t) dt φ() =. (.7) Solutio: Aftr takig Laplac-traform of th abov itgral quatio ad implifyig o gt Φ ( ) = + F ( ) + λ ( γ + l ) (.8)

11 6 A. Aghili t al. i which γ.577 i Eulr cotat. Uig compl ivrio formula for th abov rlatio lad to c+ i F( ) φ( ) = d. (.9) + i + λ( γ + l ) ci Eampl.3 Coidr th followig fractioal igular itgral quatio c D φ( ) = + l( t) φ( t) dt φ() =. By uig quatio (.8) w gt th olutio a bllow Φ ( ) = = { } = 3/ 3 + γ + l γ + l + 3/ γ + l γ + l = { + ( )... } = 3 3/ 3/ γ + l γ + l γ + l = { + ( )... } = ( ). 5/ 3/ 3/ = At thi poit w may ivrt Φ ( ) aily by uig covolutio. Thrfor o ca fid that γ + l Γ(3 / ) whr l ɺɺ = = ɺɺ o w ca writ 3/ φ( ) = { + ( t) l tdt + ( ( t)l tdt)*l ) +...} Γ(3 / ) 3 Mai Rult 3/ l = ( t )(l t) dt = ( l ) Egirig ad othr ara of cic ca b uccfully modld by th u of fractioal drivativ. That i bcau of th fact that a ralitic modlig of phyical phomo havig dpdc ot oly at th tim itat but alo th prviou tim hitory. I thi ctio th author coidr crtai o-homogou tim fractioal hat quatio i a phrical domai that i a gralizatio to th problm which i 3

12 Solutio to Voltrra Sigular Itgral 7 tudid by Jorda ad Puri []. I thi work oly th Laplac traformatio i coidrd a a powrful tool for olvig th abov mtiod problm. Thi goal ha b achivd by formally drivig act aalytical olutio. 3. No-Homogou Tim Fractioal Hat Equatio i a Sphrical Domai Problm 3. Solv th o-homogou tim fractioal hat quatio c u( r t ) u( r t ) Dt u( r t ) = + λu( r t ) f ( t ) r r r r < t > < (3.) with th boudary coditio: lim r u( r t ) < u r ( t ) = ad th iitial coditio u( r ) = r <. Lt f ( t ) b Laplac traformabl fuctio. Solutio: Lt u itroduc a w variabl v( r t) = r u( r t). Th quatio (3.) bcom (3.) By takig th Laplac traform with rpct to variabl t of quatio (3.) ad boudary coditio w gt or (3.) with th boudary coditio lim V ( r ) = Vr ( ) V ( ) = r Solvig th abov quatio (3.) lad to v( r t ) Dt v( r t ) = λv( r t ) rf ( t ). r F( ) V( r ) = Acoh( r λ + ) + B ih( r λ + ) r. λ + Now w apply th boudary coditio to gt c V V( r ) = λv ( r ) rf( ) r V ( λ + ) V( r ) = rf( ) r (3.3) ih( r λ + ) F( ) V( r ) = r. ( λ + coh( λ + ) ih( λ + )) λ + (3.5) So by uig Bromwich' itgral w hav th followig rlatiohip

13 8 A. Aghili t al. c+ i ih( r λ + ) F( ) t v( r t) = d. i c i ( λ coh( λ ) ih( λ )) λ (3.6) To u th ridu thorm lt u aum that =.5 o rlatiohip (3.6) will b chagd to c+ i ih( r λ + ) F( ) t v( r t) = d. i (3.7) ci ( λ + coh( λ + ) ih( λ + )) λ + O ca that at λ + = i V ( r ) t ha impl pol at = = λ ad alo impl pol β or = ( λ + β ) whr ta β = β for =... By uig ridu thorm o gt t r λ η ih( r λ ) v( r t ) = f ( t η ) dη λ + λ coh λ i h λ i( r β ) = ( λ + β ) i β ( λ + β ) t ad coqutly th fial olutio i a bllow r ih( r λ ) i( rβ ) ( λ + β ) t u( r t ) = f ( t ) d +. t λ η η η λ r( λ coh λ ih λ ) r = ( λ + β )i β Not that if w t = th problm bcom th o-homogou hat quatio. Ca 3.. For f ( t ) = (homogou quatio) =.5 λ = w hav c u( r t ) u( r t ) Dt u( r t ) = + u( r t ) t > r < r r r Th th olutio i ih( r ) i( rβ ) ( + β ) t ( ) = r r = ( + β )i β u r t i which ta β = β for =... (figur).

14 Solutio to Voltrra Sigular Itgral 9 3 Cocluio Figur. I th prt papr th author implmtd th Laplac traform mthod for olvig fractioal igular itgral quatio. Thy alo coidrd crtai tim fractioal hat quatio which i a gralizatio to th problm ivtigatd i [] th problm of dyamic thrmo -latic tr i a phrical hll with fid boudari who ir urfac i ubjctd to a tp jump i tmpratur. W hop that it will alo bfit may rarchr i th dicipli of applid mathmatic mathmatical phyic ad girig. Rfrc [] A. Aghili ad H. Ziali Itgral traform mthod for olvig fractioal PDE ad valuatio of crtai itgral ad ri Itratioal Joural of Phyic ad Mathmatical Scic () () 7-. [] A. Aghili ad B.S. Moghaddam Laplac traform pair of - dimio ad a wav quatio Itr. Math. Joural 5() () [3] A. Aghili ad B.S. Moghaddam Multi-dimioal Laplac traform ad ytm of partial diffrtial quatio Itr. Math. Joural (6) (6) -. [] A. Aghili ad B.S. Moghaddam Laplac traform pair of -dimio ad cod ordr liar diffrtial quatio with cotat cofficit Aal Mathmatica t Iformatica 35(8) 3-. [5] T.M. Ataackovic ad B. Stakovic Dyamic of a vico-latic rod of Fractioal drivativ typ Z. Agw. Math. Mch. 8(6) () [6] T.M. Ataackovic B. Stakovic O a ytm of diffrtial quatio with fractioal drivativ ariig i rod thory Joural of Phyic A: Mathmatical ad Gral 37() () -5. [7] D.G. Duffy Traform Mthod for Solvig Partial Diffrtial Equatio Chapma & Hall/CRC (). [8] R.S. Dahiya ad M. Viayagamoorthy Laplac trafom pair of dimio ad hat coductio problm Math. Comput. Modllig 3() [9] V.A. Ditki ad A.P. Prudikov Opratioal Calculu i Two Variabl ad It Applicatio Prgamo Pr Nw York (96).

15 A. Aghili t al. [] A.A. Kilba ad J.J. Trujillo Diffrtial quatio of fractioal ordr: Mthod rult ad problm II Appl. Aal 8() () [] Y. Luchko ad H. Srivatava Th act olutio of crtai diffrtial quatio of fractioal ordr by uig opratioal calculu Comput. Math. Appl. 9(995) [] S. Millr ad B. Ro A Itroductio to Fractioal Diffrtial Equatio Wily Nw York. [3] K.B. Oldham ad J. Spair Th Fractioal Calculu Acadmic Pr Nw York (97). [] K.B. Oldham ad J. Spair Fractioal calculu ad it applicatio Bull. It. Polith. Iai. Sct. I (8) (3-) (978) 9-3. [5] I. Podluby Th Laplac Traform Mthod for Liar Diffrtial Equatio of Fractioal Ordr Slovak Acadmy of Scic Slovak Rpublic (99). [6] I. Podluby Fractioal Diffrtial Equatio Acadmic Pr Sa Digo CA (999). [7] G.E. Robrt ad H. Kaufma Tabl of Laplac Traform W.B. Saudr Co. Philadlphia (966). [8] K. Sharma R. Jai ad V.S. Dahakar A olutio of gralizd fractioal Voltrra typ itgral quatio ivolvig K -fuctio G. Math. Not 8() () 5-. [9] W. Schidr ad W. Wy Fractioal diffuio ad wav quatio J. Math. Phy. 3(989) 3-. [] B.A. Stakovic Sytm of partial diffrtial quatio with fractioal drivativ Math. Vik 3-(5) () [] P.M. Jorda ad P. Puri Thrmal tr i a phrical hll udr thr thrmolatic modl J. Thrm. Str () 7-7. [] W. Wy Th fractioal diffuio quatio J. Math. Phy. 7() (986)

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations Availabl at http://pvau.du/aa Appl. Appl. Math. ISSN: 9-9 Spcial Iu No. Augut 00 pp. 0 Applicatio ad Applid Mathatic: A Itratioal Joural AAM Rvid Variatioal Itratio Mthod for Solvig St of Ordiar Diffrtial

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations Global Joral of Scic Frotir Rarch: F Mathmatic ad Dciio Scic Volm 5 I 5 Vrio Yar 5 Tp : Dobl Blid Pr Rviwd Itratioal Rarch Joral Pblihr: Global Joral Ic USA Oli ISSN: 9- & Prit ISSN: 975-589 Th Variatioal

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Asymptotic Behaviors for Critical Branching Processes with Immigration

Asymptotic Behaviors for Critical Branching Processes with Immigration Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp. 537 549 Publihd oli: March 5, 9 http://doi.org/.7/4-9-744-6 http://www.actamath.com Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre:

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS

CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS Jos Javir Garcia Morta Graduat studt of Physics at th UPV/EHU (Uivrsity of Basqu

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS EULER-MACLAURI SUM FORMULA AD ITS GEERALIZATIOS AD APPLICATIOS Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre: Practicate Ada y Grijalba

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

EXACT SOLUTION OF DISCRETE HEDGING EQUATION FOR EUROPEAN OPTION

EXACT SOLUTION OF DISCRETE HEDGING EQUATION FOR EUROPEAN OPTION EXACT SOLUTION OF DISCRETE HEDGING EQUATION FOR EUROPEAN OPTION Yaovlv D.E., Zhabi D. N. Dartmt of Highr athmatic ad athmatical Phyic Tom Polytchic Uivrity, Tom, Lia avu 3, 6344, Ruia Th aroach that allow

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 1/9 h govrig balac qatio that dcrib diffio proc i itatio ivolvig two idpdt variabl appar typically a xyt,, fxyt,, 0 t i g, t o 1 t q t x, y,0 c x, y

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

IV Design of Discrete Time Control System by Conventional Methods

IV Design of Discrete Time Control System by Conventional Methods IV Dig of Dicrt im Cotrol Sytm by Covtioal Mthod opic to b covrd. Itroductio. Mappig bt th pla ad pla 3. Stability aalyi 4. rait ad tady tat rpo 5. Dig bad o root locu mthod 6. Dig bad o frqucy rpo mthod

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Superfluid Liquid Helium

Superfluid Liquid Helium Surfluid Liquid Hlium:Bo liquid ad urfluidity Ladau thory: two fluid modl Bo-iti Codatio ad urfluid ODLRO, otaou ymmtry brakig, macrocoic wafuctio Gro-Pitakii GP quatio Fyma ictur Rfrc: Thory of quatum

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

A Substitution Method for Partial Differential Equations Using Ramadan Group Integral Transform

A Substitution Method for Partial Differential Equations Using Ramadan Group Integral Transform Aia Rarc Joral of Matmatic 74: -0 07; Articl o.arjom.3786 ISSN: 456-477X A Sbtittio Mtod for Partial Diffrtial Eqatio i Ramada Grop Itral Traform Moamd A. Ramada * Kamal R. Rala Adl R. Hadod ad Amaa K.

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017 DEARMEN OF MAEMAICS BI, MESRA, RANCI MA Advad Egg. Mathatis Sssio: S/ 7 MODULE I. Cosidr th two futios f utorial Sht No. -- ad g o th itrval [,] a Show that thir Wroskia W f, g vaishs idtially. b Show

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H.

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H. Joral of Scic Ilaic Rpblic of Ira 5(: -9 ( Uirity of Thra ISSN 6- Th Ayptotic For of Eigal for a Cla of Str-Lioill Probl with O Sipl Trig Poit A. Jodayr Abarfa * ad H. Khiri Faclty of Mathatical Scic Tabriz

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Non-homogeneous time fractional heat equation

Non-homogeneous time fractional heat equation 33 JACM 3, No., 33-4 (8) Journal of Abtract and Computational Mathematic http://www.ntmci.com/jacm Non-homogeneou time fractional heat equation A. Aghili Department of Applied Mathematic, Faculty of Mathematical

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

ELECTROMAGNETIC FIELD COUPLING TO ARBITRARY WIRE CONFIGURATIONS BURIED IN A LOSSY GROUND: A REVIEW OF ANTENNA MODEL AND TRANSMISSION LINE APPROACH

ELECTROMAGNETIC FIELD COUPLING TO ARBITRARY WIRE CONFIGURATIONS BURIED IN A LOSSY GROUND: A REVIEW OF ANTENNA MODEL AND TRANSMISSION LINE APPROACH D. Poljak t al., It. J. Comp. Mth. ad Exp. Ma., Vol., No. (3) 4 63 ELECTROMAGNETIC FIELD COUPLING TO ARBITRARY WIRE CONFIGURATIONS BURIED IN A LOSSY GROUND: A REVIEW OF ANTENNA MODEL AND TRANSMISSION LINE

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n Adminitrivia Lctur : Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Investigation of Transition to Chaos for a Lotka. Volterra System with the Seasonality Factor Using. the Dissipative Henon Map

Investigation of Transition to Chaos for a Lotka. Volterra System with the Seasonality Factor Using. the Dissipative Henon Map Applid Mathmatical Scics, Vol. 9, 05, o. 7, 580-587 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.05.57506 Ivstigatio of Trasitio to Chaos for a Lotka Voltrra Systm with th Sasoality Factor Usig

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information