ME 141. Lecture 8: Moment of Inertia

Size: px
Start display at page:

Download "ME 141. Lecture 8: Moment of Inertia"

Transcription

1 ME 4 Engineering Mechanics Lecture 8: Moment of nertia Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET sshakil@me.buet.ac.bd, shakil679@gmail.com Website: teacher.buet.ac.bd/sshakil Courtes: Vector Mechanics for Engineers, Beer and Johnston

2 Moment of nertia of an Area Second moments or moments of inertia of an area with respect to the and aes, da da Evaluation of the integrals is simplified b choosing da to be a thin strip parallel to one of the coordinate aes. For a rectangular area, da h 0 bd bh The formula for rectangular areas ma also be applied to strips parallel to the aes, d d d da d

3 Polar Moment of nertia The polar moment of inertia is an important parameter in problems involving torsion of clindrical shafts and rotations of slabs. J 0 r da The polar moment of inertia is related to the rectangular moments of inertia, J r da da da 0 da

4 Radius of Gration of an Area Consider area A with moment of inertia. magine that the area is concentrated in a thin strip parallel to the ais with equivalent. A k A k k = radius of gration with respect to the ais Similarl, A J k A k J A k A k O O O O O k k k

5 Sample Problem 9. SOLUTON: A differential strip parallel to the ais is chosen for da. d da da l d Determine the moment of inertia of a triangle with respect to its base. For similar triangles, l b h h h l b h ntegrating d from = 0 to = h, da b h h h h b d h h 0 h da b d h b h h 0 h d bh

6 Prob # 9.9 and 9. Determine b direct integration the moment of inertia of the shaded area with respect to the and aes.

7 Parallel Ais Theorem Consider moment of inertia of an area A with respect to the ais AA da The ais BB passes through the area centroid and is called a centroidal ais. da da d d da da d da Ad parallel ais theorem

8 Parallel Ais Theorem Moment of inertia T of a circular area with respect to a tangent to the circle, 4 Ad r r r T 5 4 r 4 4 Moment of inertia of a triangle with respect to a centroidal ais, AA BB BB AA 6 bh Ad Ad bh bh h

9 Moments of nertia of Composite Areas The moment of inertia of a composite area A about a given ais is obtained b adding the moments of inertia of the component areas A, A, A,..., with respect to the same ais.

10 Sample Problem 9.5 Determine the moment of inertia of the shaded area with respect to the ais. SOLUTON: Compute the moments of inertia of the bounding rectangle and half-circle with respect to the ais. The moment of inertia of the shaded area is obtained b subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle.

11 Sample Problem 9.5 SOLUTON: Compute the moments of inertia of the bounding rectangle and half-circle with respect to the ais. Rectangle: bh mm 4 4r 90 a 8. mm b 0 - a 8.8 mm A r mm Half-circle: moment of inertia with respect to AA, r mm AA moment of inertia with respect to, AA Aa mm moment of inertia with respect to, Ab mm

12 Sample Problem 9.5 The moment of inertia of the shaded area is obtained b subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle mm mm mm 4

13 Prob # 9.6 Determine the moments of inertia of the shaded area shown with respect to the and aes when a =0 mm.

14 Prob # 9.46 Determine the polar moment of inertia of the area shown with respect to (a) point O, (b) the centroid of the area.

15 Moment of nertia of a Mass Angular acceleration about the ais AA of the small mass Dm due to the application of a couple is proportional to r Dm. r Dm = moment of inertia of the mass Dm with respect to the ais AA For a bod of mass m the resistance to rotation about the ais AA is Dm r Dm r Dm r r dm mass moment of inertia The radius of gration for a concentrated mass with equivalent mass moment of inertia is k m k m

16 Moment of nertia of a Mass Moment of inertia with respect to the coordinate ais is r dm dm z Similarl, for the moment of inertia with respect to the and z aes, z dm z dm n S units, r dm kg m n U.S. customar units, lb s slug ft ft ft lb ft s

17 Parallel Ais Theorem For the rectangular aes with origin at O and parallel centroidal aes, dm z dm z z dm dm z dm z z dm z z m m m z z z Generalizing for an ais AA and a parallel centroidal ais, md

18 Moments of nertia of Thin Plates For a thin plate of uniform thickness t and homogeneous material of densit r, the mass moment of inertia with respect to ais AA contained in the plate is AA r rt dm rt AA, area r da Similarl, for perpendicular ais BB which is also contained in the plate, BB rt BB, area For the ais CC which is perpendicular to the plate, CC AA BB rt JC, area rt AA, area BB, area

19 Moments of nertia of Thin Plates For the principal centroidal aes on a rectangular plate, AA BB CC rt rt a b, rt ma AA area BB ab, area rt mb AA, mass BB, mass m a b For centroidal aes on a circular plate, AA BB rt 4 r, rt mr AA area 4 4 CC AA BB mr

20 Moments of nertia of Common Geometric Shapes

21 Sample Problem 9. SOLUTON: With the forging divided into a prism and two clinders, compute the mass and moments of inertia of each component with respect to the z aes using the parallel ais theorem. Add the moments of inertia from the components to determine the total moments of inertia for the forging. Determine the moments of inertia of the steel forging with respect to the z coordinate aes, knowing that the specific weight of steel is 490 lb/ft.

22 Sample Problem 9. SOLUTON: Compute the moments of inertia of each component with respect to the z aes. clindersa in., L in.,.5in., in. : ma m lb ft s each clinder : V m g m lb s 490 lb/ft in 78 in ft.ft s ft m a m L m lb ft s a L m lb ft s

23 Sample Problem 9. prism : m V g m 0. lb s 490 lb/ft 6 78 in ft.ft s ft in prism (a = in., b = 6 in., c = in.): z c 0. 6 m b lb ft s a 0. m c lb ft s Add the moments of inertia from the components to determine the total moments of inertia z z lb ft s 9. 0 lb ft s lb ft s

24 Prob # 9.4 Determine the mass moments of inertia and the radii of gration of the steel machine element shown with respect to ais. (The densit of steel is 7850 kg/m )

Distributed Forces: Moments of Inertia

Distributed Forces: Moments of Inertia Distributed Forces: Moments of nertia Contents ntroduction Moments of nertia of an Area Moments of nertia of an Area b ntegration Polar Moments of nertia Radius of Gration of an Area Sample Problems Parallel

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 9 Distributed CHAPTER VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Forces: Moments of nertia Contents ntroduction

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer 00 The McGraw-Hill Companies, nc. All rights reserved. Seventh E CHAPTER VECTOR MECHANCS FOR ENGNEERS: 9 STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Distributed Forces: Lecture Notes: J. Walt Oler

More information

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. 007 The McGraw-Hill Companies, nc. All rights reserved. Eighth E CHAPTER 9 VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University

More information

ME 101: Engineering Mechanics

ME 101: Engineering Mechanics ME 0: Engineering Mechanics Rajib Kumar Bhattacharja Department of Civil Engineering ndian nstitute of Technolog Guwahati M Block : Room No 005 : Tel: 8 www.iitg.ernet.in/rkbc Area Moments of nertia Parallel

More information

SOLUTION Determine the moment of inertia for the shaded area about the x axis. I x = y 2 da = 2 y 2 (xdy) = 2 y y dy

SOLUTION Determine the moment of inertia for the shaded area about the x axis. I x = y 2 da = 2 y 2 (xdy) = 2 y y dy 5. Determine the moment of inertia for the shaded area about the ais. 4 4m 4 4 I = da = (d) 4 = 4 - d I = B (5 + (4)() + 8(4) ) (4 - ) 3-5 4 R m m I = 39. m 4 6. Determine the moment of inertia for the

More information

Statics: Lecture Notes for Sections 10.1,10.2,10.3 1

Statics: Lecture Notes for Sections 10.1,10.2,10.3 1 Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

10.5 MOMENT OF INERTIA FOR A COMPOSITE AREA

10.5 MOMENT OF INERTIA FOR A COMPOSITE AREA 10.5 MOMENT OF NERTA FOR A COMPOSTE AREA A composite area is made by adding or subtracting a series of simple shaped areas like rectangles, triangles, and circles. For example, the area on the left can

More information

Moments of Inertia. Notation:

Moments of Inertia. Notation: RCH 1 Note Set 9. S015abn Moments of nertia Notation: b d d d h c Jo O = name for area = name for a (base) width = calculus smbol for differentiation = name for a difference = name for a depth = difference

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 0 Engineering Mechanics: Statics Unit 9. Moments of nertia Definition of Moments of nertia for Areas Parallel-Axis Theorem for an Area Radius of Gyration of an Area Moments of nertia for Composite Areas

More information

10 3. Determine the moment of inertia of the area about the x axis.

10 3. Determine the moment of inertia of the area about the x axis. 10 3. Determine the moment of inertia of the area about the ais. m m 10 4. Determine the moment of inertia of the area about the ais. m m 10 3. Determine the moment of inertia of the shaded area about

More information

Moments and Product of Inertia

Moments and Product of Inertia Moments and Product of nertia Contents ntroduction( 绪论 ) Moments of nertia of an Area( 平面图形的惯性矩 ) Moments of nertia of an Area b ntegration( 积分法求惯性矩 ) Polar Moments of nertia( 极惯性矩 ) Radius of Gration

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA)

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) LETURE Third Edition BEMS: SHER ND MOMENT DGRMS (FORMUL). J. lark School of Engineering Department of ivil and Environmental Engineering 1 hapter 5.1 5. b Dr. brahim. ssakkaf SPRNG 00 ENES 0 Mechanics

More information

Moment of Inertia and Centroid

Moment of Inertia and Centroid Chapter- Moment of nertia and Centroid Page- 1. Moment of nertia and Centroid Theory at a Glance (for ES, GATE, PSU).1 Centre of gravity: The centre of gravity of a body defined as the point through which

More information

Second Moments or Moments of Inertia

Second Moments or Moments of Inertia Second Moments or Moments of Inertia The second moment of inertia of an element of area such as da in Figure 1 with respect to any axis is defined as the product of the area of the element and the square

More information

Statics: Lecture Notes for Sections

Statics: Lecture Notes for Sections 0.5 MOMENT OF INERTIA FOR A COMPOSITE AREA A composite area is made by adding or subtracting a series of simple shaped areas like rectangles, triangles, and circles. For example, the area on the left can

More information

ME 243. Lecture 10: Combined stresses

ME 243. Lecture 10: Combined stresses ME 243 Mechanics of Solids Lecture 10: Combined stresses Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

I xx + I yy + I zz = (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + (x 2 + y 2 + z 2 )dm = 2

I xx + I yy + I zz = (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + (x 2 + y 2 + z 2 )dm = 2 9196_1_s1_p095-0987 6/8/09 1:09 PM Page 95 010 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copright laws as the currentl 1 1. Show that the

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

Lecture 6: Distributed Forces Part 2 Second Moment of Area

Lecture 6: Distributed Forces Part 2 Second Moment of Area Lecture 6: Distributed Forces Part Second Moment of rea The second moment of area is also sometimes called the. This quantit takes the form of The phsical representation of the above integral can be described

More information

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 3. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface 4. Structural Equilibrium 4.1 ntroduction n statics, it becomes convenient to ignore the small deformation and displacement. We pretend that the materials used are rigid, having the propert or infinite

More information

EXERCISES Chapter 15: Multiple Integrals. Evaluating Integrals in Cylindrical Coordinates

EXERCISES Chapter 15: Multiple Integrals. Evaluating Integrals in Cylindrical Coordinates 08 Chapter 5: Multiple Integrals EXERCISES 5.6 Evaluating Integrals in Clindrical Evaluate the clindrical coordinate integrals in Eercises 6... 3. 4. 5. 6. Changing Order of Integration in Clindrical The

More information

STATICS VECTOR MECHANICS FOR ENGINEERS: Distributed Forces: Centroids and Centers of Gravity. Tenth Edition CHAPTER

STATICS VECTOR MECHANICS FOR ENGINEERS: Distributed Forces: Centroids and Centers of Gravity. Tenth Edition CHAPTER Tenth E CHAPTER 5 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University Distributed Forces:

More information

AREAS, RADIUS OF GYRATION

AREAS, RADIUS OF GYRATION Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1 MTE STATICS Example Problem P. Beer & Johnston, 004 by Mc Graw-Hill Companies, Inc. The structure shown consists of a beam of rectangular cross section (4in width, 8in height. (a Draw the shear and bending

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. --review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the area of the shaded region. ) f() = + - ) 0 0 (, 8) 0 (0, 0) - - - - - - -0

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 17

ENGR-1100 Introduction to Engineering Analysis. Lecture 17 ENGR-1100 Introduction to Engineering Analysis Lecture 17 CENTROID OF COMPOSITE AREAS Today s Objective : Students will: a) Understand the concept of centroid. b) Be able to determine the location of the

More information

Chapter 5 Equilibrium of a Rigid Body Objectives

Chapter 5 Equilibrium of a Rigid Body Objectives Chapter 5 Equilibrium of a Rigid Bod Objectives Develop the equations of equilibrium for a rigid bod Concept of the free-bod diagram for a rigid bod Solve rigid-bod equilibrium problems using the equations

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPPALLI Distinguish between centroid and centre of gravity. (AU DEC 09,DEC 12)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPPALLI Distinguish between centroid and centre of gravity. (AU DEC 09,DEC 12) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPPALLI 621213 Sub Code: GE 6253 Semester: II Subject: ENGINEERING MECHANICS Unit III: PROPERTIES OF SURFACES AND SOLIDS PART A 1. Distinguish between centroid and

More information

MOI (SEM. II) EXAMINATION.

MOI (SEM. II) EXAMINATION. Problems Based On Centroid And MOI (SEM. II) EXAMINATION. 2006-07 1- Find the centroid of a uniform wire bent in form of a quadrant of the arc of a circle of radius R. 2- State the parallel axis theorem.

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

DEFINITION OF MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA

DEFINITION OF MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA DEFINITION OF MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the moment of inertia

More information

[4] Properties of Geometry

[4] Properties of Geometry [4] Properties of Geometr Page 1 of 6 [4] Properties of Geometr [4.1] Center of Gravit and Centroid [4.] Composite Bodies [4.3] Moments of Inertia [4.4] Composite reas and Products of Inertia [4] Properties

More information

Two small balls, each of mass m, with perpendicular bisector of the line joining the two balls as the axis of rotation:

Two small balls, each of mass m, with perpendicular bisector of the line joining the two balls as the axis of rotation: PHYSCS LOCUS 17 summation in mi ri becomes an integration. We imagine the body to be subdivided into infinitesimal elements, each of mass dm, as shown in figure 7.17. Let r be the distance from such an

More information

ME 141. Lecture 11: Kinetics of particles: Energy method

ME 141. Lecture 11: Kinetics of particles: Energy method ME 4 Engineering Mechanics Lecture : Kinetics of particles: Energy method Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUE E-mail: sshakil@me.buet.ac.bd, shakil679@gmail.com ebsite: teacher.buet.ac.bd/sshakil

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanics Lecture : Statics of particles Ahma Shahei Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.b, shakil6791@gmail.com Website: teacher.buet.ac.b/sshakil

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Chapter 5. Distributed Forces: Centroids and Centers of Gravity

Chapter 5. Distributed Forces: Centroids and Centers of Gravity Chapter 5 Distributed Forces: Centroids and Centers of Gravity Application There are many examples in engineering analysis of distributed loads. It is convenient in some cases to represent such loads as

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

SOLUTION (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + I xx + I yy + I zz = = 2. (x 2 + y 2 + z 2 )dm

SOLUTION (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + I xx + I yy + I zz = = 2. (x 2 + y 2 + z 2 )dm 1 1. Show that the sum of the moments of inertia of a bod, I + I + I, is independent of the orientation of the,, aes and thus depends onl on the location of its origin. I + I + I = Lm ( + )dm + Lm ( +

More information

Sub:Strength of Material (22306)

Sub:Strength of Material (22306) Sub:Strength of Material (22306) UNIT 1. Moment of Inertia 1.1 Concept of Moment of Inertia (Ml). Effect of MI in case of beam and column. 1.2 MI about axes passing through centroid. Parallel and Perpendicular

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

MTE 119 STATICS LECTURE MATERIALS FINAL REVIEW PAGE NAME & ID DATE. Example Problem F.1: (Beer & Johnston Example 9-11)

MTE 119 STATICS LECTURE MATERIALS FINAL REVIEW PAGE NAME & ID DATE. Example Problem F.1: (Beer & Johnston Example 9-11) Eample Problem F.: (Beer & Johnston Eample 9-) Determine the mass moment of inertia with respect to: (a) its longitudinal ais (-ais) (b) the y-ais SOLUTION: a) Mass moment of inertia about the -ais: Step

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

Samantha Ramirez, MSE

Samantha Ramirez, MSE Samantha Ramirez, MSE Centroids The centroid of an area refers to the point that defines the geometric center for the area. In cases where the area has an axis of symmetry, the centroid will lie along

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine

More information

Rectangular box of sizes (dimensions) w,l,h wlh Right cylinder of radius r and height h r 2 h

Rectangular box of sizes (dimensions) w,l,h wlh Right cylinder of radius r and height h r 2 h Volumes: Slicing Method, Method of Disks and Washers -.,.. Volumes of Some Regular Solids: Solid Volume Rectangular bo of sizes (dimensions) w,l,h wlh Right clinder of radius r and height h r h Right cone

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

CIVL Statics. Moment of Inertia - Composite Area. A math professor in an unheated room is cold and calculating. Radius of Gyration

CIVL Statics. Moment of Inertia - Composite Area. A math professor in an unheated room is cold and calculating. Radius of Gyration CVL 131 - Statics Moment of nertia Composite Areas A math professor in an unheated room is cold and calculating. Radius of Gration This actuall sounds like some sort of rule for separation on a dance floor.

More information

Chapter 10: Moments of Inertia

Chapter 10: Moments of Inertia Chapter 10: Moments of Inertia Chapter Objectives To develop a method for determining the moment of inertia and product of inertia for an area with respect to given x- and y-axes. To develop a method for

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES Section Properties Centroid The centroid of an area is the point about which the area could be balanced if it was supported from that point. The word is derived from the word center, and it can be though

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

Chapter 6 Notes, Stewart 8e

Chapter 6 Notes, Stewart 8e Contents 6. Area between curves........................................ 6.. Area between the curve and the -ais.......................... 6.. Overview of Area of a Region Between Two Curves...................

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION PROLEM 7. The rotor of an electric motor has an angular velocity of 600 rpm when the load and power are cut off. The 0-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest.

More information

Chapter 6 Planar Kinetics of a Rigid Body: Force and Acceleration

Chapter 6 Planar Kinetics of a Rigid Body: Force and Acceleration Chapter 6 Planar Kinetics of a Rigid Body: Force and Acceleration Dr. Khairul Salleh Basaruddin Applied Mechanics Division School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) khsalleh@unimap.edu.my

More information

Outline. Organization. Stresses in Beams

Outline. Organization. Stresses in Beams Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

More information

y=1/4 x x=4y y=x 3 x=y 1/3 Example: 3.1 (1/2, 1/8) (1/2, 1/8) Find the area in the positive quadrant bounded by y = 1 x and y = x3

y=1/4 x x=4y y=x 3 x=y 1/3 Example: 3.1 (1/2, 1/8) (1/2, 1/8) Find the area in the positive quadrant bounded by y = 1 x and y = x3 Eample: 3.1 Find the area in the positive quadrant bounded b 1 and 3 4 First find the points of intersection of the two curves: clearl the curves intersect at (, ) and at 1 4 3 1, 1 8 Select a strip at

More information

(Refer Slide Time: 2:08 min)

(Refer Slide Time: 2:08 min) Applied Mechanics Prof. R. K. Mittal Department of Applied Mechanics Indian Institute of Technology, Delhi Lecture No. 11 Properties of Surfaces (Contd.) Today we will take up lecture eleven which is a

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 6 Shearing MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Stresses in Beams and Thin- Walled Members Shearing

More information

Moment Of Inertia Solutions Meriam File Type

Moment Of Inertia Solutions Meriam File Type We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with moment of inertia solutions

More information

Which of the following expressions are monomials?

Which of the following expressions are monomials? 9 1 Stud Guide Pages 382 387 Polnomials The epressions, 6, 5a 2, and 10cd 3 are eamples of monomials. A monomial is a number, a variable, or a product of numbers and variables. An eponents in a monomial

More information

Sect Formulas and Applications of Geometry:

Sect Formulas and Applications of Geometry: 72 Sect 2.6 - Formulas and Applications of Geometry: Concept # Solving Literal Equations for a particular variable. Now, we will examine solving formulas for a particular variable. Sometimes it is useful

More information

Add Math (4047) Paper 2

Add Math (4047) Paper 2 1. Solve the simultaneous equations 5 and 1. [5]. (i) Sketch the graph of, showing the coordinates of the points where our graph meets the coordinate aes. [] Solve the equation 10, giving our answer correct

More information

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010 Solution ME 33 EXAM # FALL SEMESTER 1 8: PM 9:3 PM Nov., 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work

More information

15.3. Moment of inertia. Introduction. Prerequisites. Learning Outcomes

15.3. Moment of inertia. Introduction. Prerequisites. Learning Outcomes Moment of inertia 15.3 Introduction In this section we show how integration is used to calculate moments of inertia. These are essential for an understanding of the dynamics of rotating bodies such as

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b03/c2hlch...

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b03/c2hlch... n this appendix we discuss... 1 of 4 16-Sep-12 19:35 APPENDIX C In this appendix we discuss how to calculate the moment of inertia of an area. 1 The moment of inertia of an area was first introduced in

More information

POE Practice Test - Materials

POE Practice Test - Materials Class: Date: POE Practice Test - Materials Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A student weighs 150 lbs and is standing on a beam which spans

More information

Moments of Inertia (7 pages; 23/3/18)

Moments of Inertia (7 pages; 23/3/18) Moments of Inertia (7 pages; 3/3/8) () Suppose that an object rotates about a fixed axis AB with angular velocity θ. Considering the object to be made up of particles, suppose that particle i (with mass

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular

More information

MOMENT OF INERTIA. Applications. Parallel-Axis Theorem

MOMENT OF INERTIA. Applications. Parallel-Axis Theorem MOMENT OF INERTIA Today s Objectives: Students will be able to: 1. Determine the mass moment of inertia of a rigid body or a system of rigid bodies. In-Class Activities: Applications Mass Moment of Inertia

More information

Chapter 9 Moment of Inertia

Chapter 9 Moment of Inertia Chapter 9 Moment of Inertia Dr. Khairul Salleh Basaruddin Applied Mechanics Division School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) khsalleh@unimap.edu.my PARALLEL-AXIS THEOREM,

More information

MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

2015 ENGINEERING MECHANICS

2015 ENGINEERING MECHANICS Set No - 1 I B. Tech I Semester Supplementary Examinations Aug. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

More information

PROBLEM 16.4 SOLUTION

PROBLEM 16.4 SOLUTION PROBLEM 16.4 The motion of the.5-kg rod AB is guided b two small wheels which roll freel in horizontal slots. If a force P of magnitude 8 N is applied at B, determine (a) the acceleration of the rod, (b)

More information

SOLUTION y ' A = 7.5(15) (150) + 90(150) (15) + 215(p)(50) 2. = mm 2. A = 15(150) + 150(15) + p(50) 2. =

SOLUTION y ' A = 7.5(15) (150) + 90(150) (15) + 215(p)(50) 2. = mm 2. A = 15(150) + 150(15) + p(50) 2. = 9 58. Determine the location of the centroidal ais - of the beam s cross-sectional area. Neglect the size of the corner welds at A and B for the calculation. 15 mm 15 mm B 15 mm 15 mm A = 7.5(15) (15)

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Rotation. EMU Physics Department. Ali ÖVGÜN.

Rotation. EMU Physics Department. Ali ÖVGÜN. Rotation Ali ÖVGÜN EMU Physics Department www.aovgun.com Rotational Motion Angular Position and Radians Angular Velocity Angular Acceleration Rigid Object under Constant Angular Acceleration Angular and

More information

Rotation Moment of Inertia and Applications

Rotation Moment of Inertia and Applications Rotation Moment of Inertia and Applications Lana Sheridan De Anza College Nov 20, 2016 Last time net torque Newton s second law for rotation moments of inertia calculating moments of inertia Overview calculating

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 2 Cal II- Final Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Epress the following logarithm as specified. ) ln 4. in terms of ln and

More information

Exam 05: Chapters 10 and 11

Exam 05: Chapters 10 and 11 Name: Exam 05: Chapters 10 and 11 Select and solve five of the following problems to the best of your ability. You must choose two problem from each column, and a final problem at your own discretion.

More information

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre

More information

Centroid & Moment of Inertia

Centroid & Moment of Inertia UNIT Learning Objectives Centroid & Moment of Inertia After studying this unit, the student will be able to Know what is centre of gravity and centroid Calculate centroid of geometric sections Centre of

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS

Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS 3 Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Question Paper Consists

More information