Basic Principles of Tracer Kinetic Modelling

Size: px
Start display at page:

Download "Basic Principles of Tracer Kinetic Modelling"

Transcription

1 The Spectrum of Medical Imaging Basic Principles of Tracer Kinetic Modelling Adriaan A. Lammertsma Structure X-ray/CT/MRI Physiology US, SPECT, PET, MRI/S Metabolism PET, MRS Drug distribution PET Molecular pathways PET Molecular targets PET, SPECT Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands PET: Quantitative Picomolar Sensitivity Jones, 1996 PET Diagnosis [ 11 C]PIB Uptake Inject Scan 1.4 Control 1.4 AD Wait Increased uptake: Increased binding Increased flow and/or extraction Increased delivery Qualitative PET sufficient for diagnosis (sensitivity/specificity) Quantitative PET needed for monitoring disease progression and response to therapy Data Tolboom, Ossenkoppele, et al. [ 11 C]R116301: NK1 Receptor Ligand Principles of Modelling base-line post-aprepitant Summed image BP ND = / Data Wolfensberger et al.

2 Tracer Model PET scanner Measurement Radioactivity Principles of Modelling Tracer Model Quantitative Evaluation Physiological Parameter Tracer Kinetic Modelling Compartment Models Tracer Model: Purpose: Method: Mathematical description of the fate of the tracer in the human body, in particular in the organ under study To quantify functional entities given the distribution of radioactivity Divide possible distribution of tracer in a limited number of discrete compartments volume tracer Free Bound Glucose metabolism Receptor ligand flow tracer scanning Delivery through arterial blood Input function Nomenclature Consensus nomenclature for in vivo imaging of reversibly binding radioligands Flow Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE J Cereb Flow Metab (2007) 27: 33 39

3 H 2 O as Perfusion Tracer Single Compartment Model Advantages Freely diffusible Metabolically inert Simple kinetics Short half life (2 min) Repeat measurements Disadvantages Short half life On-site cyclotron C A d /dt = C A - = E F; H 2 O: E = 1 = F V T = / = /V T ; H 2 O: =F/V T H 2 O Compartment Model H 2 O Time-Activity Curves C A F F/V T C A F (t) = F C A(t) e -(F/VT)t Non-linear regression F/V T d /dt = F C A -(F/V T ) Solution: (t) = F C A (t) e -(F/V T)t History Delay and dispersion Lammertsma et al. (1990) J Cereb Flow Metab 10: Parametric Images Volume of Distribution CBF Equilibrium - partition coefficient d (t)/dt = 0; dc P (t)/dt=0 V T = /C P Non-equilibrium V T = / C P C P d/dt = C P V T Single tissue compartment model d (t)/dt = C P (t) - (t) At equilibrium: C P (t) - (t) = 0 V T = /C P = / Data Rijbroek, Boellaard, et al.

4 Receptor Ligand Uptake Receptor Studies Three Compartment Model Two Compartment Model C P C F C S metabolites k 5 k 6 metabolites Whole blood C NS PET PET Exchange between C F and C NS fast C ND = C F + C NS Receptor Ligand Model Quantitative PET Study Injection of positron emitting tracer Measurement of time-activity curves Input: plasma (C P ) + whole blood (C WB ) Response: Ideal: tissue ( ) Actual: PET (C PET ) Solution C PET = f (C P, C WB, parameters)

5 PET Receptor Studies PET Receptor Studies PET measurement C PET (t) = (1-V B ) (t) + V B C WB (t) (t) = C ND (t) + C S (t) Relationship with pharmacological parameters = f ND k on (B avail -C S (t)/sa) = k off Note: B avail = B max -B occ (e.g. endogenous ligand) Differential equations V B dc ND (t)/dt = C P (t) - C ND (t) - C ND (t) + C S (t) dc S (t)/dt = C ND (t) - C S (t) Tracer alone = f ND k on B avail = k off K D = k off /k on BP ND = / =f ND B avail /K D Receptor Studies Receptor Studies Parameter of interest Binding Potential: BP ND = / Parameters of interest Tracer alone BP ND = f ND B avail / K D Multiple studies in same subject Separate assessment B avail and K D Binding Potential: BP ND = / Reflects specific binding Tracer alone: BP ND = f ND B avail /K D Volume of distribution: V T = / (1+ / ) Contains non-displaceable component Volume of Distribution Single tissue compartment model At equilibrium: V T = /C P = / C P d/dt = C P Two tissue compartment model At equilibrium: dc ND (t)/dt = dc S (t)/dt = 0 dc S /dt = C ND - C S = 0 C S = ( / ) C ND V T = /C P = (C ND +C S )/C P =(1+ / ) C ND /C P dc ND /dt+dc S /dt = C P - C ND = 0 C ND = ( / ) C P V T = / (1+ / ) Binding Potential input model Direct BP ND = / But: often unstable Indirect Target tissue: V T = / (1+ / ) Reference tissue: V T ' = '/ ' = / BP ND = (V T -V T ')/V T But: reference tissue required Reference tissue model

6 Time after injection (min) Binding Potential Definitions Relative to non-displaceable concentration: BP ND = f ND B avail /K D = (V T -V ND )/V ND = / Overview Kinetic Analysis Process Relative to total plasma concentration: BP P = f P B avail /K D = V T -V ND = / Relative to free plasma concentration: BP F = B avail /K D = (V T -V ND )/f P = /f P Overview kinetic analysis Dynamic PET scan Kinetic model Activity (kbq/ml) Input function Limitations V B Fitting routine time-activity curve Ac (kbq/cc) Tijd (min) Kinetic parameters Limitations Tracer Procedures Model Simplifications Theoretical Model simplifications Complexity physiological process Practical Performance scanner Imperfect implementation Complexity procedure Measurement of blood volume using C O sample: 100% blood, concentration C A PET scanner: tissue concentration concentration is constant: tissue BV = / C A

7 Model Simplifications Pathophysiology C O is a red cell marker Capillary haematocrit < large vessel hematocrit Whole blood concentration is not constant Correction for haematocrit difference required Separate haematocrit measurement Alternative: fixed haematocrit ratio Assumed haematocrit ratio to be checked in pathology A tracer procedure should be reassessed for each new pathophysiological condition Possible breakdown of the model should be considered in interpreting clinical data Limitations Tracer Procedures Complexity Physiological Process Theoretical Model simplifications Complexity physiological process Practical Performance scanner Imperfect implementation Complexity procedure Tracer Metabolite Questions

Using mathematical models & approaches to quantify BRAIN (dynamic) Positron Emission Tomography (PET) data

Using mathematical models & approaches to quantify BRAIN (dynamic) Positron Emission Tomography (PET) data Using mathematical models & approaches to quantify BRAIN (dynamic) Positron Emission Tomography (PET) data Imaging Seminars Series Stony Brook University, Health Science Center Stony Brook, NY - January

More information

Journal of Biomedical Research, 2012, 26(2): Review. PET imaging for receptor occupancy: meditations on calculation and simplification

Journal of Biomedical Research, 2012, 26(2): Review. PET imaging for receptor occupancy: meditations on calculation and simplification Journal of Biomedical Research, 2012, 26(2): 69-76 JBR Review PET imaging for receptor occupancy: meditations on calculation and simplification Yumin Zhang *, Gerard B. Fox Translational Sciences, Global

More information

PET Tracer Kinetic Modeling In Drug

PET Tracer Kinetic Modeling In Drug PET Tracer Kinetic Modeling In Drug Discovery Research Applications Sandra M. Sanabria-Bohórquez Imaging Merck & Co., Inc. Positron Emission Tomography - PET PET is an advanced d imaging i technique permitting

More information

Positron Emission Tomography Compartmental Models: A Basis Pursuit Strategy for Kinetic Modelling

Positron Emission Tomography Compartmental Models: A Basis Pursuit Strategy for Kinetic Modelling Positron Emission Tomography Compartmental Models: A Basis Pursuit Strategy for Kinetic Modelling Roger N. Gunn, Steve R. Gunn, Federico E. Turkheimer, John A. D. Aston, and Vincent J. Cunningham McConnell

More information

Tomography is imaging by sections. 1

Tomography is imaging by sections. 1 Tomography is imaging by sections. 1 It is a technique used in clinical medicine and biomedical research to create images that show how certain tissues are performing their physiological functions. 1 Conversely,

More information

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Marcus Ressner, PhD, Medical Radiation Physicist, Linköping University Hospital Content What is Nuclear medicine? Basic principles of Functional

More information

Parameter identification in medical imaging

Parameter identification in medical imaging Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 017. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Parameter identification in medical imaging Louise Reips

More information

Parametric [ 11 C]flumazenil images. Ursula MH Klumpers, Ronald Boellaard, Dick J Veltman, Reina W Kloet, Witte JG Hoogendijk, Adriaan A Lammertsma

Parametric [ 11 C]flumazenil images. Ursula MH Klumpers, Ronald Boellaard, Dick J Veltman, Reina W Kloet, Witte JG Hoogendijk, Adriaan A Lammertsma 3 Parametric [ 11 C]flumazenil images Ursula MH Klumpers, Ronald Boellaard, Dick J Veltman, Reina W Kloet, Witte JG Hoogendijk, Adriaan A Lammertsma 50 Chapter 3 ABSTRACT Objective: This [ 11 C]flumazenil

More information

Spectral analysis: principle and clinical applications

Spectral analysis: principle and clinical applications REVIEW Annals of Nuclear Medicine Vol. 17, No. 6, 427 434, 2003 Spectral analysis: principle and clinical applications Kenya MURASE Department of Medical Physics and Engineering, Division of Medical Technology

More information

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology Introduction to the Course and the Techniques Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology (jralger@ucla.edu) CTSI Neuroimaging April 2013 Rationale for the Course

More information

Outline Chapter 14 Nuclear Medicine

Outline Chapter 14 Nuclear Medicine Outline Chapter 14 uclear Medicine Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther Introduction Detectors for nuclear

More information

www.aask24.com www.aask24.com www.aask24.com P=Positron E= Emission T=Tomography Positron emission or beta plus decay (+ ) is a particular type of radioactive decay, in which a proton inside a radionuclide

More information

Bioimage Informatics. Lecture 23, Spring Emerging Applications: Molecular Imaging

Bioimage Informatics. Lecture 23, Spring Emerging Applications: Molecular Imaging Bioimage Informatics Lecture 23, Spring 2012 Emerging Applications: Molecular Imaging Lecture 23 April 25, 2012 1 Outline Overview of molecular imaging Molecular imaging modalities Molecular imaging applications

More information

Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-T ime Uptake Data. Generalizations

Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-T ime Uptake Data. Generalizations Journal o/cerebral Blood Flow and Metabolism 5:584-590 1985 Raven Press, New York Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-T ime Uptake Data. Generalizations Clifford S.

More information

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY An alpha particle consists of two protons and two neutrons Common alpha-particle emitters Radon-222 gas in the environment Uranium-234 and -238) in the environment

More information

Strategies to Improve Neuroreceptor Parameter Estimation by Linear Regression Analysis

Strategies to Improve Neuroreceptor Parameter Estimation by Linear Regression Analysis Journal of Cerebral Blood Flow & Metabolism 22:1271 1281 22 he International Society for Cerebral Blood Flow and Metabolism Published by Lippincott Williams & Wilkins, Inc., Philadelphia Strategies to

More information

Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI. David Thomas

Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI. David Thomas Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI David Thomas Principal Research Associate in MR Physics Leonard Wolfson Experimental Neurology Centre UCL

More information

Functional Neuroimaging with PET

Functional Neuroimaging with PET Functional Neuroimaging with PET Terry Oakes troakes@wisc.edu W.M.Keck Lab for Functional Brain Imaging and Behavior Seeing the Brain Just look at it! Anatomic Images (MRI) Functional Images PET fmri (Just

More information

Dynamic Contrast Enhance (DCE)-MRI

Dynamic Contrast Enhance (DCE)-MRI Dynamic Contrast Enhance (DCE)-MRI contrast enhancement in ASL: labeling of blood (endogenous) for this technique: usage of a exogenous contras agent typically based on gadolinium molecules packed inside

More information

On the Undecidability Among Kinetic Models: From Model Selection to Model Averaging

On the Undecidability Among Kinetic Models: From Model Selection to Model Averaging Journal of Cerebral Blood Flow & Metabolism 23:490 498 2003 The International Society for Cerebral Blood Flow and Metabolism Published by Lippincott Williams & Wilkins, Inc., Philadelphia On the Undecidability

More information

Physics in Nuclear Medicine

Physics in Nuclear Medicine SIMON R. CHERRY, PH.D. Professor Department of Biomedical Engineering University of California-Davis Davis, California JAMES A. SORENSON, PH.D. Emeritus Professor of Medical Physics University of Wisconsin-Madison

More information

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links NM - introduction Relies on EMISSION of photons from body (versus transmission of photons through

More information

CLINICALLY USEFUL RADIONUCLIDES:

CLINICALLY USEFUL RADIONUCLIDES: INTRODUCTION It is important that Nuclear Medicine Technologists be familiar with the imaging properties of all commonly used radionuclides to insure correct choice of isotope for a particular study as

More information

The ASL signal. Parenchy mal signal. Venous signal. Arterial signal. Input Function (Label) Dispersion: (t e -kt ) Relaxation: (e -t/t1a )

The ASL signal. Parenchy mal signal. Venous signal. Arterial signal. Input Function (Label) Dispersion: (t e -kt ) Relaxation: (e -t/t1a ) Lecture Goals Other non-bold techniques (T2 weighted, Mn contrast agents, SSFP, Dynamic Diffusion, ASL) Understand Basic Principles in Spin labeling : spin inversion, flow vs. perfusion ASL variations

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Radiochemistry in nuclear medicine

Radiochemistry in nuclear medicine Lecce, Jan 14 2011 Radiochemistry in nuclear medicine Giancarlo Pascali, PhD radiochemist IFC-CNR, Pisa pascali@ifc.cnr.it Do not say contrast media (but Contrast media Mainly anatomical High injected

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

Nuclear Medicine Treatments and Clinical Applications

Nuclear Medicine Treatments and Clinical Applications INAYA MEDICAL COLLEGE (IMC) RAD 243- LECTURE 2 Nuclear Medicine Treatments and Clinical Applications DR. MOHAMMED MOSTAFA EMAM Next Lectures Outlines Introduction to Nuclear Physics Physics of Radioactivity

More information

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK Low Energy Medical Isotope Production Naomi Ratcliffe naomi.ratcliffe@hud.ac.uk IIAA, University of Huddersfield UK Overview: Nuclear Medicine Cover the use of radioactive isotopes for diagnostic and therapy

More information

Metabolic system dynamics: lumped and distributed models

Metabolic system dynamics: lumped and distributed models Metabolic system dynamics: lumped and distributed models G.M. Saidel 1,2, J.A. DiBella II 1 & M.E. Cabrera 1,2,3 1 Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH, USA

More information

6: Positron Emission Tomography

6: Positron Emission Tomography 6: Positron Emission Tomography. What is the principle of PET imaging? Positron annihilation Electronic collimation coincidence detection. What is really measured by the PET camera? True, scatter and random

More information

A New Approach of Weighted Integration Technique Based on Accumulated Images Using Dynamic PET and H 50

A New Approach of Weighted Integration Technique Based on Accumulated Images Using Dynamic PET and H 50 Journal of Cerebral Blood Flow and Metabolism 11:492-501 1991 The International Society of Cerebral Blood Flow and Metabolism Published by Raven Press, Ltd., New York A New Approach of Weighted Integration

More information

Best MeV. Best , 25 MeV

Best MeV. Best , 25 MeV Best 15 15 MeV 400 µa Best 25 20, 25 MeV 400 µa Best 28u/35 20, 28 35 15 MeV 400 1000 µa Best 70 70 35 MeV 700 µa 2014 Best Cyclotron Systems Best Cyclotron Systems 8765 Ash St., Unit 7, Vancouver, BC

More information

Historical Perspective - Radiotracing -

Historical Perspective - Radiotracing - Historical Perspective - Radiotracing - 1911, first radiotracer experiment: 1943 Nobel Prize One of the first radiotracer experiments was an experiment in gastronomy. George de Hevesy, one of the most

More information

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI) Radioation Resolution and Sensitivity Nuclear Imaging PET + SPECT Radioactive Decay (EC,Ɣ), (β -,Ɣ), (I.T.,Ɣ) β + Projection imaging collimator needed one angular view Projection imaging coincidence imaging,

More information

NIH Public Access Author Manuscript Phys Med Biol. Author manuscript; available in PMC 2013 September 21.

NIH Public Access Author Manuscript Phys Med Biol. Author manuscript; available in PMC 2013 September 21. NIH Public Access Author Manuscript Published in final edited form as: Phys Med Biol. 2012 September 21; 57(18): 5809 5821. doi:10.1088/0031-9155/57/18/5809. Kinetic Parameter Estimation Using a Closed-Form

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Radioactivity a Atomic models Describe the structure of an atom (in terms of nucleus and electrons). State where most of the mass of an atom is found. State the sizes of atoms and small molecules. Describe

More information

This Week. 3/23/2017 Physics 214 Summer

This Week. 3/23/2017 Physics 214 Summer This Week Atoms and nuclei What are we made of? The periodic table Why does it stop? How were the elements made? Radioactive decay Useful but can be toxic Discovery of X Rays: Cathode Rays and TV sets

More information

The general concept of pharmacokinetics

The general concept of pharmacokinetics The general concept of pharmacokinetics Hartmut Derendorf, PhD University of Florida Pharmacokinetics the time course of drug and metabolite concentrations in the body Pharmacokinetics helps to optimize

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -

More information

ADME studies with radiolabeled compounds. Biomedical Applications of Radioisotopes and Pharmacokinetics Unit

ADME studies with radiolabeled compounds. Biomedical Applications of Radioisotopes and Pharmacokinetics Unit ADME studies with radiolabeled compounds Miguel Ángel Morcillo Alonso Biomedical Applications of Radioisotopes and Pharmacokinetics Unit CIEMAT (Centro de Investigaciones Energéticas, Medioambientales

More information

Essentials of nuclear medicine

Essentials of nuclear medicine Essentials of nuclear medicine Medical imaging CT Rtg X- rays usg Ultrasound MR Nuclear Magnetic Resonance Nuclear Medicine SPECT PET A conventional radiological, ultrasound and magnetic resonance diagnostics

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

RADIOPHARMACEUTICALS

RADIOPHARMACEUTICALS RADIOPHARMACEUTICALS Samy Sadek, Ph.D. Associate Professor, New York Medical College. Radiopharmaceutical Chemist, St. Vincent's Hospital- Manhattan. 1 X-Ray Discovery: Roentgen Wilhelm Roentgen ca. 1895.

More information

Statistical estimation with Kronecker products in positron emission tomography

Statistical estimation with Kronecker products in positron emission tomography Linear Algebra and its Applications 398 (2005) 25 36 www.elsevier.com/locate/laa Statistical estimation with Kronecker products in positron emission tomography John A.D. Aston a, Roger N. Gunn b,,1 a Statistical

More information

Lesson 14. Radiotracers

Lesson 14. Radiotracers Lesson 14 Radiotracers Introduction Basic principle: All isotopes of a given element will behave identically in most physical, environmental and biological environments. Ea sier to detect radioactive atoms

More information

( t) ASL Modelling and Quantification. David Thomas. Overview of talk. Brief review of ASL. ASL CBF quantification model. ASL CBF quantification model

( t) ASL Modelling and Quantification. David Thomas. Overview of talk. Brief review of ASL. ASL CBF quantification model. ASL CBF quantification model verview of talk AL Modelling and Quantification David homas CL nstitute of Neurology Queen quare, London, K d.thomas@ucl.ac.uk Brief review of AL Descrie the 2 main AL quantification models model General

More information

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA ramsey

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA   ramsey SPECIAL FEATURE: MEDICAL PHYSICS www.iop.org/journals/physed Nuclear medicine Ramsey D Badawi Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA E-mail: ramsey badawi@dfci.harvard.edu

More information

Welcome to MR! CT PET (with FDG) MRI (T2 w.) MR Image types: T2 weighted T1 weighted Sequence parameters FLAIR Diffusion

Welcome to MR! CT PET (with FDG) MRI (T2 w.) MR Image types: T2 weighted T1 weighted Sequence parameters FLAIR Diffusion Phsics Images Welcome to R! Introduction to agnetic Resonance Imaging Adam Espe Hansen, PET/R-phsicist Department of Clinical Phsiolog, Nuclear medicine & PET Rigshospitalet Basic Kinetic odeling in olecular

More information

This Week. 7/20/2016 Physics 214 Spring

This Week. 7/20/2016 Physics 214 Spring This Week Atoms and nuclei What are we made of? The periodic table Why does it stop? How were the elements made? Radioactive decay Useful but can be toxic Discovery of X Rays: Cathode Rays and TV sets

More information

Isotope Production for Nuclear Medicine

Isotope Production for Nuclear Medicine Isotope Production for Nuclear Medicine Eva Birnbaum Isotope Program Manager February 26 th, 2016 LA-UR-16-21119 Isotopes for Nuclear Medicine More than 20 million nuclear medicine procedures are performed

More information

Sodium isotopes in biology

Sodium isotopes in biology Stable Relative Mole isotope atomic mass fraction 23 Na 22.989 769 28 1 Sodium isotopes in biology Both 22 Na and 24 Na can be used as radioactive tracers to study electrolytes in the human body [102-104].

More information

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1 Chemical Exchange Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Chemical shifts J-coupling Chemical Exchange 1 Outline Motional time scales

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

An Input Function Estimation Method for. FDG-PET Human Brain Studies 1

An Input Function Estimation Method for. FDG-PET Human Brain Studies 1 An Input Function Estimation Method for FDG-PET Human Brain Studies 1 Hongbin Guo,2 Rosemary A Renaut 2 Kewei Chen 3 Abbreviated Title: Input Function Estimation for FDG-PET Abstract Introduction: A new

More information

Laboratory 3: Kit Preparation and Chromatography. Design Considerations for a Radiopharmaceutical

Laboratory 3: Kit Preparation and Chromatography. Design Considerations for a Radiopharmaceutical Laboratory 3: Kit Preparation and Chromatography PART 1: KIT PREPARATION Introduction In nuclear medicine, radionuclides are rarely used in their simplest chemical form. Instead they are incorporated into

More information

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging Topic #1: Intro to medical imaging Medical Imaging Classifications n Measurement physics Send Energy into body Send stuff

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Study of the feasibility of a compact gamma camera for real-time cancer assessment

Study of the feasibility of a compact gamma camera for real-time cancer assessment Study of the feasibility of a compact gamma camera for real-time cancer assessment L. Caballero Instituto de Física Corpuscular - CSIC - University of Valencia; C/Catedrático José Beltrán, 2; E-46980;

More information

2015 U N I V E R S I T I T E K N O L O G I P E T R O N A S

2015 U N I V E R S I T I T E K N O L O G I P E T R O N A S Multi-Modality based Diagnosis: A way forward by Hafeez Ullah Amin Centre for Intelligent Signal and Imaging Research (CISIR) Department of Electrical & Electronic Engineering 2015 U N I V E R S I T I

More information

The Impact of Nuclear Science on Life Science. Introduction

The Impact of Nuclear Science on Life Science. Introduction The Impact of Nuclear Science on Life Science Introduction G. Kraft GSI, Biophysik, Darmstadt, Germany The development of life science was always strongly interconnected with physical sciences. This interaction

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

Schémata zpracovalo Servisní středisko pro e-learning na MU

Schémata zpracovalo Servisní středisko pro e-learning na MU Schémata zpracovalo Servisní středisko pro e-learning na MU http://is.muni.cz/stech/ Life is a dynamic system with focused behavior, with autoreproduction, characterized by flow of substrates, energies

More information

PANEL DISCUSSION. Radionuclides and Health A promising future! OCTOBER 14-16, 2014 PARIS LE BOURGET FRANCE

PANEL DISCUSSION. Radionuclides and Health A promising future! OCTOBER 14-16, 2014 PARIS LE BOURGET FRANCE PANEL DISCUSSION Radionuclides and Health A promising future! Hosted by Richard Zimmermann, Chrysalium Consulting Discussion coordinated by François Sarkozy, President of FSNB Health & Care Speakers: Remigiusz

More information

Radiopharmacy. Prof. Roger Schibli Department of Chemistry and Applied Biosciences ETHZ Center for Radiopharmaceutical Science ETH-PSI-USZ

Radiopharmacy. Prof. Roger Schibli Department of Chemistry and Applied Biosciences ETHZ Center for Radiopharmaceutical Science ETH-PSI-USZ Wider Horizons for Pharmacists Radiopharmacy Prof. Roger Schibli Department of Chemistry and Applied Biosciences ETHZ Center for Radiopharmaceutical Science ETH-PSI-USZ Radiopharmacy? 7.12.2012 Institute

More information

Faculty of Sciences. Analysis of Positron Emission Tomography data: A comparison between approaches for linearized time-activity curves.

Faculty of Sciences. Analysis of Positron Emission Tomography data: A comparison between approaches for linearized time-activity curves. Faculty of Sciences Analysis of Positron Emission Tomography data: A comparison between approaches for linearized time-activity curves Bart de Laat Master dissertation submitted to obtain the degree of

More information

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 Sample problems HW1 1. Look up (e.g. in the CRC Manual of Chemistry and Physics www.hbcpnetbase.com)

More information

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation.

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation. Chapter 11 Nuclear Chemistry Background Radiation Three-fourths of all exposure to radiation comes from background radiation. Most of the remaining one-fourth comes from medical irradiation such as X-rays.

More information

12/1/17 OUTLINE KEY POINTS ELEMENTS WITH UNSTABLE NUCLEI Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation

12/1/17 OUTLINE KEY POINTS ELEMENTS WITH UNSTABLE NUCLEI Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation OUTLINE 16.1 Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation PET scan X-ray technology CT scan 2009 W.H. Freeman KEY POINTS Radioactivity is the consequence of an unstable

More information

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 8. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (Atomic number) N = no. of neutrons

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

69 Ga Ga

69 Ga Ga Stable isotope Relative atomic mass Mole fraction 69 Ga 68.925 574 0.601 08 71 Ga 70.924 703 0.398 92 Gallium isotopes in medicine 68 Ga is a radioactive isotope that emits positrons, which are used to

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography CERN Accelerator School Small Accelerators Zeegse, the Netherlands A.M.J. Paans Nuclear Medicine & Molecular Imaging UMC Groningen Elements of Life PET-nuclide Hydrogen Carbon

More information

Medical Biophysics II. Final exam theoretical questions 2013.

Medical Biophysics II. Final exam theoretical questions 2013. Medical Biophysics II. Final exam theoretical questions 2013. 1. Early atomic models. Rutherford-experiment. Franck-Hertz experiment. Bohr model of atom. 2. Quantum mechanical atomic model. Quantum numbers.

More information

Medical Applications of Nuclear Radiation and Isotopes

Medical Applications of Nuclear Radiation and Isotopes Mitglied der Helmholtz-Gemeinschaft Medical Applications of Nuclear Radiation and Isotopes Syed M. Qaim Forschungszentrum Jülich and Universität zu Köln, Germany E-mail: s.m.qaim@fz-juelich.de Lecture

More information

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY THOMAS J. RUTH TRIUMF Vancouver, BC, Canada truth@triumf.ca 1 Introduction The production of radioisotopes for use in biomedical procedures

More information

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν Positron Emission Tomography Physics & Instrumentation Dimitra G. Darambara, Ph.D Multimodality Molecular Imaging Joint Department of Physics RMH/ICR Outline Introduction PET Physics overview Types of

More information

Outline. Superconducting magnet. Magnetic properties of blood. Physiology BOLD-MRI signal. Magnetic properties of blood

Outline. Superconducting magnet. Magnetic properties of blood. Physiology BOLD-MRI signal. Magnetic properties of blood Magnetic properties of blood Physiology BOLD-MRI signal Aart Nederveen Department of Radiology AMC a.j.nederveen@amc.nl Outline Magnetic properties of blood Moses Blood oxygenation BOLD fmri Superconducting

More information

Blood Water Dynamics

Blood Water Dynamics Bioengineering 208 Magnetic Resonance Imaging Winter 2007 Lecture 8 Arterial Spin Labeling ASL Basics ASL for fmri Velocity Selective ASL Vessel Encoded ASL Blood Water Dynamics Tissue Water Perfusion:

More information

PHARMACOKINETIC DERIVATION OF RATES AND ORDERS OF REACTIONS IN MULTI- COMPARTMENT MODEL USING MATLAB

PHARMACOKINETIC DERIVATION OF RATES AND ORDERS OF REACTIONS IN MULTI- COMPARTMENT MODEL USING MATLAB IJPSR (2016), Vol. 7, Issue 11 (Research Article) Received on 29 May, 2016; received in revised form, 07 July, 2016; accepted, 27 July, 2016; published 01 November, 2016 PHARMACOKINETIC DERIVATION OF RATES

More information

Positron Emission Tomography Basics: Radiochemistry. N. Scott Mason, Ph.D. Radiochemist University of Pittsburgh PET Facility

Positron Emission Tomography Basics: Radiochemistry. N. Scott Mason, Ph.D. Radiochemist University of Pittsburgh PET Facility Positron Emission Tomography Basics: Radiochemistry. Scott Mason, Ph.D. Radiochemist PET Facility What is PET? Positron Emission Tomography In-Vivo Imaging and Quantification of rgan/tissue Function Uses

More information

PET scan simulation. Meysam Dadgar. UMSU, Iran. IFMP, Elbasan, Fig 1: PET camera simulation in gate by cylindrical phantom

PET scan simulation. Meysam Dadgar. UMSU, Iran. IFMP, Elbasan, Fig 1: PET camera simulation in gate by cylindrical phantom PET scan simulation Meysam Dadgar UMSU, Iran IFMP, Elbasan, 2016 Meysamdadgar10@gmail.com 1 Fig 1: PET camera simulation in gate by cylindrical phantom 2 What is PET? Positron emission tomography (PET),

More information

Science Year 10 Unit 1 Biology

Science Year 10 Unit 1 Biology Week 1: 1. The Heart Science Year 10 Unit 1 Biology RAG 2. Artery Takes oxygenated blood away from the heart. Thick, muscular walls to withstand pressure. 3. Vein Takes deoxygenated blood towards the heart.

More information

Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177. Bruno Vanderlinden

Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177. Bruno Vanderlinden Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177 Bruno Vanderlinden What is NM speciality? Imaging radiology Physics Diagnostic Treatment assessment Clinical pathology Biological marker

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -Monitoring

More information

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics. A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre.

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 11 pages Written test, 9 December 2010 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: none. "Weighting": All problems weight equally.

More information

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση Διδάσκων: Kώστας Μαριάς 11. MRI Τ1,Τ2, PD and physiological parameter imaging Summary and Clarifications Resonance is referred to as the property of an atom to absorb energy

More information

Bases of radioisotope diagnostic methods

Bases of radioisotope diagnostic methods Medical, pharmaceutical applications of radioisotopes Bases of radioisotope diagnostic methods Dr. István Voszka Basis of application: radioisotopes have identical behavior in the organism to corresponding

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

Chapter 2 PET Imaging Basics

Chapter 2 PET Imaging Basics Chapter 2 PET Imaging Basics Timothy G. Turkington PET Radiotracers Positron emission tomography (PET) imaging is the injection (or inhalation) of a substance containing a positron emitter, the subsequent

More information

Imaging Brain Structure and Function

Imaging Brain Structure and Function Imaging Brain Structure and Function Thomas J. Grabowski, Jr., MD Professor, Radiology and Neurology (joint) Director, UW Integrated Brain Imaging Center Director, UW Alzheimer s Disease Research Center

More information

Medical Physics. Nuclear Medicine Principles and Applications

Medical Physics. Nuclear Medicine Principles and Applications Medical Physics Nuclear Medicine Principles and Applications Dr Roger Fulton Department of PET & Nuclear Medicine Royal Prince Alfred Hospital Sydney Email: rfulton@mail.usyd.edu.au Lectures: http://www-personal.usyd.edu.au/~rfulton/medical_physics

More information

Units and Definition

Units and Definition RADIATION SOURCES Units and Definition Activity (Radioactivity) Definition Activity: Rate of decay (transformation or disintegration) is described by its activity Activity = number of atoms that decay

More information

Imaging: PET and SPECT

Imaging: PET and SPECT Imaging: PET and SPECT Positron Emission Tomography Single Photon Emission Computed Tomography PET and SPECT Properties of ideal imaging nuclides, biological, chemical, physical Production of radionuclides

More information