MATH 300: Solutions for Problem Set 1

Size: px
Start display at page:

Download "MATH 300: Solutions for Problem Set 1"

Transcription

1 Question.a: The de is MATH 300: Solutions fo Poblem Set 2u 4u 4u u 0: So a 2, b 2 and c 4. Hence b 2 ac 4 < 0. The de is ellitic. Question.b: The de is u 2u u u 0: So a, b and c. Hence b 2 ac 2. The de is ellitic when jj <, aabolic when jj and hebolic when jj >. Question : The de is u t u ; u (; 0) : The oosed solution is u (; t) e t. Cleal, u (; 0) e 0. And since b diect calculation u t (e t ) t e t and u (e t ) e t the de is cleal satis ed. Question 2.2. : It follows fom the de that u ) u 2 2 A () ) u (; ) 2 2 A 4 e () B () ; whee e A () and B () ae abita functions of thei aguments. Question : It follows fom the ode that u 0 atu sin (t) ) d dt ) e at2 2 u (t) u (0) ) u (t) e at2 2 u (0) e at2 2 u e at2 2 sin (t) Z t 0 Z t 0 e a2 2 d e a2 2 d : Question 2.3. : The oblem coesonds to the one dimensional heat equation. The initial condition is a function of osition. The temeatue is seci ed at the ight hand bounda (and is a function of time). At the left hand bounda the mateial is efectl insulated. Question : The de is u t 2u ; u (; 0) ; u (0; t) u (2; t) 0:

2 The oosed solution is u (; t) e 2t. Cleal, u (; 0) e 0 and u (0; t) e 2t sin (0) 0 and u (2; t) e 2t sin (2) 0. And since b diect calculation u t e 2t t 2e 2t and u e 2t e 2t the de is cleal satis ed. Question : The ode is u t (u 20) whee u (0) 00; whee u (t) is the temeatue at time t and is a ositive constant. (t) u (t) 20, then the ode is Let t whee (0) 80; which has the solution (t) 80e t ) u (t) 20 80e t : Question : Pat : Witing the Lalacian in clindical coodinates. We have the tansfomation with the invese tansfomations cos () ; ; z z; 2 2 ; tan () ; z z: Fom the chain ule u u u 2 2 u 2 2 u ; so that 2 2 u u 2 u 2 2 ( 2 2 ) u ( 2 2 ) 2 u u 2 2 u 2 (u ) u 2 2 u ( 2 2 ) 32 u 2 u 2 2 (u ) 2 2 u 2 2 u 2 ( 2 2 ) 32 u

3 Similal, so that 2 2 Hence, we see that ( 2 2 ) 2 u 2 ( 2 2 ) 2 u : 2 u u u u u 2 u (u ) 2 ( 2 2 ) u ( 2 2 ) 2 u u 2 u u ; 2 2 u u u 2 2 (u ) 2 2 u 2 u u 2 ( 2 2 ) 32 u 2 ( 2 2 ) 2 u 2 ( 2 2 ) 2 u : 2 ( 2 2 ) 32 u u u u u u u 2 u zz (u ) u 2 u zz: Pat 2 : Witing the Lalacian in sheical coodinates. Hee, we will go in the evese diection. We will show that the tansfomation when intoduced into cos () ; ; z cos () ; 2 2 u u 2u 2 ( u ) 2 sin 2 () u cot () u u 2 2 sin 2 () u ; gives the Lalacian in Catesian coodinates. Fom the chain ule u u u z u z cos () u u cos () u z : u cos () (u ) (u ) cos () (u z ) : 3

4 And since (u ) cos () u u cos () u z ; (u ) cos () u u cos () u z ; (u z ) cos () u z u z cos () u zz ; we have u cos () [ cos () u u cos () u z ] [ cos () u u cos () u z ] cos () [ cos () u z u z cos () u zz ] sin 2 () cos 2 () u sin 2 () sin 2 () u cos 2 () u zz 2 sin 2 () cos () u 2 cos () cos () u z 2 cos () u z : Likewise, u u u z u z cos () cos () u cos () u u z : u [ cos () cos () u cos () u u z ] cos () u u cos () u z cos () cos () (u ) cos () (u ) (u z ) cos () u u cos () u z cos () cos () [ cos () cos () u cos () u u z ] cos () [ cos () cos () u cos () u u z ] [ cos () cos () u z cos () u z u zz ] cos () u u cos () u z 2 cos 2 () cos 2 () u 2 cos 2 () sin 2 () u 2 sin 2 () u zz 2 2 cos 2 () cos () u 2 2 cos () cos () u z 2 2 cos () u z : Likewise, u u u z u z u cos () u : u [ u cos () u ] cos () u u 4

5 (u ) cos () (u ) cos () u u [ u cos () u ] cos () [ u cos () u ] cos () u u 2 sin 2 () sin 2 () u 2 sin 2 () cos 2 () u 2 2 sin 2 () cos () u : u 2u cot () u u 2 2 sin 2 () u sin 2 () cos 2 () u sin 2 () sin 2 () u cos 2 () u zz 2 sin 2 () cos () u 2 cos () cos () u z 2 cos () u z 2 [ cos () u u cos () u z ] cos () [cos () cos () u cos () u u z ] [ cos () u u cos () u z ] cos 2 () cos 2 () u cos 2 () sin 2 () u sin 2 () u zz 2 cos 2 () cos () u 2 cos () cos () u z 2 cos () u z [cos () u u ] sin 2 () u cos 2 () u 2 cos () u sin 2 () cos 2 () cos 2 () cos 2 () sin 2 () u sin 2 () sin 2 () cos 2 () sin 2 () cos 2 () u cos 2 () sin 2 () u zz 2 sin 2 () cos () 2 cos 2 () cos () 2 cos () u [2 cos () cos () 2 cos () cos ()] u z [2 cos () 2 cos () ] u z 2 cos () cos2 () cos () cos () cos () 2 cos2 () [2 cos () cos () cos ()] u u u zz : u u 5

6 Question : To ove that the clindical coodinate sstem in othogonal is equivalent to showing that nomal vectos associated with the coodinates lanes ae all othogonal. That is, we must show that and and z ae all othogonal whee (@ z ) : B diect calculation 2 2 (; ; 0) ; z (0; 0; ) ; 2 2 Cleal, tan () 2 ( ; ; 0) : 2 z z 0: Question : Fo the geneal tansfomation f (; ) ) d f d f d; g (; ) ) d g d g d: in this oblem, whee f and g, it follows that d d d and d d d; fom which it follows that (ds) 2 (d) 2 (d) 2 (dz) 2 (d d) 2 (d d) 2 (dz) h (d) 2 (d) 2i (dz) 2 : 6

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 ) Pola Coodinates We now intoduce anothe method of labelling oints in a lane. We stat by xing a oint in the lane. It is called the ole. A standad choice fo the ole is the oigin (0; 0) fo the Catezian coodinate

More information

dq 1 (5) q 1 where the previously mentioned limit has been taken.

dq 1 (5) q 1 where the previously mentioned limit has been taken. 1 Vecto Calculus And Continuum Consevation Equations In Cuvilinea Othogonal Coodinates Robet Maska: Novembe 25, 2008 In ode to ewite the consevation equations(continuit, momentum, eneg) to some cuvilinea

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables).

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables). II PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES In man engineeing and othe applications, the behaviou o a cetain quantit dependent vaiable will oten depend on seveal othe quantities independent

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

6 Vector Operators. 6.1 The Gradient Operator

6 Vector Operators. 6.1 The Gradient Operator 6 Vecto Opeatos 6. The Gadient Opeato In the B2 couse ou wee intoduced to the gadient opeato in Catesian coodinates. Fo an diffeentiable scala function f(x,, z), we can define a vecto function though (

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

Cylindrical and Spherical Coordinate Systems

Cylindrical and Spherical Coordinate Systems Clindical and Spheical Coodinate Sstems APPENDIX A In Section 1.2, we leaned that the Catesian coodinate sstem is deined b a set o thee mtall othogonal saces, all o which ae planes. The clindical and spheical

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

Mark Scheme 4727 June 2006

Mark Scheme 4727 June 2006 Mak Scheme 77 June 006 77 Mak Scheme June 006 (a) Identity = + 0 i Invese = + i i = + i i 0 0 (b) Identity = 0 0 0 Invese = 0 0 i B Fo coect identity. Allow B Fo seen o implied + i = B Fo coect invese

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

Part V: Closed-form solutions to Loop Closure Equations

Part V: Closed-form solutions to Loop Closure Equations Pat V: Closed-fom solutions to Loop Closue Equations This section will eview the closed-fom solutions techniques fo loop closue equations. The following thee cases will be consideed. ) Two unknown angles

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

PROBLEM (page 126, 12 th edition)

PROBLEM (page 126, 12 th edition) PROBLEM 13-27 (page 126, 12 th edition) The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic fiction between block B and the inclined plane is 0.4. A and B ae eleased

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in ME 01 DYNAMICS Chapte 1: Kinematics of a Paticle Chapte 1 Kinematics of a Paticle A. Bazone 1.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Pola Coodinates Pola coodinates ae paticlaly sitable fo solving

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

PHYS 705: Classical Mechanics. Small Oscillations

PHYS 705: Classical Mechanics. Small Oscillations PHYS 705: Classical Mechanics Small Oscillations Fomulation of the Poblem Assumptions: V q - A consevative system with depending on position only - The tansfomation equation defining does not dep on time

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

Transformations in Homogeneous Coordinates

Transformations in Homogeneous Coordinates Tansfomations in Homogeneous Coodinates (Com S 4/ Notes) Yan-Bin Jia Aug 4 Complete Section Homogeneous Tansfomations A pojective tansfomation of the pojective plane is a mapping L : P P defined as u a

More information

Final Review of AerE 243 Class

Final Review of AerE 243 Class Final Review of AeE 4 Class Content of Aeodynamics I I Chapte : Review of Multivaiable Calculus Chapte : Review of Vectos Chapte : Review of Fluid Mechanics Chapte 4: Consevation Equations Chapte 5: Simplifications

More information

P-2: The screw eye is subjected to two forces, ԦF 1 and ԦF 2. Determine the magnitude and direction of the resultant force.

P-2: The screw eye is subjected to two forces, ԦF 1 and ԦF 2. Determine the magnitude and direction of the resultant force. P-1: ԦA=Ԧi +Ԧj -5k and B =Ԧi - 7Ԧj -6k. Detemine;?????? - A B B A A B B A B A B A 7 P-: The scew ee is subjected to two foces, Ԧ 1 and Ԧ. Detemine the magnitude and diection of the esultant foce. P-: The

More information

Vectors and 2D Motion. Vectors and Scalars

Vectors and 2D Motion. Vectors and Scalars Vectos and 2D Motion Vectos and Scalas Vecto aithmetic Vecto desciption of 2D motion Pojectile Motion Relative Motion -- Refeence Fames Vectos and Scalas Scala quantities: equie magnitude & unit fo complete

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

Chapter 8: Spherical Coordinates

Chapter 8: Spherical Coordinates 6 Chapte 8: Spheical Coodinates Tiple Integals We've seen that Mathematica can compute integals in Catesian coodinates (x, y, z). Howeve, atoms ae bette descibed using spheical coodinates (, q, f). Hee

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

Introduction: Vectors and Integrals

Introduction: Vectors and Integrals Intoduction: Vectos and Integals Vectos a Vectos ae chaacteized by two paametes: length (magnitude) diection a These vectos ae the same Sum of the vectos: a b a a b b a b a b a Vectos Sum of the vectos:

More information

Complex Eigenvalues. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Complex Eigenvalues. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pepaed by Vince Zaccone Fo ampus Leaning ssistance Sevices at USB omplex Numbes When solving fo the oots of a quadatic equation, eal solutions can not be found when the disciminant is negative. In these

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

MATH 155/GRACEY CH. 10 PRACTICE. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 155/GRACEY CH. 10 PRACTICE. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH /GRACEY CH. PRACTICE Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. At the given point, find the line that is nomal to the cuve at the given point.

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

CMSC 425: Lecture 5 More on Geometry and Geometric Programming

CMSC 425: Lecture 5 More on Geometry and Geometric Programming CMSC 425: Lectue 5 Moe on Geomety and Geometic Pogamming Moe Geometic Pogamming: In this lectue we continue the discussion of basic geometic ogamming fom the eious lectue. We will discuss coodinate systems

More information

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an

More information

Notation. 1 Vectors. 2 Spherical Coordinates The Problem

Notation. 1 Vectors. 2 Spherical Coordinates The Problem Notation 1 Vectos As aleady noted, we neve wite vectos as pais o tiples of numbes; this notation is eseved fo coodinates, a quite diffeent concept. The symbols we use fo vectos have aows on them (to match

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

Cartesian Coordinate System and Vectors

Cartesian Coordinate System and Vectors Catesian Coodinate System and Vectos Coodinate System Coodinate system: used to descibe the position of a point in space and consists of 1. An oigin as the efeence point 2. A set of coodinate axes with

More information

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II ENGR 990 Engineeing Mathematics pplication of Tigonometic Functions in Mechanical Engineeing: Pat II Poblem: Find the coodinates of the end-point of a two-link plana obot am Given: The lengths of the links

More information

Lecture 23. Representation of the Dirac delta function in other coordinate systems

Lecture 23. Representation of the Dirac delta function in other coordinate systems Lectue 23 Repesentation of the Diac delta function in othe coodinate systems In a geneal sense, one can wite, ( ) = (x x ) (y y ) (z z ) = (u u ) (v v ) (w w ) J Whee J epesents the Jacobian of the tansfomation.

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aeodynamics I UNIT B: Theoy of Aeodynamics ROAD MAP... B-1: Mathematics fo Aeodynamics B-2: Flow Field Repesentations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis AE301

More information

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force SOLUTIONS TO PROBLEMS The Laws of Motion Section 4.3 Mass P4. Since the ca is moving with constant speed and in a staight line, the esultant foce on it must be zeo egadless of whethe it is moving (a) towad

More information

γ b =2 γ e In case there is no infiltration under the dam, the angle α is given by In case with infiltration under the dam, the angle a is given by

γ b =2 γ e In case there is no infiltration under the dam, the angle α is given by In case with infiltration under the dam, the angle a is given by O γ e γ b α H γ b γ e Sol A B In case thee is no infiltation unde the dam, the angle α is given b So that Fom whee In case with infiltation unde the dam, the angle a is given b So that Fom whee A. Zeghloul

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Chapter 1: Introduction to Polar Coordinates

Chapter 1: Introduction to Polar Coordinates Habeman MTH Section III: ola Coodinates and Comple Numbes Chapte : Intoduction to ola Coodinates We ae all comfotable using ectangula (i.e., Catesian coodinates to descibe points on the plane. Fo eample,

More information

PDF Created with deskpdf PDF Writer - Trial ::

PDF Created with deskpdf PDF Writer - Trial :: A APPENDIX D TRIGONOMETRY Licensed to: jsamuels@bmcc.cun.edu PDF Ceated with deskpdf PDF Wite - Tial :: http://www.docudesk.com D T i g o n o m e t FIGURE a A n g l e s Angles can be measued in degees

More information

[ ] [ ] 3.3 Given: turning corner radius, r ε = 0 mm lead angle, ψ r = 15 back rake angle, γ p = 5 side rake angle, γ f = 5

[ ] [ ] 3.3 Given: turning corner radius, r ε = 0 mm lead angle, ψ r = 15 back rake angle, γ p = 5 side rake angle, γ f = 5 33 Given: tuning cone adius, ε = 0 mm lead angle, ψ = 5 back ake angle, γ p = 5 side ake angle, γ f = 5 initial wokpiece diamete, D w = 00 mm specific cutting and thust enegy models feed ate, f = 020 mm/ev

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Practice Integration Math 120 Calculus I Fall 2015

Practice Integration Math 120 Calculus I Fall 2015 Pactice Integation Math 0 Calculus I Fall 05 Hee s a list of pactice eecises. Thee s a hint fo each one as well as an answe with intemediate steps... ( + d. Hint. Answe. ( 8 t + t + This fist set of indefinite

More information

Quantum theory of angular momentum

Quantum theory of angular momentum Quantum theoy of angula momentum Igo Mazets igo.mazets+e141@tuwien.ac.at (Atominstitut TU Wien, Stadionallee 2, 1020 Wien Time: Fiday, 13:00 14:30 Place: Feihaus, Sem.R. DA gün 06B (exception date 18 Nov.:

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Practice Integration Math 120 Calculus I D Joyce, Fall 2013

Practice Integration Math 120 Calculus I D Joyce, Fall 2013 Pactice Integation Math 0 Calculus I D Joyce, Fall 0 This fist set of indefinite integals, that is, antideivatives, only depends on a few pinciples of integation, the fist being that integation is invese

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

10.2 Parametric Calculus

10.2 Parametric Calculus 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point

More information

Conservative Averaging Method and its Application for One Heat Conduction Problem

Conservative Averaging Method and its Application for One Heat Conduction Problem Poceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER THERMAL ENGINEERING and ENVIRONMENT Elounda Geece August - 6 (pp6-) Consevative Aveaging Method and its Application fo One Heat Conduction Poblem

More information

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple Global Jounal of Pue and Applied Mathematics. ISSN 0973-1768 Volume 12, Numbe 4 2016, pp. 3315 3325 Reseach India Publications http://www.ipublication.com/gjpam.htm Tansfomation of the Navie-Stokes Equations

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Trigonometry Standard Position and Radians

Trigonometry Standard Position and Radians MHF 4UI Unit 6 Day 1 Tigonomety Standad Position and Radians A. Standad Position of an Angle teminal am initial am Angle is in standad position when the initial am is the positive x-axis and the vetex

More information

Kepler s problem gravitational attraction

Kepler s problem gravitational attraction Kele s oblem gavitational attaction Summay of fomulas deived fo two-body motion Let the two masses be m and m. The total mass is M = m + m, the educed mass is µ = m m /(m + m ). The gavitational otential

More information

Now we just need to shuffle indices around a bit. The second term is already of the form

Now we just need to shuffle indices around a bit. The second term is already of the form Depatment of Physics, UCSD Physics 5B, Geneal Relativity Winte 05 Homewok, solutions. (a) Fom the Killing equation, ρ K σ ` σ K ρ 0 taking one deivative, µ ρ K σ ` µ σ K ρ 0 σ µ K ρ σ ρ K µ 0 ρ µ K σ `

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8 Poblem Set #0 Math 47 Real Analysis Assignment: Chate 8 #2, 3, 6, 8 Clayton J. Lungstum Decembe, 202 xecise 8.2 Pove the convese of Hölde s inequality fo = and =. Show also that fo eal-valued f / L ),

More information

. Using our polar coordinate conversions, we could write a

. Using our polar coordinate conversions, we could write a 504 Chapte 8 Section 8.4.5 Dot Poduct Now that we can add, sutact, and scale vectos, you might e wondeing whethe we can multiply vectos. It tuns out thee ae two diffeent ways to multiply vectos, one which

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Continuum mechanics II. Kinematics in curvilinear coordinates. 1. Strain in cartesian coordinates (recapitulation)

Continuum mechanics II. Kinematics in curvilinear coordinates. 1. Strain in cartesian coordinates (recapitulation) Continuum mechanics office Math.7 ales.janka@unif.ch http://peso.unif.ch/ales.janka/mechanics Decembe 22, 2, Univesité de Fiboug. Stain in catesian coodinates (ecapitulation) Geen stain tenso: Lagange

More information

8 Separation of Variables in Other Coordinate Systems

8 Separation of Variables in Other Coordinate Systems 8 Sepaation of Vaiables in Othe Coodinate Systems Fo the method of sepaation of vaiables to succeed you need to be able to expess the poblem at hand in a coodinate system in which the physical boundaies

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

Recall from last week:

Recall from last week: Recall fom last week: Length of a cuve '( t) dt b Ac length s( t) a a Ac length paametization ( s) with '( s) 1 '( t) Unit tangent vecto T '(s) '( t) dt Cuvatue: s ds T t t t t t 3 t ds u du '( t) dt Pincipal

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil CBN 98-1 Developale constant peimete sufaces: Application to the end design of a tape-wound quadupole saddle coil G. Dugan Laoatoy of Nuclea Studies Conell Univesity Ithaca, NY 14853 1. Intoduction Constant

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information