Analytical and semi-analytical solutions to the kinetic equation with Coulomb collision term and a monoenergetic source function

Size: px
Start display at page:

Download "Analytical and semi-analytical solutions to the kinetic equation with Coulomb collision term and a monoenergetic source function"

Transcription

1 Aalytical ad mi-aalytical oltio to th kitic qatio with Colomb colliio trm ad a moorgtic orc fctio P R Gocharov Sait-Ptrbrg Polytchic Uivrity, 955, Ria ad RRC "Krchatov Ititt", Mocow, 8, Ria gocharov@phtf.t.va.r Abtract. Complt ad phyically adqat aalytical ad mi-aalytical oltio hav b obtaid ig a practical dimiol form of kitic qatio amig azimthal ymmtry ad Maxwllia ditribtio of targt plama pci. Formrly coidrd implifid qatio with trcatd Colomb colliio trm do ot corv th mbr of particl, ar iapplicabl to dcrib high rgy ditribtio tail, ad ar alo tially abl to dmotrat th Maxwllizatio proc atrally obrvd i th low rgy rgio of corrct ditribtio. Th rlt may b fl i mrical modlig ad i xprimtal data aalyi, pcially cocrig clar proc ad advacd localizd, agl-rolvd prathrmal particl diagotic.. Itrodctio Lt f ( v ) b th oght vlocity ditribtio fctio of tt particl of typ, ad f ( ) v b th kow vlocity ditribtio fctio of targt plama pci cotd by idx. Fctio f ( v ) ad f ( ) v ar ormalizd to ity. To obtai a practical form of th qatio to b olvd, w Colomb colliio trm [] xprd via partial pottial fctio [,] corrpodig to th itractio of tt particl with particlar pci of targt plama f Φ = 4π ( v ) d v, () Ψ = f ( ) d 8π v v, () whr dot th dity of particl, ad = v v dot th magitd of th rlativ vlocity of particl ad. A how i [4], amptio of azimthal ymmtry (i.. = ) ϕ

2 ad agl iotropy of ditribtio fctio f ( v ) of targt plama pci lad to th followig xprio for th partial colliio trm i phrical polar coordiat i vlocity pac: ( f ) L iϑ ( f ) L m Φ Ψ Ψ C = v ( f ), () v v m v v v viϑ ϑ v v ϑ whr m ad m ar th ma of particl of pci ad, rpctivly, dot th dity of particl, L ( 4π Z Z ) Λ =, (4) m Z ad Z ar th lctric charg mbr of particl of pci ad, rpctivly, i th lmtary charg, Λ i Colomb logarithm. Th fll colliio trm i C = C. (5). Dimiol otatio W follow th dimiol approach of moograph [4], ig a lightly diffrt otatio. amly, w do ot itrodc th ijctio vlocity ito th xprio for th colliio trm, ic thi i a xtral paramtr, ad it i mor atral to rtai it i th tt particl orc fctio oly. Ulik [4], i or otatio a mall factor ( m ) / m <., wh pci ar io, appar atrally i th vlocity diffio trm withot itrodcig th ratio of th lctro tmpratr to th tt particl ijctio rgy. Dfiig gralizd tmpratr for all targt plama pci m v m v T = = f v v dv, (6) + ( ) 4π thr partial (i.. corrpodig to th particlar pci ) dimiol fctio 4π m a ( v) = v T 4π b ( v) = v Ψ Φ v v, (7), (8) 4π T Ψ c ( v) =, (9) m v v

3 ad th dimioal cotat v c [cm/] ad τ [] whr v = m T c m m / m τ = Zω p Λm i th lctro plama frqcy, ad a dimiol paramtr, (), () 4π ω p = () m m ε = m w th writ thr dimiol fctio mmd ovr all pci /, () m Z T a( v) = ε a ( v), (4) m T m Z b( v) = b ( v), (5) m v c Z c( v) = c ( v), (6) T m ad, fially, th colliio trm qivalt to (5) i th form ( f ) ( f ) v c a( v) c( v) C = v ( ) c + b v ( f ) + iϑ. (7) τ v v v v iϑ ϑ ϑ For th particlar ca wh all targt plama pci ar Maxwllia th drivativ Φ, v Ψ v, ad xprd via Chadrakhar fctio / m v T m f ( v ) = (8) πt Ψ wr calclatd i [4], ad fctio (7)-(9) wr v a follow: z x z (9) z π z G( z) = x dx = rf ( z) π z ( ) ( ) υ ( υ ) a v = b v = G, () υ c ( v) = + υ G( υ ), () π υ

4 whr ot, that υ =, v = T m. () v vt v T a ( v), a ( v) ; () c ( v), c v ( v). (4) v π To compt (), () i th viciity of v = it i fl to apply th dcompoitio giv i [5] v k k + z z z 4 5 rf ( z) = = z + z + z (5) π k = (k + )!! π 5 Fctio b( v ) i rlatd to th dyamic frictio forc ad i rpoibl for th lowig-dow proc. Fctio a( v ) ad c( v ) ar both rlatd to th diffio tor i vlocity pac. Th trm with c( v ) i (7) cotai oly th agl drivativ ad i rpoibl for th pitch agl cattrig. Th trm with a( v ) dcrib th vlocity diffio proc. For a iothrmal Maxwllia plama a( v) = εb( v), ad ε i a mall paramtr wh th tt particl ar igificatly havir tha lctro, whil for lctro a( v) = b( v). To calclat th colliio trm (7) for vlociti mch gratr tha thrmal vlociti of targt plama io v = T m ad mch mallr tha th thrmal vlocity of targt plama lctro T Ti i i v = T m, i.. for v v v, th followig implifid formla may b d itad of Ti applyig (4)-(6) ad (), (): whr T ( a) m 4 a( v) = ε Z + v v m π ( ) T, (6) ( b) m 4 b( v) = Z + ( v v ) T, (7) m π ff c( v) = Z v + π v, (8) T Z m Z T =, (9) T m ( a) i i i Z i i m Z =, () m ( b) i i Z ff i i = Zi i, () i 4

5 ad th mmatio i (9)-() i ovr all io pci of th targt plama. Th firt trm i righthad id of xprio (6)-(8) rprt th cotribtio of targt plama io, ad th cod trm rprt th cotribtio of targt plama lctro. Io ad lctro cotribtio to th implifid lowig-dow trm govrd by (7) ar qal wh thrfor, () i oft calld a critical vlocity. ( ( b) π 4 ) / v = Z v c, (). Workig form of th qatio Coidr Boltzma kitic qatio for th oght ditribtio fctio f, glctig th patial ihomogity ad th lctric fild ( f ) t = C + S, () whr C i th colliio trm corrpodig to colliio of particl, origiatig from a moorgtic bam i a magtically cofid plama, with particl of all pci of th targt plama, ad S i th orc fctio of particl. Th colliio trm C calclatd by (4)-(7) ad (), () i a xact a [] with oly two amptio, viz., that th azimthal ymmtry tak plac ad that th targt plama i Maxwllia. Th azimthal ymmtry i a raoabl amptio ic Larmor gyratio td to avrag-ot th agl ϕ dpdc, ad th ditribtio fctio f ( v ) i a trog magtic fild i axially ymmtric, i.. it i a fctio of th vlocity magitd v ad th pitch agl ϑ. ff Simplifid qatio olvd i [6,7] corrpod to b( v ) giv by (7), ad c( v) = Z v v, i.. th firt trm i (8), whil vlocity diffio trm with a( v ) i icorrct i both [6] ad [7]. I ca of iothrmal Maxwllia targt plama, i.. T = T, th corrct Colomb colliio oprator applid to th Maxwllia ditribtio fctio with th qilibrim tmpratr T c = T rlt i llificatio of th colliio trm. A oppod to [6,7], thi fdamtal phyical proprty prrv if w th corrct xprio for dimiol fctio a( v ), b( v ) ad c( v ) giv i ctio. Th prpo of th bqt ctio i to obtai th xact ad phyically adqat oltio of () withot implificatio. Th, th workig form of qatio () i 5

6 φ a( ) φ b( ) a( ) a φ b c( ) φ = φ + ( ζ ) + τ S (, ζ, τ ), (4) τ ζ ζ whr φ(, ζ, τ ) f i th oght fctio, = v / i th dimiol vlocity, τ = t / τ i th dimiol tim, ad ζ = coϑ i th pitch agl coi. Th tatioary moorgtic iotropic orc fctio i S S ( ) = δ ( ), (5) 4π ad th tatioary moorgtic aiotropic orc fctio i S S (, ζ ) = δ ( ) ( ζ ), (6) π whr δ ( ) i dlta-fctio, / = v i th dimiol ijctio vlocity, ad ( ζ ) i th ity-ormalizd agl ditribtio of th orc. Th orc fctio giv by ithr (5) or (6) i ormalizd to th orc rat S [cm - - ], i.. th mbr of particl of typ ijctd i it volm i it tim, c S d v = πv d dζ S (, ζ ) = S. (7) 4. Iotropic problm 4.. Slowig-dow Aalytical tady tat oltio of qatio (4) takig ito accot oly th dyamic frictio forc, bt ot th diffio i vlocity pac, i.. with a( ) =, c( ) =, ad iotropic S ( ) giv by (5), ca b obtaid by variabl paratio mthod for th corrpodig tatioary homogo firt ordr ordiary diffrtial qatio ad th variatio of cotat. Th rltig iotropic ditribtio φ S τ =, (8) ( ) H ( ) 4 π b( ) whr H ( ) i Haviid tp fctio, i typically d plggig th implifid formla (7) for b( ) itad of (5) ad (). W rprodc thi impl tatioary lowig-dow ditribtio imilar to [8-] hr a a rfrc for compario with or oltio blow. 6

7 4.. Slowig-dow ad vlocity diffio i iothrmal plama Simplifid oltio (8), glctig th diffio i vlocity pac, i ihrtly abl to dcrib th Maxwllizatio proc. It i alo cttig off th high rgy ditribtio tail ad thrfor i iapplicabl at >. To obtai a phyically adqat oltio, lt firt coidr a iotropic problm amig that c( ) =, S ( ) i giv by (5), ad all targt plama pci ar i thrmal qilibrim i.. T = T. Eqatio (4) with c( ) = rdc to whr φ φ p( ) + q( ) + r( ) φ( ) = f ( ), (9) a( ) p( ) =, (4) b( ) a( ) a q( ) = + 4, (4) r( ) = b, (4) S τ =. (4) ( ) f ( ) δ 4π A mtiod abov, i thi iothrmal ca a( ) = εb( ), ad it ca b aily chckd by btittio that Maxwllia fctio ε ( ) φ = (44) i a partial oltio of th homogo qatio corrpodig to (9). It ca alo b aily vrifid by btittio, that th cod idpdt oltio of th homogo qatio i ( ) ε φ = d. (45) a( ) l ow that φ ( ) ad φ ( ) ar dtrmid, w ca fid th oltio of th ihomogo qatio (9) i th form ε φ( ) = C ( ) φ ( ) + C ( ) φ ( ), (46) ig Lagrag mthod of variatio of cotat. To atify (9) w rqir that C ( ) φ( ) + C ( ) φ( ) =. (47) C ( ) φ ( ) + C ( ) φ ( ) = f ( ) p( ) Thi i a ytm of liar algbraic qatio with rpct to C ( ) ad C ( ). It oltio i 7

8 Itgratig (48) ad (49), w obtai whr K ad K ar arbitrary cotat. ε S τ C ( ) = δ ( ) d, (48) a( ) π l S τ C ( ) = δ. (49) ( ) π ε Sτ ( ) = ( ) + π a( ) l C H d K, (5) S τ C ( ) = H + K, (5) ( ) π Fially, th partial oltio of th ihomogo qatio (9) i ε τ ε Sτ ( ) ( ) c π l c S ε φp ( ) = H d + H d πv a( ) v a( ), (5) ad th gral oltio of th homogo qatio corrpodig to (9) i l ε ε ε a l ε φh( ) = K + K d. (5) ( ) Th gral oltio of (9) i φ( ) = φ ( ) + φ ( ). (54) h p Two othr idpdt qatio ar rqird to fid th cotat K ad K. A raoabl coditio to dtrmi K i that φ( ), thrfor, K =. Thr i o particlar bodary coditio at =. Th maig of th mltiplir i th Maxwllia trm ε K ca b xplaid ig th ormalizatio coditio. Sic or ditribtio fctio i ormalizd to th mbr of particl, th itgral ovr th tir vlocity pac hold b qal to th dity of particl of typ, which, i tr, qal th orc rat S tim th dratio actio, i.. κτ of orc 4 π φ( ) d = κτ S, (55) whr κ i a dimiol cotat, ad κτ i th tim rqird to attai th tady tat. Uig th fact that π / ε d = ε 4, (56) 8

9 w obtai th rlatiohip btw K ad κ κs τ 4 K = ( ) / φ p d πε 4π. (57) 4.. Slowig-dow ad vlocity diffio i oiothrmal plama It i mor difficlt to obtai th xact aalytical oltio, wh targt plama pci hav diffrt tmpratr. I thi bctio w dcrib a mrical oltio of th iotropic problm (9)-(4). For th mrical tratmt itad of δ ( ) w a dlta-lik fctio ( ) ( ) =, (58) π whr i a mall dimiol paramtr corrpodig th pak width, ad th orc fctio S ( ) giv by S S ( ) =. (59) 4π ( ) Th right-had id of (9) i th Sτ f ( ) = 4π v π c ( ). (6) ot that a( ) ad b( ) ar diffrt fctio giv by (4), (5), ad (), ad thr i o impl proportioality btw thm i cotrat to th iothrmal ca coidrd i bctio 4.. To olv th problm formlatd by (9)-(4), ad (6) ovr th itrval [, ] a iform grid whr k,, w itrodc = + ( k ) h, (6) k L R L h =, (6) ad i th grid dimio. Uig forward diffrc drivativ at = = L, i.. for k =, ctral diffrc drivativ at th ir grid poit, i.. for k,( ), ad backward diffrc drivativ at = = R, i.. k =, w approximat qatio (9) by a ytm of liar algbraic L R qatio Aφ = f, (6) 9

10 T whr φ = (,,..., ) i th oght tor of th oltio ovr th grid, (,,..., ) φ φ φ right had id tor, ad matrix f = f f f i th T b c µ... a b c... a b c... a4 b4 c4... A = a b c... a b c... η a b (64) appar to b almot tridiagoal xcpt for th two xtrao lmt A, = µ ad A, = η. Th mai diagoal lmt ar th lowr diagoal lmt ar th ppr diagoal lmt ar p q b = r h h +, p k p q bk = rk, k,( ), ad b h = r h + h +, (65) ad th rmaiig two lmt ar a k = pk qk h h, k,( ) p, ad q a = h h, (66) q p c = h h, ad pk qk c = k h + h, k,( ), (67) µ = p ad p h η =. (68) h To mak th ytm trly tridiagoal, w prmltiply both id of (6) by almot ity matrix ( µ c) Q = (69) ( η a ) Th rltig ytm radily olbl by dobl wp mthod i

11 whr Aɶ φ = fɶ, (7) bɶ cɶ... a b c... a b c... a4 b4 c4... Aɶ = QA = a b c... a b c... aɶ bɶ, (7) ad b ɶ µ = b a, µ η cɶ = c b, aɶ c = a b, bɶ η = b c, (7) a a c µ η f ɶ = Qf = f f, f, f,..., f, f f c a. (7) It i poibl to itrodc th bodary coditio aalogo to φ( ) o that th ytm rmai tridiagoal. If R, a raoabl approximatio of thi bodary coditio i T φ = φ( ) =. Thi corrpod to η =, a =, b =, ad f =. Thr i o pcific R bodary coditio at =. Thi ma that th mrical oltio of (7) will rprt a L particlar oltio of (9), aalogo to th aalytical rlt (54) with K = ad a idfiit val of K or κ, which, i pricipl, ca b dtrmid ig th ormalizatio coditio. Howvr, at high vlociti, roghly [, ], whr oltio (44) i mall, th particlar oltio aalogo to (5) will domiat, which i dtrmid by th orc fctio paramtr. Th, if w ar itrtd oly i th high rgy tail of th ditribtio, bt ot i th low rgy part, thr i o d to look for a dfiit val of K or κ. Th mrical oltio hold coicid with th aalytical rlt obtaid for th ca of iothrmal targt plama i th prvio bctio. Fig. how calclatio rlt for th paramtr giv i Tabl I ad Tabl II a a xampl. W how th rgy ditribtio fctio 4π E φ ( ) vr m m m E = itad of th oltio φ ( ) itlf, ic it i mor apprhibl from th practical viwpoit. Th xact aalytical oltio how by a olid gray crv corrpod to formla (5)-(54) with K = ad K giv by (57), whr th dimiol paramtr

12 κ =.4. Th ormalizatio coditio i xprd by (55). ot that, a it ca b from (5), at = fctio φ( ) go to mi ifiity bca of th cod trm i (5). Thi iglarity formally tak plac d to th of phrical polar coordiat i vlocity pac. Th probability dity for vlocity magitd φ ( ) ar both fiit, ic thy icld th appropriat Jacobia. φ( ) ad th probability dity for kitic rgy Th mrical oltio of th tridiagoal ytm of liar algbraic qatio (7) how by th dahd crv i Fig. wa obtaid for L = 8, R 8 =, ad = 496. Th olid black crv how th implifid oltio (8) with b( ) giv by (7). Th, th xact aalytical oltio for th iothrmal targt plama ad th corrpodig mrical oltio coicid at high rgi. Thir Maxwllia part at low rgi alo coicid for th cho val of paramtr κ. Th lowig-dow oltio (8) fail to dcrib th high rgy tail of th ditribtio corrctly ad i itriically iapplicabl to dmotrat th Maxwllizatio proc, ic importat phyical proprti ar miig i th implifid qatio glctig th diffio tor. Tabl I. Tt particl orc paramtr. Tabl II. Targt plama pci. Spci Dtro Elctro Z =, m 8 = 9.9 g Charg mbr Z = Ma 4 =.44 g m Ijctio rgy E = 5 kv Sorc rat 4 S =. cm - - Width paramtr = 4 =.8 cm -, 5 T = kv Hlio Z =, m = g H H 4 =.6 cm -, 5 H H T = kv Alpha Z = 4, m = g H 4 H 4 4 =. cm -, 4 5 H H T = kv Proto Z p =, m p 4 =.67 g 4 p =. cm -, p 5 T = kv

13 Fig.. Exact aalytical oltio (olid gray crv), mrical oltio (dahd black crv) ad implifid aalytical oltio (olid black crv) of th iotropic problm for 5 kv dtro ijctd ito iothrmal H : H : H (.6 :. :.) plama at T = 5 kv Aiotropic problm 5.. Slowig-dow ad pitch agl cattrig I thi bctio w obtai a aalytical tady tat oltio to qatio (4) with a( ) = ad aiotropic orc fctio (6). Diffrtial oprator = ( ζ ) ζ ζ (74) i th o that occr i Lgdr qatio. It idpdt oltio ar Lgdr fctio of th firt kid P ( ζ ) ad Lgdr fctio of th cod kid Q ( ζ ). Sic th lattr ar iglar at ζ = ± (i.. ϑ = ad ϑ = π ), it i maigfl to arch for a oltio i th form of a xpaio

14 φ(, ζ ) = φ ( ) P ( ζ ) (75) = ggtd i [] ad applid i [6,7]. I cotrat to [6,7], w do ot hat to implify th qatio, ad obtai th oltio i gral form itabl for b( ) ad c( ) giv ithr by xact formla (5), (6), (), ad (), or by implifid formla (7), (8). Sbtittig (75) ito (4) with a( ) = ad ig th idtity lad to qatio P ( ζ ) = ( + ) P ( ζ ) (76) φ b S τ b φ c φ P ζ δ ζ =. (77) ( ) + ( ) ( + ) ( ) ( ) ( ) = ( ) ( ) π Mltiplyig both id of (77) by ( ) m whr δ m i Krockr ymbol, ad dotig P ζ, itgratig ovr [,], ig th orthogoality coditio P ( ζ ) P ( ζ ) dζ = δ, (78) m + m ( ζ ) P ( ζ ) dζ (79) = w arriv at firt ordr ordiary diffrtial qatio φ b ( + ) c( ) + S τ b b v b + φ ( ) = δ ( ) ( ) ( ) π c ( ). (8) Th gral oltio of th corrpodig homogo qatio obtaid by variabl paratio mthod i A ( + ) c( ɶ ) φ ( ) = xp d b( ) ɶ, (8) b( ɶ ) whr A i a arbitrary cotat. Th oltio of ihomogo qatio (8) ca b obtaid by variatio of cotat A. Rgardig it a a kow fctio A( ), ad btittig (8) ito (8) yild th drivativ + Sτ ( + ) c( ɶ ) A ( ) = ( δ ) xp d πv ɶ. (8) c b( ɶ ) Th, A ( ) = vrywhr xcpt =, whr th xpot i (8) qal ity. Thrfor, itgratig (8), w hav 4

15 + S τ A = H + A ɶ, (8) ( ) ( ) π whr A ɶ i a arbitrary cotat. Amig φ ( ), w fid A ɶ =. Fially, th oltio of (8) i Sτ H ( ) c( ɶ ) φ ( ) = ( + ) xp ( ) + d 4 π b( ) ɶ. (84) b( ) ɶ ot that φ ( ) coicid with (8) bca ( ζ ) i ormalizd to ity, ad P ( ζ ) =. If th orc i moodirctioal, ad th ijctio agl coi i ζ = coϑ, i.. th (79) giv ( ζ ) = δ ( ζ ζ ), (85) = P ( ) ζ. (86) 5.. Complt qatio with lowig-dow, vlocity diffio, ad pitch agl cattrig A mi-aalytical tady tat oltio to qatio (4), icldig a( ), with aiotropic orc fctio (6) ca b obtaid i th form (75). Applyig th procdr imilar to (76)-(79), w arriv at cod ordr ordiary diffrtial qatio a( ) φ b( ) a( ) a φ b c( ) + ( ) ( ) φ + S τ To olv it mrically, w rplac ( ) = δ π δ with ( ) ( ). (87) giv by (58), ad rwrit (87) a whr φ φ p( ) + q( ) + r( ) φ ( ) ( ) = f, (88) a( ) p( ) =, (89) b( ) a( ) a q( ) = + 4 (9) b c( ) r( ) = ( + ), (9) 5

16 Sτ f ( ) = 4π v ( + ) ( ) c π. (9) Eqatio (88) i formally aalogo to (9), th, w ca apply th mrical mthod dcribd i bctio 4. to obtai a oltio ( ) φ ovr a iform grid o a fiit itrval [, ]. Aftr that th fial rlt i calclatd ig (75). Each trm i th ri rqir qatio (88) to b olvd mrically. Th mmatio of covrgig ri i prformd til th rqird rlativ prciio i achivd. A ccfl vrificatio of th algorithm wa prformd a dcribd blow. ot that for = th problm xprd by (88)-(9) rdc to (9)-(4), ad th xact aalytical oltio obtaid i bctio 4. i valid. It ca b d to vrify th mrical algorithm. Aothr poibl way of vrificatio i to artificially rdc a( ) mltiplyig it by a mall cotat,.g., ad obtai a complt mi-aalytical oltio i thi pcial ca. Th rlt hold agr with th implifid aalytical oltio of bctio 5. obtaid for a( ) =. Fig. how calclatio rlt for th paramtr giv i Tabl I ad Tabl II a a xampl. Th orc i moodirctioal, o that (85) ad (86) hold. Ijctio agl i ϑ = i thi xampl. W how th rgy ditribtio fctio E φ(, ζ ) vr m m L m E = itad of th R oltio φ(, ζ ) itlf. mrical oltio of (88) wr obtaid for L = 4, R = 8, ad grid dimio = 496. Fctio φ(, ζ ) wa calclatd by (75). Solid gray crv how th complt mi-aalytical oltio corrpodig to (75) ad (88), takig ito accot lowig-dow, vlocity diffio, ad pitch agl cattrig. Dahd black crv how th implifid aalytical oltio corrpodig to (75) ad (84), takig ito accot lowig-dow ad pitch agl cattrig, ad ig (7), (8) to calclat b( ) ad c( ). Th implifid oltio at all agl fail to dcrib high rgy tail of th ditribtio. Bid, it i tially abl to dmotrat th Maxwllizatio proc obrvd i th low rgy part of th corrct ditribtio. 6

17 Fig.. Complt mi-aalytical oltio (olid gray crv), ad implifid aalytical oltio (dahd black crv) of th aiotropic problm for 5 kv dtro ijctd ito iothrmal H : H : H (.6 :. :.) plama at T = 5 kv Tim-dpdt problm 6.. Slowig-dow ad pitch agl cattrig I thi bctio th otatioary problm i olvd. Coidr qatio (4) with timdpdt orc fctio S S (, ζ, τ ) = δ ( ) ( ζ )( H ( τ τ ) H ( τ τ) ), (9) π whr τ ad τ digat th orc actio tart ad top tim rpctivly, ad < τ < τ. A implifid qatio with a( ) = ca b radily olvd ig aalytical tchiq. A oppod to [7], w obtai th oltio i gral form itabl for b( ) ad c( ) giv ithr by 7

18 xact formla (5), (6), (), ad (), or by implifid formla (7), (8). Amig th iitial coditio xpadig φ(, ζ, τ ) =, (94) = τ φ(, ζ, τ ) = φ (, τ ) P ( ζ ), (95) = rcallig (76) ad (78), ad applyig Laplac traform pτ φ (, p) = φ (, τ ) dτ, (96) w rdc (4) with a( ) = to firt ordr ordiary diffrtial qatio pτ pτ ( ) φ b p ( + ) c( ) Sτ ( + ) δ ( ) + φ(, p) = b( ) b( ) b( ) 4 π b( ) p. (97) xt, w olv th corrpodig homogo qatio by variabl paratio mthod ad th by variatio of cotat w fid ( ) ( ) d d + c ɶ d p ɶ ɶ τ p ɶ ɶ τ + + S ( ) ( ) ( ) τ ( ) ( ) b b b H ɶ + ɶ ɶ ɶ φ (, p) = 4 π b( ) p. (98) Sic < rgio i coidrd i thi implifid problm with o vlocity diffio, ad b( ) >, th itgral d ɶ ɶ b( ɶ) >, ad th w ca th kow Laplac traform p p H ( τ ) for >. (99) Fially, th tim-dpdt oltio i c( ɶ ) ( + ) dɶ b( ɶ ) Sτ ( + ) ( ) ɶ ɶ = H H 4 π b( ) b ɶ H d ɶ dɶ φ(, τ ) τ τ τ τ. () ( ) b( ) ɶ For =, τ =, ad τ = fctio Sτ H ( ) d φ(, τ ) = H τ 4 π b( ) ɶ ɶ b( ) ɶ () 8

19 i th otatioary lowig-dow oltio of (4) with a( ) = ad c( ) =, which i imilar to otatioary oltio obtaid i [8,9]. Sic th tim-dpdt Haviid tp fctio qal ity for τ, thi paag to th limit mak () coicid with tady tat oltio (84), ad alo mak () coicid with th implt tady tat lowig-dow ditribtio (8). 6.. Complt qatio with lowig-dow, vlocity diffio, ad pitch agl cattrig h τ Th problm (4), (9) i olvd mi-aalytically ovr a iform grid τ j = ( j ) h τ, j, M, = Τ ( M ), o a fiit tim itrval τ [, Τ ] ad a iform grid = + ( i ) h, i,, =, o a fiit vlocity itrval [, ] h ( ) ( ) R L applyig Crak icolo mthod, propod i [], to th qatio for φ (, τ ) L R i L, mployig xpaio (95) ad whr φ φ φ = φ,,, τ, () τ φ φ φ φ φ,,, τ p( ) q( ) r( ) ( ) (, ) = + + φ + f τ, () a( ) p( ) =, (4) b( ) a( ) a q( ) = + 4 (5) b c( ) r( ) = ( + ), (6) Th dicrt cotrpart of () ( + ) ( ) S τ f H H ( ) (, τ ) = ( τ τ ) ( τ τ) 4π π. (7) i, j+ i, j φ φ i, j+ φ φ i, j φ φ = φ,,, τ φ,,, τ (8) hτ ivolvig forward diffrc drivativ at = = L, i.. for i =, ctral diffrc drivativ at th ir vlocity grid poit, i.. for i,( ), ad backward diffrc drivativ at 9

20 = =, i.. i =, aftr applyig a impl tridiagoalizatio rmblig (69), lad to a R tridiagoal ytm of liar algbraic qatio ( Φ ) j+ j j j+ Φ = Φ + +, (9) A Φ B D D which d to b olvd at vry tp i tim to gt th oltio tor at th bqt tim grid poit ( j + ) ig th oltio tor zro iitial coditio. ( φ, φ,..., φ ) j+, j+, j+, j+ T Φ =, () j Φ prvioly obtaid at th prcdig tim grid poit j ad amig Tim-idpdt tridiagoal matric i (9) ar ad bɶ cɶ... a bɶ c... a bɶ c... a4 bɶ 4 c4... A = a bɶ c... a bɶ c... aɶ bɶ () bˆ cˆ... a bˆ c... a bˆ c... a ˆ 4 b4 c4... B = a ˆ b c... a ˆ b c... aˆ ˆ b. () Mai diagoal lmt of th matric ar calclatd a r( i ) p( i ) bɶ i = hτ, ˆ r( i ) p( ) i bi = hτ + h h Uppr ad lowr diagoal lmt ar for i,( ). ()

21 hτ p( i ) q( i ) ai = h h Th rmaiig lmt ar giv by h p( ) q( i ) = + h i, c τ i h for i,( ). (4) h p( ) q( ) h p( ) a bɶ τ τ = + r( ), h h h c (5) h p( ) q( ) h p( ) c bɶ τ τ = + + r( ), h h h a (6) ˆ h p( ) q( ) h p( ) a b = + r( ) + τ τ h h h c, (7) ˆ h p( ) q( ) h p( ) c b = + + r( ) + τ τ h h h a, (8) p( ) q( ) h p( ) bɶ τ p( ˆ ) q( ) hτ p( ) b aɶ = hτ +, aˆ = hτ +, (9) h h h a h h h a q( ) p( ) h p( ) bɶ τ q( ) p( ) h ˆ τ p( ) b cɶ = hτ, cˆ = hτ. () h h h c h h h c j j j j Tim-dpdt tor = ( D, D,..., D ) D i calclatd a T j hτ Di = f ( i, τ j ) for i,( ), () j h h p( ) τ τ j h h p( ) τ τ D = f (, τ j ) f (, τ j ), D = f (, τ j ) f (, τ j ). () c h a h Th rltig ditribtio fctio i calclatd ig (95). Each trm i th ri rqir qatio (9) to b olvd mrically withi th tim loop. Th mmatio of covrgig ri i prformd til th rqird rlativ prciio i achivd. A ccfl qatitativ vrificatio of th algorithm wa prformd i two way. Sic th ditribtio fctio i ormalizd to tt particl dity, th itgral of th ditribtio fctio ovr th tir vlocity pac hold b qal to th orc rat S mltiplid by th orc opratio dratio τ ( τ τ ), whil th orc (9) i actig (i.. for τ < τ < τ ). Aftr th orc trmiatio (i.. for τ > τ) th dity of tt particl hold rmai cotat ad qal to th orc rat S mltiplid by th total opratio dratio τ ( τ τ ). Aothr way to vrify th mi-aalytical oltio i to artificially rdc th fctio a( ) rpoibl for vlocity diffio, mltiplyig it by a mall cotat,.g.. I thi pcial ca th complt mi-aalytical oltio hold agr with th xact aalytical oltio giv by (95) ad () obtaid with a( ) =.

22 (a) (b)

23 (c) (d) Fig.. Complt mi-aalytical tim-dpdt oltio of th aiotropic problm for 5 kv dtro ijctd ito iothrmal H : H : H (.6 :. :.) plama at T = 5 kv. Evoltio 4 drig th orc actio (a) for τ =.5, (b) for τ =.5, (c) for τ =., ad (d) for τ =

24 (a) (b) 4

25 (c) (d) Fig. 4. Complt mi-aalytical tim-dpdt oltio of th aiotropic problm for 5 kv dtro ijctd ito iothrmal H : H : H (.6 :. :.) plama at T = 5 kv. Rlaxatio to 4 tatitical qilibrim aftr th orc trmiatio (a) for τ = 5.95, (b) for τ = 5., (c) for τ = 5.4, ad (d) for τ = 6.. 5

26 Fig. ad Fig. 4 how calclatio rlt for th paramtr giv i Tabl I ad Tabl II a a xampl, amig th orc fctio (9) with τ =. ad τ = 5.. Th orc i moodirctioal i thi xampl, ad th ijctio agl i ϑ =. Agai, w how th rgy ditribtio fctio E φ(, ζ, τ ) vr m m m E = itad of th oltio φ(, ζ, τ ) itlf. mrical oltio of (8) wr obtaid for L =, R = 7, ad vlocity grid dimio = 89. Tim grid dimio wa M = Fctio φ(, ζ, τ ) wa calclatd by (95). Fig. illtrat th tim voltio of th ditribtio fctio drig th orc actio. At th bgiig, Fig (a), th ditribtio i pakd i th viciity of th ijctio vlocity ad ijctio agl. Aftr that tt particl cattr i agl ad low dow to lowr rgi, Fig (b), ad thrmaliz, Fig (c), (d), approachig at low rgi th tatitical qilibrim with targt plama pci. Whil th orc with cotat rat i actig, th poplatio of thrmalizd particl i gradally icraig, ad th high rgy tail of th ditribtio, oc dvlopd, i ot chagig, a i Fig (c) ad (d), ad corrpod to th high rgy part of th tady tat oltio obtaid i bctio 5.. I or xampl at τ = tt particl dity i =.55 cm -, which i abot o ordr of magitd lowr tha diti of targt plama pci. W thrfor coidr matric A ad B a tim-idpdt ad glct th colliio of tt particl with thmlv. If th orc opratio dratio i logr, thrmalizd tt particl ca b tak ito accot a o of th compot of targt plama. Fig. 4 illtrat th rlaxatio of th tt particl ditribtio to tatitical qilibrim aftr th orc trmiatio. A gradal rdctio i th high rgy tail, Fig. 4 (a), (b), ca b, followd by iotropiatio, Fig. 4 (c), ad Maxwllizatio, Fig. 4 (d). ot that prvioly kow tim-dpdt aalytical oltio, ch a [7], do ot tak ito accot vlocity diffio, ad thrfor ar iapplicabl to dcrib high-rgy tail of th ditribtio corrctly, ad alo caot dmotrat thrmalizatio. I additio, implifid oltio do ot corv th mbr of particl owig to th of trcatd Colomb colliio oprator. 6

27 7. Smmary Smi-aalytical tatioary ad otatioary oltio of th kitic qatio with Colomb colliio trm ad a moorgtic orc fctio hav b obtaid, glctig th patial ihomogity ad th lctric fild. Exact formlatio of Colomb colliio trm i d, amig that azimthal ymmtry tak plac ad that th targt plama pci ar Maxwllia. Th oltio rflct lowig-dow, vlocity diffio, ad pitch agl cattrig ffct. Exact aalytical iotropic tady tat oltio takig ito accot lowig-dow ad vlocity diffio, ad xact aalytical aiotropic tady tat ad tim-dpdt oltio takig ito accot lowig-dow ad pitch agl cattrig hav b obtaid ad d to vrify th miaalytical rlt. Prvio implifid oltio, ch a [6,7], ar iappropriat to dcrib high rgy tail of th ditribtio ad ar phyically iadqat at lowr rgi, whr th Maxwllizatio proc hold b obrvabl. Th rlt may b fl i mrical modlig, pcially cocrig clar proc i magtically cofid plama, ad alo advacd localizd, agl-rolvd prathrmal particl diagotic data aalyi ad itrprtatio. Ackowldgmt Thi work wa partially pportd by RFBR grat o офи_ц, Roatom Cotract o. Н.4б.45..., Cotract o of Miitry of Edcatio ad Scic of Ria ad alo Grat-i-Aid for JSPS Fllow o. 867 at atioal Ititt for Fio Scic, Japa. Th athor apprciat dicio of applid apct rlatd to clar fio tro orc dvlopmt with Prof. B.V. Ktv ad Prof. V.Y. Srgv, ad apct rlatd to or cotio collaboratio o advacd fat particl diagotic with Prof. S. Sdo, Dr. T. Ozaki, ad Dr.. Tamra. Th athor wold alo lik to xpr hi gratitd to Prof. Y.. Dtrovkii for a favorabl dicio of th macript. 7

28 Rfrc [] L. Lada, Di kitich Glichg für d Fall Colombchr Wchlwirkg, Phyikalich Zitchrift dr Sowjtio,, 54 (96). [] B.A. Trbikov, Th diffrtial form of th kitic qatio of a plama for th ca of Colomb colliio, Sov. Phy. - J. Expr. ad Thor. Phy., 7, 96 (958). [] B.A. Trbikov, Particl Itractio i a Flly Ioizd Plama. I M.A. Lotovich, d., Rviw of Plama Phyic, vol. (Coltat Bra, w York, 965). [4] Y.. Dtrovkii, D.P. Kotomarov, mrical Simlatio of Plama (Sprigr-Vrlag, Brli, 986). [5] I.S. Gradhty, I.M. Ryzhik, Tabl of Itgral, Sri, ad Prodct (Acadmic Pr, 7). [6] J.G. Cordy, W.G.F. Cor, Ergtic particl ditribtio i a toroidal plama with tral ijctio hatig, Phy. Flid, 7, 66 (974). [7] J.D. Gaffy, Ergtic io ditribtio rltig from tral bam ijctio i tokamak, J. Plama Phyic, 6, 49 (976). [8].V. Grihaov, Y.. Dtrovkii,.V. Kartkia, D.P. Kotomarov, Ergy trafr from fat io to a plama, Sov. J. Plama Phy.,, 4 (976). [9] J.G. Cordy, M.J. Hoghto, Problm aociatd with th ijctio of a high-rgy tral bam ito a plama, cl. Fio,, 5 (97). [] T.H. Stix, Stability of a toroidal plama bjct to tral ijctio, Phy. Flid, 6, 9 (97). [] M.. Roblth, W.M. MacDoald, D.L. Jdd, Fokkr-Plack Eqatio for a Ivr- Sqar Forc, Phy. Rv., 7, (957). [] J. Crak, P. icolo, A practical mthod for mrical valatio of oltio of partial diffrtial qatio of th hat-codctio typ, Proc. Camb. Phil. Soc., 4, 5 (947). 8

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 1/9 h govrig balac qatio that dcrib diffio proc i itatio ivolvig two idpdt variabl appar typically a xyt,, fxyt,, 0 t i g, t o 1 t q t x, y,0 c x, y

More information

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H.

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H. Joral of Scic Ilaic Rpblic of Ira 5(: -9 ( Uirity of Thra ISSN 6- Th Ayptotic For of Eigal for a Cla of Str-Lioill Probl with O Sipl Trig Poit A. Jodayr Abarfa * ad H. Khiri Faclty of Mathatical Scic Tabriz

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations Global Joral of Scic Frotir Rarch: F Mathmatic ad Dciio Scic Volm 5 I 5 Vrio Yar 5 Tp : Dobl Blid Pr Rviwd Itratioal Rarch Joral Pblihr: Global Joral Ic USA Oli ISSN: 9- & Prit ISSN: 975-589 Th Variatioal

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

A Substitution Method for Partial Differential Equations Using Ramadan Group Integral Transform

A Substitution Method for Partial Differential Equations Using Ramadan Group Integral Transform Aia Rarc Joral of Matmatic 74: -0 07; Articl o.arjom.3786 ISSN: 456-477X A Sbtittio Mtod for Partial Diffrtial Eqatio i Ramada Grop Itral Traform Moamd A. Ramada * Kamal R. Rala Adl R. Hadod ad Amaa K.

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs G. Math. Not Vol. No. Jauary 3 pp. 6- ISSN 9-78; Copyright ICSRS Publicatio 3 www.i-cr.org Availabl fr oli at http://www.gma.i Solutio to Voltrra Sigular Itgral Equatio ad No Homogou Tim Fractioal PDE

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Superfluid Liquid Helium

Superfluid Liquid Helium Surfluid Liquid Hlium:Bo liquid ad urfluidity Ladau thory: two fluid modl Bo-iti Codatio ad urfluid ODLRO, otaou ymmtry brakig, macrocoic wafuctio Gro-Pitakii GP quatio Fyma ictur Rfrc: Thory of quatum

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Maximizing Power Generation in Chemical Systems and Fuel Cells

Maximizing Power Generation in Chemical Systems and Fuel Cells Procdig of th World Cogr o Egirig Vol WCE, Jly 6-8,, Lodo, U.K. Maximizig Powr Gratio i Chmical Sytm ad Fl Cll S. Siitycz Abtract Powr maximizatio approach i applid for dyamical chmical gi ad tatic olid

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Predator Population Dynamics Involving Exponential Integral Function When Prey Follows Gompertz Model

Predator Population Dynamics Involving Exponential Integral Function When Prey Follows Gompertz Model Op Joral of Modllig ad Simlatio, 25, 3, 7-8 Pblishd Oli Jly 25 i SciRs. http://www.scirp.org/joral/ojmsi http://dx.doi.org/.4236/ojmsi.25.338 Prdator Poplatio Dyamics Ivolvig Expotial Itgral Fctio Wh Pry

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Spin(calori)tronics = spin+heat+electronics

Spin(calori)tronics = spin+heat+electronics Spi(calori)troic = pi+hat+lctroic Grrit aur Sdai 仙台 Populatio:.046 illio Grrit E.W. aur Grrit aur Tohoku Uivrity ( 東北 学 ) Udrgraduat,094 Potgraduat 7,704 itratioal tudt,346 ctur DC Magtolctroic i. dfiitio

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

工程數學 (I) Advanced Engineering Mathematics (I)

工程數學 (I) Advanced Engineering Mathematics (I) 工程數學 I Advacd Egirig Mathmatic I 機械與自動化工程系 教師王曉剛 中華民國 99 年 9 月 Advacd Egirig Mathmatic I or Otli: A. Ordiar diffrtial qatio Mathmatic modlig of phical tm Sparabl ODE ad act qatio t ordr ODE Liar ODE Stm

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

IV Design of Discrete Time Control System by Conventional Methods

IV Design of Discrete Time Control System by Conventional Methods IV Dig of Dicrt im Cotrol Sytm by Covtioal Mthod opic to b covrd. Itroductio. Mappig bt th pla ad pla 3. Stability aalyi 4. rait ad tady tat rpo 5. Dig bad o root locu mthod 6. Dig bad o frqucy rpo mthod

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

coulombs or esu charge. It s mass is about 1/1837 times the mass of hydrogen atom. Thus mass of electron is

coulombs or esu charge. It s mass is about 1/1837 times the mass of hydrogen atom. Thus mass of electron is 1 ATOMIC STRUCTURE Fudamtal Particls: Mai Fudamtal Particl : (a) Elctro: It is a fudamtal particl of a atom which carris a uit gativ charg. It was discovrd by J.J. Thomso (1897) from th studis carrid out

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Asymptotic Behaviors for Critical Branching Processes with Immigration

Asymptotic Behaviors for Critical Branching Processes with Immigration Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp. 537 549 Publihd oli: March 5, 9 http://doi.org/.7/4-9-744-6 http://www.actamath.com Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n Adminitrivia Lctur : Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations Availabl at http://pvau.du/aa Appl. Appl. Math. ISSN: 9-9 Spcial Iu No. Augut 00 pp. 0 Applicatio ad Applid Mathatic: A Itratioal Joural AAM Rvid Variatioal Itratio Mthod for Solvig St of Ordiar Diffrtial

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

7. Differentiation of Trigonometric Function

7. Differentiation of Trigonometric Function 7. Diffrtiatio of Trigootric Fctio RADIAN MEASURE. Lt s ot th lgth of arc AB itrcpt y th ctral agl AOB o a circl of rais r a lt S ot th ara of th sctor AOB. (If s is /60 of th circfrc, AOB = 0 ; if s =

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Thermocapillary effect on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow

Thermocapillary effect on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow hrmocapillary ffct o th cro-tram migratio of a urfactat-lad droplt i Poiuill flow Saya Da Shubhadp Madal S K Som ad Suma Chakraborty Dpartmt of Mchaical Egirig Idia Ititut of chology Kharagpur Kharagpur

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

LESSON 10: THE LAPLACE TRANSFORM

LESSON 10: THE LAPLACE TRANSFORM 0//06 lon0t438a.pptx ESSON 0: THE APAE TANSFOM ET 438a Automatic ontrol Sytm Tchnology arning Objctiv Aftr thi prntation you will b abl to: Explain how th aplac tranform rlat to th tranint and inuoidal

More information

Chapter 10 Time-Domain Analysis and Design of Control Systems

Chapter 10 Time-Domain Analysis and Design of Control Systems ME 43 Sytm Dynamic & Control Sction 0-5: Stady Stat Error and Sytm Typ Chaptr 0 Tim-Domain Analyi and Dign of Control Sytm 0.5 STEADY STATE ERRORS AND SYSTEM TYPES A. Bazoun Stady-tat rror contitut an

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction Th Rlativistic Strn-Grlach Forc C. Tschalär. Introduction For ovr a dcad, various formulations of th Strn-Grlach (SG) forc acting on a particl with spin moving at a rlativistic vlocity in an lctromagntic

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information