Isolated-word speech recognition using hidden Markov models

Size: px
Start display at page:

Download "Isolated-word speech recognition using hidden Markov models"

Transcription

1 Isolaed-word speech recogniion using hidden Markov models Håkon Sandsmark December 18, 21 1 Inroducion Speech recogniion is a challenging problem on which much work has been done he las decades. Some of he mos successful resuls have been obained by using hidden Markov models as explained by Rabiner in 1989 [1]. A well working generic speech recognizer would enable more efficien communicaion for everybody, bu especially for children, analphabes and people wih disabiliies. A speech recognizer could also be a subsysem in a speech-o-speech ranslaor. The speech recogniion sysem implemened during his projec rains one hidden Markov model for each word ha i should be able o recognize. The models are rained wih labeled raining daa, and he classificaion is performed by passing he feaures o each model and hen selecing he bes mach. apple banana kiwi speech feaure exracion lime classificaion orange peach pineapple Figure 1: Flow char of he sysem. The feaures exraced from he speech signal are passed o each word model and he bes mach is seleced. 1

2 2 Background heory 2.1 Hidden Markov models Basic knowledge of hidden Markov models is assumed, bu he wo mos imporan algorihms used in his projec will be described. The observable oupu from a hidden sae is assumed o be generaed by a mulivariae Gaussian disribuion, so here is one mean vecor and covariance marix for each sae. We will also assume ha he sae ransiion probabiliies are independen of ime, such ha he hidden Markov chain is homogenous. We will now define he noaion for describing a hidden Markov model as used in his projec. There is a oal number of N saes. An elemen a ss in he ransiion probabiliy marix A denoes he ransiion probabiliy from sae s o sae s, and he probabiliy for he chain o sar in sae s is π s. The mean vecor and covariance marix for he mulivariae Gaussian disribuion modeling he observable oupu from sae s are µ s and Σ s, respecively. For an observaion o, b s (o) denoes he probabiliy densiy of he mulivariae Gaussian disribuion of sae s a he values of o. We will someimes denoe he collecion of parameers describing he hidden Markov model as λ = {A, π, µ, Σ}. 2.2 The forward algorihm We wan o calculae he probabiliy densiy of an observaion o 1,..., o T for a specific model. This will be used o selec he model (i.e. word) ha mos likely generaed he speech signal. f(o 1,..., o T ; λ) = s T f(o 1,..., o T, s T ; λ) (1) = s T f(o T o 1,..., o T 1, s T ; λ)f(o 1,..., o T 1, s T ; λ) (2) = s T b st (o T ) s T 1 f(o 1,..., o T 1, s T 1, s T ; λ) (3) = s T b st (o T ) s T 1 f(s T o 1,..., o T 1, s T 1 ; λ)f(o 1,..., o T 1, s T 1 ; λ) = s T b st (o T ) s T 1 a st 1 s T f(o 1,..., o T 1, s T 1 ; λ) (5) (4) The recursive srucure is revealed as we reduced he problem from needing f(o 1,..., o T, s T ; λ) for all s T o needing f(o 1,..., o T 1, s T 1 ; λ) for all s T 1. Le us inroduce he forward variable o ease he noaion. 2

3 α 1 (s) f(o 1, S 1 = s; λ) (6) = b s (o 1 )π s (7) α (s) f(o 1,..., o, S = s; λ) (8) = b s (o ) a s sα 1 (s ) s (9) Then our soluion can be expressed nicely as f(o 1,..., o T ; λ) = s α T (s). (1) Implemened naïvely op-down (backwards in ime) his would no bring us any luck because of he exponenially recursive srucure. The naïve algorihm is however easily converible o an efficien varian using dynamic programming where we calculae he forward variables boom-up (forwards in ime). We simply calculae α (s) for all saes s, firs for = 1 and hen all he way up o T. This way all he forward variables from he previous ime sep are readily available when needed. 2.3 The Baum-Welch algorihm We wan o find he parameers λ ha maximize he likelihood of he observaions. This will be used o rain he hidden Markov model wih speech signals. The Baum-Welch algorihm is an ieraive expecaion-maximizaion (EM) algorihm ha converges o a locally opimal soluion from he iniializaion values. The M-sep consiss of updaing he parameers in he following inuiive way: expeced number of imes in sae s a = 1 π s := π s = expeced number of imes a = 1 (11) expeced number of ransiions from s o s a ss := a ss = expeced number of ransiions from s (12) µ s := µ s = expeced observaion when in sae s (13) Σ s := Σ s = observaion covariance when in sae s (14) The E-sep hus consiss of calculaing hese expecaions for a fixed λ. Le V s () denoe he even of ransiion from sae s a ime sep, and V () s,s he even of ransiion from s o s a. Then we calculae hese expecaions by using indicaor funcions and lineariy of expecaion. 3

4 π s = E{1[V s (1) ]} = P (V s (1) ) (15) a ss = E{ () 1[V s,s ]} E{ () 1[V s ]} = µ s = E{ () 1[V s ]o } E{ () 1[V s ]} = P (V () s,s ) P (V () s ) () P (V s )o () P (V s ) Σ s = E{ () 1[V s ](o o T µ s µ T s )} E{ () 1[V s ]} = () P (V s )o o T () P (V s ) µ s µ s T Noe ha he non-ialic T denoes ranspose and has nohing o do wih ime. To be able o calculae hese probabiliies we firs inroduce he backward variable which is very similar o he forward variable previously defined. (16) (17) (18) β T (s) 1 (19) β (s) f(o +1,..., o T S = s; λ) (2) = s a ss b s (o +1 )β +1 (s ) (21) The backward variable has is name because i is firs calculaed for he las ime sep and hen backwards in ime when implemened wih dynamic programming (essenially he reverse procedure of he one described in deail for he forward variable). Then we rename he probabiliies o he same symbols as used by Rabiner and express hem by forward and backward variables: γ (s) P (V s () ) = P (S = s o 1,..., o T ; λ) (22) = f(o 1,..., o T S = s)p (S = s) f(o 1,..., o T ) (23) = f(o 1,..., o, S = s)f(o +1,..., o T S = s) f(o 1,..., o T ) (24) = α (s)β (s) f(o 1,..., o T ) (25) And similarly (deails omied): ξ (s, s ) P (V () s,s ) = P (S = s, S +1 = s o 1,..., o T ; λ) (26) And finally we ge he following: = α (s)b s (o +1 )a ss β +1 (s ) f(o 1,..., o T ) (27) 4

5 π s = γ 1 (s) (28) a ss = ξ (s, s ) γ (29) (s) µ s = γ (s)o γ (3) (s) Σ s = γ (s)o o T T γ µ s µ s (31) (s) To summarize he E-sep boils down o compuing γ (s) and ξ (s, s ) for all s, s and while he parameers λ are fixed, and hen he M-sep will updae λ by using he calculaions done in he E-sep. This is ieraed unil saisfacion. 3 Sysem design 3.1 Feaure exracion The source speech is sampled a 8 Hz and quanized wih 16 bis. The signal is spli up in shor frames of 8 samples corresponding o 1 ms of speech. The frames overlap wih 2 samples on each side. The idea is ha he speech is close o saionary during his shor period of ime because of he relaively limied flexibiliy of he hroa. We will pick ou our feaures from he frequency domain, bu before we ge here by aking he fas Fourier ransform, we muliply by a Hamming window o reduce specral leakage caused by he framing of he signal Speech signal Hamming window 3.5 x X(F) ime (a) Speech signal and Hamming window in ime domain F [Hz] (b) Single-sided magniude specrum of he same speech signal muliplied by he Hamming window. Figure 2: An 8 sample frame of an unvoiced par of a speech signal. Unvoiced speech, like sh, is more noisy and conains higher frequencies han voiced speech. The D larges local maxima from he single-sided magniude specrum are are picked as feaures for each frame, and D is indeed an imporan parameer of he sysem ha will be discussed laer. 5

6 Speech signal Hamming window X(F) ime (a) Speech signal and Hamming window in ime domain F [Hz] (b) Single-sided magniude specrum of he same speech signal muliplied by he Hamming window. Figure 3: An 8 sample frame of a voiced par of a speech signal. 3.2 Training The raining is a combinaion of boh supervised and unsupervised echniques. We rain one hidden Markov model per word wih already classified speech signals. One imporan choice is he number of differen saes in each model. The goal is ha each sae should represen a phoneme in he word. The clusering of he Gaussians is however unsupervised and will depend on he iniial values used for he Baum-Welch algorihm. For his projec, oally random guesses (ha obey he saisical properies) for A and π were used as iniial values. For Σ s, he diagonal covariance marix for he raining daa was used for all saes. For each sae a random raining daa poin was chosen as µ s. The raining examples for each word are concaenaed ogeher, and Baum-Welch is run for 15 ieraions. 3.3 Classificaion Le λ i denoe he parameer se for word i. When presened wih an observaion o 1,..., o T, he selecion is done as follows. prediced word = arg max f(o 1,..., o T ; λ i ) (32) i And we recognize ha f(o 1,..., o T ; λ i ) is exacly wha he forward algorihm compues. 4 Experimenal seup and resuls For each of he seven words, 15 uerances by his auhor were recorded. The performance of he sysem was measured by five-fold cross-validaion on he recorded daa se of 15 uerances. Experimenaion indicaed ha he wo mos imporan parameers 6

7 4 Training apple 4 Training lime F2 [Hz] 2 F2 [Hz] F1 [Hz] F1 [Hz] (a) Apple. (b) Lime. 4 Training orange 4 Training peach F2 [Hz] 2 F2 [Hz] F1 [Hz] F1 [Hz] (c) Orange. (d) Peach. Figure 4: Fied Gaussians afer en ieraions of he Baum-Welch algorihm. We have six saes wih one Gaussian each. The wo mos dominan frequencies (feaures) are shown. Each green plus is represens a frame from a raining speech signal. The sars are he means of each Gaussian, and he ellipses indicae heir 75% confidence inerval. Noice he higher frequencies presen in he words conaining unvoiced phonemes ( peach and orange ) compared o he words ha do no ( apple and lime ). were he number of hidden saes, N, and he number of frequencies exraced from each frame, D. The cross-validaion was herefore run wih differen values for hese parameers, and he resuls are shown in able 1. 5 Discussion The resuls are quie good compared o he simple approach aken, especially in he feaure exracion phase. More advanced feaures like Mel-frequency cepsral coefficiens were considered, bu we decided on simple frequencies due o he low misclassificaion 7

8 N\D % 8.6% 3 21.% 15.2% 9.5% 12.4% 1.9% 14.3% 5.7% % 11.4% 8.6% 5.7% 3.8% 6.7% 4.8% % 8.6% 9.5% 4.8% 2.9% 5.7% 4.8% % 1.5% 3.8% 5.7% 7.6% 6.7% 1.5% % 12.4% 6.7% 1.5% 7.6% 2.9% 8.6% % 5.7% Table 1: Misclassificaion raes for five-fold cross-validaion wih differen values for he number of hidden saes, N, and he number of frequencies exraced from each frame, D. Each five-fold cross-validaion procedure akes abou 7 minues wih he 15 uerances on a 2 GHz Inel Core 2 Duo (serial execuion). raes achieved. I should be noed ha his sysem would no perform well if rained and esed wih differen speakers. This is because of he differen frequency characerisics of differen voices, especially for speakers of differen gender. We also experimened wih increasing he number of raining ieraions for he Baum- Welch algorihm, including seing a hreshold on he likelihood difference beween seps. Tha, however, proved o have lile benefi in pracice; neiher he execuion ime nor he misclassificaion rae showed any menionable improvemens over jus fixing he number of ieraions o 15. The reason why he execuion ime did no show any significan improvemens is because mos of he execuion ime is spen during feaure exracion, and no in raining. I is also ineresing o noe ha when N is oo small, here are many apple s misclassified as pineapple s, and vice versa, due o he loss of emporal informaion. Anoher imporan parameer is he number of samples in each frame. If he frame is oo small, i becomes hard o pick ou meaningful feaures, and if i is oo large, emporal informaion is los. However, due o ime consrains, we did no es anyhing else han 8 samples for his projec. The concaenaion of he raining examples rains a probabiliy of ransiioning from he las sae o he iniial sae ha is no needed for classificaion. Rabiner gives a modified Baum-Welch algorihm for muliple raining examples such ha concaenaion is no necessary, bu ha was no implemened during his projec as he concaenaion seemed o work well. 6 Conclusion and fuure work During his projec a sysem for isolaed-word speech recogniion was implemened and esed. The cross-validaion resuls are good for a single speaker. Two obvious exensions are beer suppor for several speakers, and suppor for coninuos speech. The firs sep owards he former would be more, and more robus, feaures. For he laer he simples approach is probably o deec word boundaries and hen proceed wih an isolaed-word 8

9 recognizer. The Malab implemenaion along wih he daa se is published as open source and can be found a hp://code.google.com/p/hmm-speech-recogniion/. 7 References [1] L. R. Rabiner, A uorial on hidden Markov models and seleced applicaions in speech recogniion, Proceedings of he IEEE, vol. 77, pp , Feb [2] C. M. Bishop, Paern Recogniion and Machine Learning (Informaion Science and Saisics). Springer, 1s ed. 26. corr. 2nd prining ed., Ocober 27. [3] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide o Theory, Algorihm and Sysem Developmen. Prenice Hall PTR, May 21. 9

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides Hidden Markov Models Adaped from Dr Caherine Sweeney-Reed s slides Summary Inroducion Descripion Cenral in HMM modelling Exensions Demonsraion Specificaion of an HMM Descripion N - number of saes Q = {q

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

A variational radial basis function approximation for diffusion processes.

A variational radial basis function approximation for diffusion processes. A variaional radial basis funcion approximaion for diffusion processes. Michail D. Vreas, Dan Cornford and Yuan Shen {vreasm, d.cornford, y.shen}@ason.ac.uk Ason Universiy, Birmingham, UK hp://www.ncrg.ason.ac.uk

More information

Authors. Introduction. Introduction

Authors. Introduction. Introduction Auhors Hidden Applied in Agriculural Crops Classificaion Caholic Universiy of Rio de Janeiro (PUC-Rio Paula B. C. Leie Raul Q. Feiosa Gilson A. O. P. Cosa Hidden Applied in Agriculural Crops Classificaion

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Assignment 6. Tyler Shendruk December 6, 2010

Assignment 6. Tyler Shendruk December 6, 2010 Assignmen 6 Tyler Shendruk December 6, 1 1 Harden Problem 1 Le K be he coupling and h he exernal field in a 1D Ising model. From he lecures hese can be ransformed ino effecive coupling and fields K and

More information

Christos Papadimitriou & Luca Trevisan November 22, 2016

Christos Papadimitriou & Luca Trevisan November 22, 2016 U.C. Bereley CS170: Algorihms Handou LN-11-22 Chrisos Papadimiriou & Luca Trevisan November 22, 2016 Sreaming algorihms In his lecure and he nex one we sudy memory-efficien algorihms ha process a sream

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

Pattern Classification (VI) 杜俊

Pattern Classification (VI) 杜俊 Paern lassificaion VI 杜俊 jundu@usc.edu.cn Ouline Bayesian Decision Theory How o make he oimal decision? Maximum a oserior MAP decision rule Generaive Models Join disribuion of observaion and label sequences

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

Demodulation of Digitally Modulated Signals

Demodulation of Digitally Modulated Signals Addiional maerial for TSKS1 Digial Communicaion and TSKS2 Telecommunicaion Demodulaion of Digially Modulaed Signals Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping November

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Tracking. Announcements

Tracking. Announcements Tracking Tuesday, Nov 24 Krisen Grauman UT Ausin Announcemens Pse 5 ou onigh, due 12/4 Shorer assignmen Auo exension il 12/8 I will no hold office hours omorrow 5 6 pm due o Thanksgiving 1 Las ime: Moion

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN Inernaional Journal of Applied Economerics and Quaniaive Sudies. Vol.1-3(004) STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN 001-004 OBARA, Takashi * Absrac The

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Lecture 9: September 25

Lecture 9: September 25 0-725: Opimizaion Fall 202 Lecure 9: Sepember 25 Lecurer: Geoff Gordon/Ryan Tibshirani Scribes: Xuezhi Wang, Subhodeep Moira, Abhimanu Kumar Noe: LaTeX emplae couresy of UC Berkeley EECS dep. Disclaimer:

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

Machine Learning 4771

Machine Learning 4771 ony Jebara, Columbia Universiy achine Learning 4771 Insrucor: ony Jebara ony Jebara, Columbia Universiy opic 20 Hs wih Evidence H Collec H Evaluae H Disribue H Decode H Parameer Learning via JA & E ony

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

Adaptive Noise Estimation Based on Non-negative Matrix Factorization

Adaptive Noise Estimation Based on Non-negative Matrix Factorization dvanced cience and Technology Leers Vol.3 (ICC 213), pp.159-163 hp://dx.doi.org/1.14257/asl.213 dapive Noise Esimaion ased on Non-negaive Marix Facorizaion Kwang Myung Jeon and Hong Kook Kim chool of Informaion

More information

Errata (1 st Edition)

Errata (1 st Edition) P Sandborn, os Analysis of Elecronic Sysems, s Ediion, orld Scienific, Singapore, 03 Erraa ( s Ediion) S K 05D Page 8 Equaion (7) should be, E 05D E Nu e S K he L appearing in he equaion in he book does

More information

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS For more deails see las page or conac @aimaiims.in Physics Mock Tes Paper AIIMS/NEET 07 Physics 06 Saurday Augus 0 Uni es : Moion in

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

Retrieval Models. Boolean and Vector Space Retrieval Models. Common Preprocessing Steps. Boolean Model. Boolean Retrieval Model

Retrieval Models. Boolean and Vector Space Retrieval Models. Common Preprocessing Steps. Boolean Model. Boolean Retrieval Model 1 Boolean and Vecor Space Rerieval Models Many slides in his secion are adaped from Prof. Joydeep Ghosh (UT ECE) who in urn adaped hem from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) Rerieval

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

An EM algorithm for maximum likelihood estimation given corrupted observations. E. E. Holmes, National Marine Fisheries Service

An EM algorithm for maximum likelihood estimation given corrupted observations. E. E. Holmes, National Marine Fisheries Service An M algorihm maimum likelihood esimaion given corruped observaions... Holmes Naional Marine Fisheries Service Inroducion M algorihms e likelihood esimaion o cases wih hidden saes such as when observaions

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Presentation Overview

Presentation Overview Acion Refinemen in Reinforcemen Learning by Probabiliy Smoohing By Thomas G. Dieerich & Didac Busques Speaer: Kai Xu Presenaion Overview Bacground The Probabiliy Smoohing Mehod Experimenal Sudy of Acion

More information

Asymptotic Equipartition Property - Seminar 3, part 1

Asymptotic Equipartition Property - Seminar 3, part 1 Asympoic Equipariion Propery - Seminar 3, par 1 Ocober 22, 2013 Problem 1 (Calculaion of ypical se) To clarify he noion of a ypical se A (n) ε and he smalles se of high probabiliy B (n), we will calculae

More information

Time series model fitting via Kalman smoothing and EM estimation in TimeModels.jl

Time series model fitting via Kalman smoothing and EM estimation in TimeModels.jl Time series model fiing via Kalman smoohing and EM esimaion in TimeModels.jl Gord Sephen Las updaed: January 206 Conens Inroducion 2. Moivaion and Acknowledgemens....................... 2.2 Noaion......................................

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

BU Macro BU Macro Fall 2008, Lecture 4

BU Macro BU Macro Fall 2008, Lecture 4 Dynamic Programming BU Macro 2008 Lecure 4 1 Ouline 1. Cerainy opimizaion problem used o illusrae: a. Resricions on exogenous variables b. Value funcion c. Policy funcion d. The Bellman equaion and an

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 RL Lecure 7: Eligibiliy Traces R. S. Suon and A. G. Baro: Reinforcemen Learning: An Inroducion 1 N-sep TD Predicion Idea: Look farher ino he fuure when you do TD backup (1, 2, 3,, n seps) R. S. Suon and

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad,

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad, GINI MEAN DIFFEENCE AND EWMA CHATS Muhammad iaz, Deparmen of Saisics, Quaid-e-Azam Universiy Islamabad, Pakisan. E-Mail: riaz76qau@yahoo.com Saddam Akbar Abbasi, Deparmen of Saisics, Quaid-e-Azam Universiy

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NCLIMATE893 Temporal resoluion and DICE * Supplemenal Informaion Alex L. Maren and Sephen C. Newbold Naional Cener for Environmenal Economics, US Environmenal Proecion

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Stochastic models and their distributions

Stochastic models and their distributions Sochasic models and heir disribuions Couning cusomers Suppose ha n cusomers arrive a a grocery a imes, say T 1,, T n, each of which akes any real number in he inerval (, ) equally likely The values T 1,,

More information