CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9

Size: px
Start display at page:

Download "CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9"

Transcription

1 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 1/9 h govrig balac qatio that dcrib diffio proc i itatio ivolvig two idpdt variabl appar typically a xyt,, fxyt,, 0 t i g, t o 1 t q t x, y,0 c x, y i,, o Whr i th itrior domai, ad 1 ad form th bodary of th domai. g, t 1 x, y, t t f x, y, t 0, t q, t h phyical cotat ar ad, ad i a liar mar of th poitio o th bodary. h typ of bodary coditio pcifid o rlt from a local balac btw codctio i th itrior ad covctio ito th xtrior. 1 x, y, t t f x, y, t 0, t q, t 1 x, y, t t f x, y, t 0, t q, t g, t g, t I two dimio, th iflc of th bodary coditio i how. h lft id of th imlatio domai (x = 0) i d a a cotat orc of diffio particl, thrby cratig a tady flow ito th ara. All othr bodari ar modld by a ma bodary coditio. hi qatio i imilar i form to th lliptic bodary val problm tdid i Chaptr 3, with th vry importat additio of th tim drivativ trm i th diffrtial qatio ad th corrpodig iitial coditio. With th additio, th problm chag from a lliptic bodary val problm to a parabolic iitial bodary val problm.

2 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio /9 h baic tp of dicrtizatio, itrpolatio, lmtal formlatio, ambly, cotrait, oltio, ad comptatio of drivd variabl ar prtd i thi ctio a thy rlat to th two-dimioal parabolic iitial-bodary val problm. h Galri mthod, i coctio with th corrpodig wa formlatio to b dvlopd, will b d to grat th fiit lmt modl. Dicrtizatio - For dicrtizatio, pla rfr to th matrial i Chaptr 3. Itrpolatio - h oltio i amd to b xpribl i trm of th odally bad itrpolatio fctio i (x, y) itrodcd ad dicd i Sctio 3.. I th prt ttig, th itrpolatio fctio ar d with th midicrtizatio 1 xyt (,, ) i( t ) i( xy, ) 1 h i (x, y) ar odally bad itrpolatio fctio ad ca b liar, qadratic, or a othrwi dird. Elmtal Formlatio - h tartig poit for th lmtal formlatio i th wa formlatio of th iitialbodary val problm. h firt tp i dvlopig th wa formlatio i to mltiply th diffrtial qatio by a arbitrary tt fctio v(x, y) vaihig o 1. h rlt i th itgratd ovr th domai to obtai v f d t 0 Elmtal Formlatio - Uig th two-dimioal form of th divrgc thorm to itgrat th firt trm by part, thr rlt aftr rarragig v d v d t whr = 1 + v d vf d Elmtal Formlatio - Rcallig that v vaih o 1 ad that /x = = q - h o, it follow that v d v d t v q h d vf d Elmtal Formlatio - Sbtittig th approximatio of (x, y, t) ito th wa formlatio ad taig v =, = 1,,... yild i i i i d x x y y d h d i i i i hi qatio i th rqird wa formlatio for th twodimioal diffio problm. fd qd 1,,

3 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 3/9 Elmtal Formlatio Whr - ad - rprt th lmtal ara approximatig, ad th collctio of th lmtal dg approximatig,rpctivly. i i i i d x x y y d h d fd i i i i qd 1,, Elmtal Formlatio hi x t of liar algbraic qatio ca b writt a i 1 A B F () t 1,,..., i i i i i i Ai d hi d x x y y B d i i F f d qd Elmtal Formlatio ot that ambly i cotaid implicitly withi th formlatio. i 1 A B F () t 1,,..., i i i i i i Ai d hi d x x y y B d i i F f d qd Elmtal Formlatio I trm of th corrpodig lmtally bad itrpolatio ( x, y) h fiit lmt modl ca b xprd a A B F ' A G ag ' F= fg qg B= rg Elmtal Formlatio I trm of th corrpodig lmtally bad itrpolatio ( x, y) h fiit lmt modl ca b xprd a r f A A A da x x y y da fda a d q qd Elmtal Formlatio h iitial coditio for th ytm of firt-ordr diffrtial qatio ar obtaid from th iitial coditio prcribd for th origial iitialbodary val problm. Grally (0) i dtrmid by valatig th fctio c(x, y) at th od to obtai (0) 0 c1 c c3... c 1 c whr c i = c(x i, y i )with (x i, y i ) th coordiat of th i th od.

4 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 4/9 Cotrait - h cotrait ari from th bodary coditio pcifid o 1. Grally th val of th cotrait ar dtrmid from th q fctio with th cotraid val of at a od o 1 big ta a th val of q at that poit. h cotrait ar th forcd o th ambld qatio, rltig i th fial global cotraid t of liar firt-ordr diffrtial qatio. Soltio - h ytm of qatio i prcily th am i form ad charactr a th corrpodig qatio dvlopd for o-dimioal diffio. A aalytical mthod a wll a th mrical mthod of Elr ad improvd Elr or Cra-icolo ca b d for itgratig th abov t of qatio. 0 M K f (0) Soltio - h Elr mthod will b coditioally tabl with th critical tim tp dpdig o th maximm igval of th aociatd problm (K - M)v = 0. h improvd Elr or Cra-icolo algorithm will b coditioally tabl. Drivd variabl - h drivd variabl will b tim dpdt, ad dpdig o th particlar problm big coidrd, may d to b comptd at ach tim tp. h comptatio wold b pr lmt ad wold b carrid ot ig th tchiq dcribd i Chaptr 3. Swi Mathmaticia ad phyicit Lohard Elr dicovrd th wav qatio i thr pac dimio. Lohard Elr ( ) wa a piorig Swi mathmaticia ad phyicit. H mad importat dicovri i fild a divr a ifiitimal calcl ad graph thory. H i alo rowd for hi wor i mchaic, flid dyamic, optic, atroomy, ad mic thory h wav qatio i a importat cod-ordr liar partial diffrtial qatio for th dcriptio of wav a thy occr i phyic ch a od wav, light wav ad watr wav. It ari i fild li acotic, lctromagtic, ad flid dyamic. A oltio of th wav qatio i two dimio with a zro-diplacmt bodary coditio alog th tir otr dg.

5 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 5/9 Coidr th motio of a rctaglar mmbra (i th abc of gravity) ig th two-dimioal wav qatio. Plot of th patial part for mod ar illtratd blow. Coidr th motio of a rctaglar mmbra (i th abc of gravity) ig th two-dimioal wav qatio. h govrig qatio of motio that dcrib th propagatio of wav i itatio ivolvig two idpdt variabl appar typically a xyt,, f xyt,, 0 t i g, t o, t q, t o x, y,0 c x, y i 1,,0 dx y x y t, i Whr i th itrior domai, ad 1 ad form th bodary of th domai. g, t 1 xyt,, f xyt,, 0 t, t q, t h phyical cotat ar ad, ad i a liar mar of th poitio o th bodary. h typ of bodary coditio pcifid o rlt from a local balac btw itral ad xtral forc. 1 xyt,, f xyt,, 0 t, t q, t 1 xyt,, f xyt,, 0 t, t q, t g, t g, t

6 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 6/9 hi qatio i imilar i form to th parabolic iitialbodary val problm prtd i th prvio ctio with th vry importat chag i th tim drivativ trm from a firt to a cod drivativ, ad with th additio of a cod iitial coditio o th vlocity. With th chag, th problm chag from a parabolic iitial-bodary val problm to a hyprbolic iitial bodary val problm. h baic tp of dicrtizatio, itrpolatio, lmtal formlatio, ambly, cotrait, oltio, ad comptatio of drivd variabl ar prtd i thi ctio a thy rlat to th two-dimioal hyprbolic iitial-bodary val problm. h Galri mthod, i coctio with th corrpodig wa formlatio to b dvlopd, will b d to grat th fiit lmt modl. Dicrtizatio - Rfrrd to th matrial i Chaptr 3. Itrpolatio - h oltio i amd to b xpribl i trm of th odally bad itrpolatio fctio i (x, y) itrodcd ad dicd i Sctio 3.. I th prt ttig, th itrpolatio fctio ar d with th midicrtizatio 1 xyt (,, ) i( t ) i( xy, ) i 1 h i (x, y) ar odally bad itrpolatio fctio ad ca b liar, qadratic, or a othrwi dird. Elmtal Formlatio - h tartig poit for th lmtal formlatio i th wa formlatio of th iitialbodary val problm. h firt tp i dvlopig th wa formlatio i to mltiply th diffrtial qatio by a arbitrary tt fctio v(x, y) vaihig o 1. h rlt i th itgratd ovr th domai to obtai v f d t 0 Elmtal Formlatio - Uig th two-dimioal form of th divrgc thorm to itgrat th firt trm by part, thr rlt aftr rarragig v d v d t whr = 1 + v d vf d Elmtal Formlatio - Rcallig that v vaih o 1 ad that /x = = q - h o, it follow that v d v d t v q h d vf d hi qatio i th rqird wa formlatio for th twodimioal diffio problm.

7 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 7/9 Elmtal Formlatio - Sbtittig th approximatio of (x, y, t) ito th wa formlatio ad taig v =, = 1,,... yild i i i i d x x y y d h d i i i i Elmtal Formlatio Whr - ad - rprt th lmtal ara approximatig, ad th collctio of th lmtal dg approximatig,rpctivly. i i i i d x x y y d h d i i i i fd qd 1,, fd qd 1,, Elmtal Formlatio hi x t of liar algbraic qatio ca b writt a i 1 A B F () t 1,,..., i i i i i i Ai d hi d x x y y B d i i F f d qd Elmtal Formlatio ot that ambly i cotaid implicitly withi th formlatio. i 1 A B F () t 1,,..., i i i i i i Ai d hi d x x y y B d i i F f d qd Elmtal Formlatio I trm of th corrpodig lmtally bad itrpolatio ( x, y) h fiit lmt modl ca b xprd a A B F ' A G ag ' F= fg qg B= rg Elmtal Formlatio I trm of th corrpodig lmtally bad itrpolatio ( x, y) h fiit lmt modl ca b xprd a r f A A A da x x y y da fda a d q qd

8 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 8/9 Elmtal Formlatio h iitial coditio for th ytm of firt-ordr diffrtial qatio ar obtaid from th iitial coditio prcribd for th origial iitialbodary val problm. Grally (0) i dtrmid by valatig th fctio c(x, y) at th od to obtai (0) 0 c1 c c3... c 1 c whr c i = c(x i, y i )with (x i, y i ) th coordiat of th i th od. Elmtal Formlatio h iitial coditio for th ytm of firt-ordr diffrtial qatio ar obtaid from th iitial coditio prcribd for th origial iitialbodary val problm. Grally ů(0) i dtrmid by valatig th fctio d(x, y) at th od to obtai (0) 0 d1 d d3... d 1 d whr d i = d(x i, y i )with (x i, y i ) th coordiat of th i th od. Cotrait - h cotrait ari from th bodary coditio pcifid o 1. Grally th val of th cotrait ar dtrmid from th q fctio with th cotraid val of at a od o 1 big ta a th val of q at that poit. h cotrait ar th forcd o th ambld qatio, rltig i th fial global cotraid t of liar firt-ordr diffrtial qatio. Soltio - h ytm of qatio i prcily th am i form ad charactr a th corrpodig qatio dvlopd i Sctio 4.. for th o-dimioal wav problm. h aalytical mthod a wll a th mrical mthod ig th ctral diffrc ad wmar algorithm ca b d for itgratig th abov t of qatio. M K f (0) 0 (0) 0 Soltio - h ctral diffrc algorithm will b coditioally tabl with th critical tim tp dpdig o th maximm igval of th aociatd problm (K - M)v = 0. Drivd variabl - I a phyical itatio govrd by a wav qatio, th drivd variabl ar ally th itral forc comptd accordig to F = pr lmt for ach tim tp. h wmar algorithm will b coditioally tabl for = 0.5 ad = 0.5( + 0.5).

9 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 9/9 Clor - im-dpdt problm ar ihrtly mor difficlt ad xpiv to olv tha thir corrpodig tady-tat cotrpart. h xp of gratig th global matric i highr for th tim-dpdt problm bca of th city of comptig th ma matric. h mai xtra xp, howvr, i i olvig th rltig tim-dpdt global qatio. Clor - For a aalytical approach to th oltio, additioal xp i icrrd i trm of havig to dtrmi igval ad igvctor. h actal amot of xp dpd o th pcific form of th tiff ad ma matric ad th algorithm d, bt i ay ca it i igificatly i xc of th xp of olvig th igl t of liar algbraic qatio aociatd with th tady-tat problm. Clor - For a tim domai itgratio tchiq, th additioal xp i clarly rlatd to th mbr of tim tp cary to trac ot th dird tim hitory. I additio to vral matrix mltiplicatio ad additio, ach tp ca ivolv th oltio of a t of liar algbraic qatio. I om itac thi xp ca b miimizd by ig a dcompoitio that ca b rd for th comptatio of th oltio at ach w tim. Clor - I thi rgard rcall that th Elr ad ctral diffrc algorithm rqir that th iz of th tim tp ot xcd a val proportioal to th ivr of th largt igval. For larg ytm thi critical tp iz ca b vry mall rltig i may applicatio of th algorithm to trac ot th tim hitory. Clor - h coditioally tabl Cra-icolo ad wmar algorithm, o th othr had, ca b d with arbitrary tp iz that ha b cho o a to accratly itgrat th lowr mod, with igificat improvmt i th xp rlativ to th coditioally tabl Elr ad ctral diffrc algorithm. hr ar of cor othr algorithm availabl that ar pcifically tailord to addr othr mrical i. Ed of Chaptr 4c

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H.

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H. Joral of Scic Ilaic Rpblic of Ira 5(: -9 ( Uirity of Thra ISSN 6- Th Ayptotic For of Eigal for a Cla of Str-Lioill Probl with O Sipl Trig Poit A. Jodayr Abarfa * ad H. Khiri Faclty of Mathatical Scic Tabriz

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations Global Joral of Scic Frotir Rarch: F Mathmatic ad Dciio Scic Volm 5 I 5 Vrio Yar 5 Tp : Dobl Blid Pr Rviwd Itratioal Rarch Joral Pblihr: Global Joral Ic USA Oli ISSN: 9- & Prit ISSN: 975-589 Th Variatioal

More information

Analytical and semi-analytical solutions to the kinetic equation with Coulomb collision term and a monoenergetic source function

Analytical and semi-analytical solutions to the kinetic equation with Coulomb collision term and a monoenergetic source function Aalytical ad mi-aalytical oltio to th kitic qatio with Colomb colliio trm ad a moorgtic orc fctio P R Gocharov Sait-Ptrbrg Polytchic Uivrity, 955, Ria ad RRC "Krchatov Ititt", Mocow, 8, Ria E-mail: gocharov@phtf.t.va.r

More information

Chapter 10 Time-Domain Analysis and Design of Control Systems

Chapter 10 Time-Domain Analysis and Design of Control Systems ME 43 Sytm Dynamic & Control Sction 0-5: Stady Stat Error and Sytm Typ Chaptr 0 Tim-Domain Analyi and Dign of Control Sytm 0.5 STEADY STATE ERRORS AND SYSTEM TYPES A. Bazoun Stady-tat rror contitut an

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

A Substitution Method for Partial Differential Equations Using Ramadan Group Integral Transform

A Substitution Method for Partial Differential Equations Using Ramadan Group Integral Transform Aia Rarc Joral of Matmatic 74: -0 07; Articl o.arjom.3786 ISSN: 456-477X A Sbtittio Mtod for Partial Diffrtial Eqatio i Ramada Grop Itral Traform Moamd A. Ramada * Kamal R. Rala Adl R. Hadod ad Amaa K.

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs G. Math. Not Vol. No. Jauary 3 pp. 6- ISSN 9-78; Copyright ICSRS Publicatio 3 www.i-cr.org Availabl fr oli at http://www.gma.i Solutio to Voltrra Sigular Itgral Equatio ad No Homogou Tim Fractioal PDE

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

7. Differentiation of Trigonometric Function

7. Differentiation of Trigonometric Function 7. Diffrtiatio of Trigootric Fctio RADIAN MEASURE. Lt s ot th lgth of arc AB itrcpt y th ctral agl AOB o a circl of rais r a lt S ot th ara of th sctor AOB. (If s is /60 of th circfrc, AOB = 0 ; if s =

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Superfluid Liquid Helium

Superfluid Liquid Helium Surfluid Liquid Hlium:Bo liquid ad urfluidity Ladau thory: two fluid modl Bo-iti Codatio ad urfluid ODLRO, otaou ymmtry brakig, macrocoic wafuctio Gro-Pitakii GP quatio Fyma ictur Rfrc: Thory of quatum

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

LESSON 10: THE LAPLACE TRANSFORM

LESSON 10: THE LAPLACE TRANSFORM 0//06 lon0t438a.pptx ESSON 0: THE APAE TANSFOM ET 438a Automatic ontrol Sytm Tchnology arning Objctiv Aftr thi prntation you will b abl to: Explain how th aplac tranform rlat to th tranint and inuoidal

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

IV Design of Discrete Time Control System by Conventional Methods

IV Design of Discrete Time Control System by Conventional Methods IV Dig of Dicrt im Cotrol Sytm by Covtioal Mthod opic to b covrd. Itroductio. Mappig bt th pla ad pla 3. Stability aalyi 4. rait ad tady tat rpo 5. Dig bad o root locu mthod 6. Dig bad o frqucy rpo mthod

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

工程數學 (I) Advanced Engineering Mathematics (I)

工程數學 (I) Advanced Engineering Mathematics (I) 工程數學 I Advacd Egirig Mathmatic I 機械與自動化工程系 教師王曉剛 中華民國 99 年 9 月 Advacd Egirig Mathmatic I or Otli: A. Ordiar diffrtial qatio Mathmatic modlig of phical tm Sparabl ODE ad act qatio t ordr ODE Liar ODE Stm

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

SOLUTIONS TO CHAPTER 2 PROBLEMS

SOLUTIONS TO CHAPTER 2 PROBLEMS SOLUTIONS TO CHAPTER PROBLEMS Problm.1 Th pully of Fig..33 is composd of fiv portios: thr cylidrs (of which two ar idtical) ad two idtical co frustum sgmts. Th mass momt of irtia of a cylidr dfid by a

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

ELECTROMAGNETIC FIELD COUPLING TO ARBITRARY WIRE CONFIGURATIONS BURIED IN A LOSSY GROUND: A REVIEW OF ANTENNA MODEL AND TRANSMISSION LINE APPROACH

ELECTROMAGNETIC FIELD COUPLING TO ARBITRARY WIRE CONFIGURATIONS BURIED IN A LOSSY GROUND: A REVIEW OF ANTENNA MODEL AND TRANSMISSION LINE APPROACH D. Poljak t al., It. J. Comp. Mth. ad Exp. Ma., Vol., No. (3) 4 63 ELECTROMAGNETIC FIELD COUPLING TO ARBITRARY WIRE CONFIGURATIONS BURIED IN A LOSSY GROUND: A REVIEW OF ANTENNA MODEL AND TRANSMISSION LINE

More information

Self-interaction mass formula that relates all leptons and quarks to the electron

Self-interaction mass formula that relates all leptons and quarks to the electron Slf-intraction mass formula that rlats all lptons and quarks to th lctron GERALD ROSEN (a) Dpartmnt of Physics, Drxl Univrsity Philadlphia, PA 19104, USA PACS. 12.15. Ff Quark and lpton modls spcific thoris

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Maximizing Power Generation in Chemical Systems and Fuel Cells

Maximizing Power Generation in Chemical Systems and Fuel Cells Procdig of th World Cogr o Egirig Vol WCE, Jly 6-8,, Lodo, U.K. Maximizig Powr Gratio i Chmical Sytm ad Fl Cll S. Siitycz Abtract Powr maximizatio approach i applid for dyamical chmical gi ad tatic olid

More information

Fast and Accurate Analytical Model to Solve Inverse Problem in SHM using Lamb Wave Propagation

Fast and Accurate Analytical Model to Solve Inverse Problem in SHM using Lamb Wave Propagation Fast ad Accrat Aaltical Modl to Solv Ivrs Problm i SHM sig Lamb Wav Propagatio Baibrata Poddar* Victor Girgiti Dpartmt of Mchaical Egirig Uivrsit of Soth Carolia USA ABSTRACT Lamb wav propagatio is at

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n Adminitrivia Lctur : Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

On Finding the Rectangular Duals of Planar Triangular Graphs. Xin He 1. State University of New York at Bualo. Bualo, NY 14260

On Finding the Rectangular Duals of Planar Triangular Graphs. Xin He 1. State University of New York at Bualo. Bualo, NY 14260 O Fidig t Rctaglar Dal o Plaar Triaglar Grap Xi H Dpartmt o Comptr Scic Stat Uirity o N York at Balo Balo, NY 460 E-mail: xi@c.balo.d Abtract W prt a liar tim algoritm or dig rctaglar dal o plaar triaglar

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

EXISTENCE OF CONCENTRATED WAVES FOR THE DIFFERENT TYPE OF NONLINEARITY. V. Eremenko and N. Manaenkova

EXISTENCE OF CONCENTRATED WAVES FOR THE DIFFERENT TYPE OF NONLINEARITY. V. Eremenko and N. Manaenkova EXISTENCE OF CONCENTRATED WAVES FOR THE DIFFERENT TYPE OF NONLINEARITY. V. Eremeko ad N. Maaekova Istitte of Terrestrial Magetism, Ioosphere ad Radio Wave Propagatio Rssia Academy of Sciece E-mail: at_ma@mail.r

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek Etatg th Varac a Sulato Study of Balacd Two Stag Prdctor of Ralzd Rado Clutr Ma Ed Stak Itroducto W dcrb a pla to tat th varac copot a ulato tudy N ( µ µ W df th varac of th clutr paratr a ug th N ulatd

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting Mixd Mod Oscillatios as a Mchaism for Psudo-Platau Burstig Richard Brtram Dpartmt of Mathmatics Florida Stat Uivrsity Tallahass, FL Collaborators ad Support Thodor Vo Marti Wchslbrgr Joël Tabak Uivrsity

More information

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding... Chmical Physics II Mor Stat. Thrmo Kintics Protin Folding... http://www.nmc.ctc.com/imags/projct/proj15thumb.jpg http://nuclarwaponarchiv.org/usa/tsts/ukgrabl2.jpg http://www.photolib.noaa.gov/corps/imags/big/corp1417.jpg

More information

Predator Population Dynamics Involving Exponential Integral Function When Prey Follows Gompertz Model

Predator Population Dynamics Involving Exponential Integral Function When Prey Follows Gompertz Model Op Joral of Modllig ad Simlatio, 25, 3, 7-8 Pblishd Oli Jly 25 i SciRs. http://www.scirp.org/joral/ojmsi http://dx.doi.org/.4236/ojmsi.25.338 Prdator Poplatio Dyamics Ivolvig Expotial Itgral Fctio Wh Pry

More information

THE CONSERVATIVE DIFFERENCE SCHEME FOR THE GENERALIZED ROSENAU-KDV EQUATION

THE CONSERVATIVE DIFFERENCE SCHEME FOR THE GENERALIZED ROSENAU-KDV EQUATION Zho, J., et al.: The Coservative Differece Scheme for the Geeralized THERMAL SCIENCE, Year 6, Vol., Sppl. 3, pp. S93-S9 S93 THE CONSERVATIVE DIFFERENCE SCHEME FOR THE GENERALIZED ROSENAU-KDV EQUATION by

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations Availabl at http://pvau.du/aa Appl. Appl. Math. ISSN: 9-9 Spcial Iu No. Augut 00 pp. 0 Applicatio ad Applid Mathatic: A Itratioal Joural AAM Rvid Variatioal Itratio Mthod for Solvig St of Ordiar Diffrtial

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

with Dirichlet boundary conditions on the rectangle Ω = [0, 1] [0, 2]. Here,

with Dirichlet boundary conditions on the rectangle Ω = [0, 1] [0, 2]. Here, Numrical Eampl In thi final chaptr, w tart b illutrating om known rult in th thor and thn procd to giv a fw novl ampl. All ampl conidr th quation F(u) = u f(u) = g, (-) with Dirichlt boundar condition

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information