CMSC 425: Lecture 5 More on Geometry and Geometric Programming

Size: px
Start display at page:

Download "CMSC 425: Lecture 5 More on Geometry and Geometric Programming"

Transcription

1 CMSC 425: Lectue 5 Moe on Geomety and Geometic Pogamming Moe Geometic Pogamming: In this lectue we continue the discussion of basic geometic ogamming fom the eious lectue. We will discuss coodinate systems fo affine and Euclidean geomety, coss-oduct and oientation testing, and affine tansfomations. Local and Global Fames of Refeence: Last time we intoduced the basic elements of affine and Euclidean geomety: oints and (fee) ectos. Howee, as of yet we hae no mechanism fo eesenting these objects. Recall that oints ae to be thought of as locations in sace and (fee) ectos eesent diection and magnitude, but ae not tied down to a aticula location in sace. We seek a fame of efeence fom which to descibe ectos and oints. This is called a coodinate fame. Thee is a global coodinate fame (also called the wold fame) fom which all geometic objects ae descibed. It is conenient in geometic ogamming to define aious local fames as well. Fo examle, suose we hae a ehicle diing aound a city. We might attach a local fame to this ehicle in ode to descibe the elatie ositions of objects and chaactes within the ehicle. The osition of the ehicle itself is then descibed elatie to the global fame. This aises the uestion of how to conet between the local coodinates used to define objects within the ehicle to thei global coodinates. Bases, Vectos, and Coodinates: The fist uestion is how to eesent oints and ectos in affine sace. We will begin by ecalling how to do this in linea algeba, and genealize fom thee. We know fom linea algeba that if we hae 2-linealy indeendent ectos, u 0 and u 1 in 2-sace, then we can eesent any othe ecto in 2-sace uniuely as a linea combination of these two ectos (see Fig. 1(a)): fo some choice of scalas α 0, α 1. = α 0 u 0 + α 1 u 1, u 1 u 0 u 1 = 2u 0 + 3u 1 [F ] = (2, 3) u 0 e 1 y e 0 x w = 3e 0 + 2e 1 w [F ] = (3, 2) (a) (b) Fig. 1: Bases and linea combinations in linea algeba (a) and the standad basis (b). Thus, gien any such ectos, we can use them to eesent any ecto in tems of a ai of scalas (α 0, α 1 ). In geneal d linealy indeendent ectos in dimension d is called a basis. The most conenient basis to wok with consists of two ectos, each of unit length, that ae othogonal to each othe. Such a collection of ectos is said to be othonomal. The standad basis consisting of the x- and y-unit ectos is an examle of such a basis (see Fig. 1(b)). Lectue 5 1 Sing 2018

2 Note that we ae using the tem ecto in two diffeent senses hee, one as a geometic entity and the othe as a seuence of numbes, gien in the fom of a ow o column. The fist is the object of inteest (i.e., the abstact data tye, in comute science teminology), and the latte is a eesentation. As is common in object oiented ogamming, we should think in tems of the abstact object, een though in ou ogamming we will hae to get dity and wok with the eesentation itself. Coodinate Fames and Coodinates: Now let us tun fom linea algeba to affine geomety. Again, let us conside just 2-dimensional sace. To define a coodinate fame fo an affine sace we would like to find some way to eesent any object (oint o ecto) as a seuence of scalas. Thus, it seems natual to genealize the notion of a basis in linea algeba to define a basis in affine sace. Note that fee ectos alone ae not enough to define a oint (since we cannot define a oint by any combination of ecto oeations). To secify osition, we will designate an abitay oint, denoted O, to see as the oigin of ou coodinate fame. Let u 0 and u 1 be a ai of linealy indeendent ectos. We aleady know that we can eesent any ecto uniuely as a linea combination of these two basis ectos. We can eesent any oint by adding a ecto to O (in aticula, the ecto O). It follows that we can eesent any oint in the following fom: = α 0 u 0 + α 1 u 1 + O, fo some ai of scalas α 0 and α 1. This suggests the following definition. Definition: A coodinate fame fo a d-dimensional affine sace consists of a oint (which we will denote O), called the oigin of the fame, and a set of d linealy indeendent basis ectos. Gien the aboe definition, we now hae a conenient way to exess both oints and ectos. As with linea algeba, the most natual tye of basis is othonomal. Gien an othonomal basis consisting of oigin O and unit ectos e 0 and e 1, we can exess any oint and any ecto as: = α 0 e 0 + α 1 e 1 + O and = β 0 e 0 + β 1 e 1 fo scalas α 0, α 1, β 0, and β 1. In ode to conet this into a coodinate system, let us entetain the following notational conention. Define 1 O = O and 0 O = 0 (the zeo ecto). Note that these two exessions ae blatantly illegal by the ules of affine geomety, but this conention makes it ossible to exess the aboe euations in a common (homogeneous) fom (see Fig. 2): = α 0 e 0 + α 1 e O and = β 0 e 0 + β 1 e O. This suggests a nice method fo exessing both oints and ectos using a common notation. Fo the gien coodinate fame F = ( e 0, e 1, O) we can exess the oint and the ecto as (see Fig. 2). [F ] = (α 0, α 1, 1) and [F ] = (β 0, β 1, 0) Lectue 5 2 Sing 2018

3 = 3 e e O [F ] = (3, 2, 1) O e 1 e 0 = 2 e e O [F ] = (2, 1, 0) Fig. 2: Coodinate fames and (affine) homogeneous coodinates. These ae called (affine) homogeneous coodinates. In summay, to eesent oints and ectos in d-sace, we will use coodinate ectos of length d+1. Points hae a last coodinate 1 of 1, and ectos hae a last coodinate of 0. Poeties of homogeneous coodinates: The choice of aending a 1 fo oints and a 0 fo ectos may seem to be a athe abitay choice. Why not just eese them o use some othe scala alues? The eason is that this aticula choice has a numbe of nice oeties with esect to geometic oeations. Fo examle, conside two oints and whose coodinate eesentations elatie to some fame F ae [F ] = (1, 4, 1) and [F ] = (4, 3, 1), esectiely (see Fig. 3). Conside the ecto =. If we aly the diffeence ule that we defined last time fo oints, and then conet this ecto into it coodinates elatie to fame F, we find that [F ] = ( 3, 1, 0). Thus, to comute the coodinates of we simly take the comonent-wise diffeence of the coodinate ectos fo and. The 1-comonents nicely cancel out, to gie a ecto esult. [F ] = (1, 4, 1) [F ] = (4, 3, 1) O e 1 e 0 [F ] = (1 4, 4 3, 1 1) Fig. 3: Coodinate aithmetic. = ( 3, 1, 0) In geneal, a nice featue of this eesentation is the last coodinate behaes exactly as it should. Let u and be eithe oints o ectos. Afte a numbe of oeations of the foms u + o u o αu (when alied to the coodinates) we hae: If the last coodinate is 1, then the esult is a oint. 1 Some conentions lace the homogenizing coodinate fist athe than last. Thee ae actually good easons fo doing this, as we will see below in ou discussion of oientation testing. But we will stick with standad engineeing conentions and lace it last. Lectue 5 3 Sing 2018

4 If the last coodinate is 0, then the esult is a ecto. Othewise, this is not a legal affine oeation. This fact can be oed igoously, but we won t woy about doing so. Coss Poduct: The coss oduct is an imotant ecto oeation in 3-sace. You ae gien two ectos and you want to find a thid ecto that is othogonal to these two. This is handy in constucting coodinate fames with othogonal bases. Thee is a nice oeato in 3-sace, which does this fo us, called the coss oduct. The coss oduct is usually defined in standad linea 3-sace (since it alies to ectos, not oints). So we will ignoe the homogeneous coodinate hee. Gien two ectos in 3-sace, u and, thei coss oduct is defined as follows (see Fig. 4(a)): u = u y z u z y u z x u x z u x y u y x. u u u u = (u ) (a) (b) Fig. 4: Coss oduct. A nice mnemonic deice fo emembeing this fomula, is to exess it in tems of the following symbolic deteminant: e x e y e z u = u x u y u z x y z. Hee e x, e y, and e z ae the thee coodinate unit ectos fo the standad basis. Note that the coss oduct is only defined fo a ai of fee ectos and only in 3-sace. Futhemoe, we ignoe the homogeneous coodinate hee. The coss oduct has the following imotant oeties: Skew symmetic: u = ( u) (see Fig. 5(b)). It follows immediately that u u = 0 (since it is eual to its own negation). Nonassociatie: Unlike most othe oducts that aise in algeba, the coss oduct is not associatie. That is ( u ) w u ( w). Lectue 5 4 Sing 2018

5 Bilinea: The coss oduct is linea in both aguments. Fo examle: u (α ) = α( u ), u ( + w) = ( u ) + ( u w). Peendicula: If u and ae not linealy deendent, then u is eendicula to u and, and is diected accoding the ight-hand ule. Angle and Aea: The length of the coss oduct ecto is elated to the lengths of and angle between the ectos. In aticula: u = u sin θ, whee θ is the angle between u and. The coss oduct is usually not used fo comuting angles because the dot oduct can be used to comute the cosine of the angle (in any dimension) and it can be comuted moe efficiently. This length is also eual to the aea of the aallelogam whose sides ae gien by u and. This is often useful. The coss oduct is commonly used in comute gahics fo geneating coodinate fames. Gien two basis ectos fo a fame, it is useful to geneate a thid ecto that is othogonal to the fist two. The coss oduct does exactly this. It is also useful fo geneating suface nomals. Gien two tangent ectos fo a suface, the coss oduct geneate a ecto that is nomal to the suface. Oientation: Gien two eal numbes and, thee ae thee ossible ways they may be odeed: <, =, o >. We may define an oientation function, which takes on the alues +1, 0, o 1 in each of these cases. That is, O 1 (, ) = sign( ), whee sign(x) is eithe 1, 0, o +1 deending on whethe x is negatie, zeo, o ositie, esectiely. An inteesting uestion is whethe it is ossible to extend the notion of ode to highe dimensions. The answe is yes, but athe than comaing two oints, in geneal we can define the oientation of d + 1 oints in d-sace. We define the oientation to be the sign of the deteminant consisting of thei homogeneous coodinates (with the homogenizing coodinate gien fist). Fo examle, in the lane and 3-sace the oientation of thee oints,, is defined to be O 2 (,, ) = sign det x x x y y y, O 3 (,,, s) = sign det x x x s x y y y s y z z z s z What does oientation mean intuitiely? The oientation of thee oints in the lane is +1 if the tiangle P QR is oiented counte-clockwise, 1 if clockwise, and 0 if all thee oints ae collinea (see Fig. 5). In 3-sace, a ositie oientation means that the oints follow a ight-handed scew, if you isit the oints in the ode P QRS. A negatie oientation means a left-handed scew and zeo oientation means that the oints ae colana. Note that the ode of the aguments is significant. The oientation of (,, ) is the negation of the oientation of (,, ). As with deteminants, the swa of any two elements eeses the sign of the oientation. Lectue 5 5 Sing 2018.

6 O(,, ) = +1 O(,, ) = 0 O(,, ) = 1 s s O(,,, s) = 1 O(,,, s) = +1 Fig. 5: Oientations in 2 and 3 dimensions. You might ask why ut the homogeneous coodinate fist? The answe a mathematician would gie you is that is eally whee it should be in the fist lace. If you ut it last, then ositie oiented things ae ight-handed in een dimensions and left-handed in odd dimensions. By utting it fist, ositiely oiented things ae always ight-handed in oientation, which is moe elegant. Putting the homogeneous coodinate last seems to be a conention that aose in engineeing, and was adoted late by gahics eole. The alue of the deteminant itself is the aea of the aallelogam defined by the ectos and, and thus this deteminant is also handy fo comuting aeas and olumes. Late we will discuss othe methods. Oientation testing is a ey useful tool, but it is (suisingly) not ey widely known in the aeas of comute game ogamming and comute gahics. Fo examle, suose that we hae a bullet ath, eesented by a line segment. We want to know whethe the linea extension of this segment intesects a taget tiangle, abc. We can detemine this using thee oientation tests. To see the connection, conside the thee diected edges of the tiangle ab bc and ca. Suose that we lace an obsee along each of these edges, facing the diection of the edge. If the line asses though the tiangle, then all thee obsees will see the diected line assing in the same diection elatie to thei edge (see Fig. 6). (This might take a bit of time to conince youself of this. To make it easie, imagine that the tiangle is on the floo with a, b, and c gien in counteclockwise ode, and the line is etical with below the floo and aboe. The line hits the tiangle if and only if all thee obsees, when facing the diection of thei esectie edges, see the line on thei left. If we eese the oles of and, they will all see the line as being on thei ight. In any case, they all agee.) b a c Fig. 6: Using oientation testing to detemine line-tiangle intesection. It follows that the line asses though the tiangle if and only if O 3 (,, a, b) = O 3 (,, b, c) = O 3 (,, c, d). Lectue 5 6 Sing 2018

7 (By the way, this tests only whethe the infinite line intesects the tiangle. To detemine whethe the segment intesects the tiangle, we should also check that and lie on oosite sides of the tiangle. Can you see how to do this with two additional oientation tests?) Lectue 5 7 Sing 2018

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 ) Pola Coodinates We now intoduce anothe method of labelling oints in a lane. We stat by xing a oint in the lane. It is called the ole. A standad choice fo the ole is the oigin (0; 0) fo the Catezian coodinate

More information

Cross section dependence on ski pole sti ness

Cross section dependence on ski pole sti ness Coss section deendence on ski ole sti ness Johan Bystöm and Leonid Kuzmin Abstact Ski equiment oduce SWIX has ecently esented a new ai of ski oles, called SWIX Tiac, which di es fom conventional (ound)

More information

Analysis of Arithmetic. Analysis of Arithmetic. Analysis of Arithmetic Round-Off Errors. Analysis of Arithmetic. Analysis of Arithmetic

Analysis of Arithmetic. Analysis of Arithmetic. Analysis of Arithmetic Round-Off Errors. Analysis of Arithmetic. Analysis of Arithmetic In the fixed-oint imlementation of a digital filte only the esult of the multilication oeation is quantied The eesentation of a actical multilie with the quantie at its outut is shown below u v Q ^v The

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

CALCULUS II Vectors. Paul Dawkins

CALCULUS II Vectors. Paul Dawkins CALCULUS II Vectos Paul Dawkins Table of Contents Peface... ii Vectos... 3 Intoduction... 3 Vectos The Basics... 4 Vecto Aithmetic... 8 Dot Poduct... 13 Coss Poduct... 21 2007 Paul Dawkins i http://tutoial.math.lama.edu/tems.aspx

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Kepler s problem gravitational attraction

Kepler s problem gravitational attraction Kele s oblem gavitational attaction Summay of fomulas deived fo two-body motion Let the two masses be m and m. The total mass is M = m + m, the educed mass is µ = m m /(m + m ). The gavitational otential

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS 5.4 Radian Measue So fa, ou hae measued angles in degees, with 60 being one eolution aound a cicle. Thee is anothe wa to measue angles called adian measue. With adian measue, the ac length of a cicle is

More information

. Using our polar coordinate conversions, we could write a

. Using our polar coordinate conversions, we could write a 504 Chapte 8 Section 8.4.5 Dot Poduct Now that we can add, sutact, and scale vectos, you might e wondeing whethe we can multiply vectos. It tuns out thee ae two diffeent ways to multiply vectos, one which

More information

New problems in universal algebraic geometry illustrated by boolean equations

New problems in universal algebraic geometry illustrated by boolean equations New poblems in univesal algebaic geomety illustated by boolean equations axiv:1611.00152v2 [math.ra] 25 Nov 2016 Atem N. Shevlyakov Novembe 28, 2016 Abstact We discuss new poblems in univesal algebaic

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

BASIC ALGEBRA OF VECTORS

BASIC ALGEBRA OF VECTORS Fomulae Fo u Vecto Algeba By Mi Mohammed Abbas II PCMB 'A' Impotant Tems, Definitions & Fomulae 01 Vecto - Basic Intoduction: A quantity having magnitude as well as the diection is called vecto It is denoted

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Errata for Edition 1 of Coding the Matrix, January 13, 2017

Errata for Edition 1 of Coding the Matrix, January 13, 2017 Eata fo Edition of Coding the Matix, Januay 3, 07 You coy might not contain some of these eos. Most do not occu in the coies cuently being sold as Ail 05. Section 0.3:... the inut is a e-image of the inut...

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

When two numbers are written as the product of their prime factors, they are in factored form.

When two numbers are written as the product of their prime factors, they are in factored form. 10 1 Study Guide Pages 420 425 Factos Because 3 4 12, we say that 3 and 4 ae factos of 12. In othe wods, factos ae the numbes you multiply to get a poduct. Since 2 6 12, 2 and 6 ae also factos of 12. The

More information

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur = 3.4 Geen s Theoem Geoge Geen: self-taught English scientist, 793-84 So, if we ae finding the amount of wok done ove a non-consevative vecto field F, we do that long u b u 3. method Wok = F d F( () t )

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

arxiv: v1 [math.co] 1 Apr 2011

arxiv: v1 [math.co] 1 Apr 2011 Weight enumeation of codes fom finite spaces Relinde Juius Octobe 23, 2018 axiv:1104.0172v1 [math.co] 1 Ap 2011 Abstact We study the genealized and extended weight enumeato of the - ay Simplex code and

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

PHYSICS 151 Notes for Online Lecture #20

PHYSICS 151 Notes for Online Lecture #20 PHYSICS 151 Notes fo Online Lectue #20 Toque: The whole eason that we want to woy about centes of mass is that we ae limited to looking at point masses unless we know how to deal with otations. Let s evisit

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Notation. 1 Vectors. 2 Spherical Coordinates The Problem

Notation. 1 Vectors. 2 Spherical Coordinates The Problem Notation 1 Vectos As aleady noted, we neve wite vectos as pais o tiples of numbes; this notation is eseved fo coodinates, a quite diffeent concept. The symbols we use fo vectos have aows on them (to match

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

Introduction to Vectors and Frames

Introduction to Vectors and Frames Intoduction to Vectos and Fames CIS - 600.445 Russell Taylo Saah Gaham Infomation Flow Diagam Model the Patient Plan the Pocedue Eecute the Plan Real Wold Coodinate Fame Tansfomation F = [ R, p] 0 F y

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

COLLAPSING WALLS THEOREM

COLLAPSING WALLS THEOREM COLLAPSING WALLS THEOREM IGOR PAK AND ROM PINCHASI Abstact. Let P R 3 be a pyamid with the base a convex polygon Q. We show that when othe faces ae collapsed (otated aound the edges onto the plane spanned

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r. The Laplace opeato in pola coodinates We now conside the Laplace opeato with Diichlet bounday conditions on a cicula egion Ω {(x,y) x + y A }. Ou goal is to compute eigenvalues and eigenfunctions of the

More information

arxiv:math/ v2 [math.ag] 21 Sep 2005

arxiv:math/ v2 [math.ag] 21 Sep 2005 axiv:math/0509219v2 [math.ag] 21 Se 2005 POLYNOMIAL SYSTEMS SUPPORTED ON CIRCUITS AND DESSINS D ENFANTS FREDERIC BIHAN Abstact. We study olynomial systems whose equations have as common suot a set C of

More information

Probabilistic number theory : A report on work done. What is the probability that a randomly chosen integer has no square factors?

Probabilistic number theory : A report on work done. What is the probability that a randomly chosen integer has no square factors? Pobabilistic numbe theoy : A eot on wo done What is the obability that a andomly chosen intege has no squae factos? We can constuct an initial fomula to give us this value as follows: If a numbe is to

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

KIRCHHOFF CURRENT LAW

KIRCHHOFF CURRENT LAW KICHHOFF CUENT LAW ONE OF THE FUNDAMENTAL CONSEATION PINCIPLES IN ELECTICAL ENGINEEING CHAGE CANNOT BE CEATED NO DESTOYED NODES, BANCHES, LOOPS A NODE CONNECTS SEEAL COMPONENTS. BUT IT DOES NOT HOLD ANY

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

1.6. Trigonometric Functions. 48 Chapter 1: Preliminaries. Radian Measure

1.6. Trigonometric Functions. 48 Chapter 1: Preliminaries. Radian Measure 48 Chapte : Peliminaies.6 Tigonometic Functions Cicle B' B θ C A Unit of cicle adius FIGURE.63 The adian measue of angle ACB is the length u of ac AB on the unit cicle centeed at C. The value of u can

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

Errors in Nobel Prize for Physics (3) Conservation of Energy Leads to Probability Conservation of Parity, Momentum and so on

Errors in Nobel Prize for Physics (3) Conservation of Energy Leads to Probability Conservation of Parity, Momentum and so on Eos in Nobel ize fo hysics (3) Conseation of Enegy Leads to obability Conseation of aity, Momentum and so on Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: One of the easons fo 957

More information

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version The Binomial Theoem Factoials Auchmuty High School Mathematics Depatment The calculations,, 6 etc. often appea in mathematics. They ae called factoials and have been given the notation n!. e.g. 6! 6!!!!!

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations MATH 415, WEEK 3: Paamete-Dependence and Bifucations 1 A Note on Paamete Dependence We should pause to make a bief note about the ole played in the study of dynamical systems by the system s paametes.

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

5.8 Trigonometric Equations

5.8 Trigonometric Equations 5.8 Tigonometic Equations To calculate the angle at which a cuved section of highwa should be banked, an enginee uses the equation tan =, whee is the angle of the 224 000 bank and v is the speed limit

More information

Chapter 1: Introduction to Polar Coordinates

Chapter 1: Introduction to Polar Coordinates Habeman MTH Section III: ola Coodinates and Comple Numbes Chapte : Intoduction to ola Coodinates We ae all comfotable using ectangula (i.e., Catesian coodinates to descibe points on the plane. Fo eample,

More information

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS 5.6 Physical Chemisty Lectue #3 page MAY ELECTRO ATOMS At this point, we see that quantum mechanics allows us to undestand the helium atom, at least qualitatively. What about atoms with moe than two electons,

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

AP Physics - Coulomb's Law

AP Physics - Coulomb's Law AP Physics - oulomb's Law We ve leaned that electons have a minus one chage and potons have a positive one chage. This plus and minus one business doesn t wok vey well when we go in and ty to do the old

More information

The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields

The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields ACTA ARITHMETICA LXIX.2 1995 The 2-Sylow subgous of the tame kenel of imaginay uadatic fields by Houong Qin Nanjing To Pofesso Zhou Boxun Cheo Peh-hsuin on his 75th bithday 1. Intoduction. Let F be a numbe

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Waves and Polarization in General

Waves and Polarization in General Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Physics 201, Lecture 6

Physics 201, Lecture 6 Physics 201, Lectue 6 Today s Topics q Unifom Cicula Motion (Section 4.4, 4.5) n Cicula Motion n Centipetal Acceleation n Tangential and Centipetal Acceleation q Relatie Motion and Refeence Fame (Sec.

More information

Vectors Serway and Jewett Chapter 3

Vectors Serway and Jewett Chapter 3 Vectos Sewa and Jewett Chapte 3 Scalas and Vectos Vecto Components and Aithmetic Vectos in 3 Dimensions Unit vectos i, j, k Pactice Poblems: Chapte 3, poblems 9, 19, 31, 45, 55, 61 Phsical quantities ae

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-184: Compute Gaphics Lectue #6: 3D Tansfomations and Rotations Pof. James O Bien Univesity of Califonia, Bekeley V2006-F-06-1.0 Today Tansfomations in 3D Rotations Matices Eule angles Eponential maps

More information

Chapter 5 Linear Equations: Basic Theory and Practice

Chapter 5 Linear Equations: Basic Theory and Practice Chapte 5 inea Equations: Basic Theoy and actice In this chapte and the next, we ae inteested in the linea algebaic equation AX = b, (5-1) whee A is an m n matix, X is an n 1 vecto to be solved fo, and

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

556: MATHEMATICAL STATISTICS I

556: MATHEMATICAL STATISTICS I 556: MATHEMATICAL STATISTICS I CHAPTER 5: STOCHASTIC CONVERGENCE The following efinitions ae state in tems of scala anom vaiables, but exten natually to vecto anom vaiables efine on the same obability

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

MAC Module 12 Eigenvalues and Eigenvectors

MAC Module 12 Eigenvalues and Eigenvectors MAC 23 Module 2 Eigenvalues and Eigenvectos Leaning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue poblem by finding the eigenvalues and the coesponding eigenvectos

More information

CS-184: Computer Graphics. Today. Lecture #5: 3D Transformations and Rotations. Wednesday, September 7, 11. Transformations in 3D Rotations

CS-184: Computer Graphics. Today. Lecture #5: 3D Transformations and Rotations. Wednesday, September 7, 11. Transformations in 3D Rotations CS-184: Compute Gaphics Lectue #5: D Tansfomations and Rotations Pof. James O Bien Univesity of Califonia, Bekeley V011-F-05-1.0 Today Tansfomations in D Rotations Matices Eule angles Eponential maps Quatenions

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & .. Linea Combinations: (a) (b) (c) (d) Given a finite set of vectos a b c,,,... then the vecto xa + yb + zc +... is called a linea combination of a, b, c,... fo any x, y, z... R. We have the following

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

2 x 8 2 x 2 SKILLS Determine whether the given value is a solution of the. equation. (a) x 2 (b) x 4. (a) x 2 (b) x 4 (a) x 4 (b) x 8

2 x 8 2 x 2 SKILLS Determine whether the given value is a solution of the. equation. (a) x 2 (b) x 4. (a) x 2 (b) x 4 (a) x 4 (b) x 8 5 CHAPTER Fundamentals When solving equations that involve absolute values, we usually take cases. EXAMPLE An Absolute Value Equation Solve the equation 0 x 5 0 3. SOLUTION By the definition of absolute

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

CS-184: Computer Graphics. Today. Lecture #5: 3D Transformations and Rotations. 05-3DTransformations.key - September 21, 2016

CS-184: Computer Graphics. Today. Lecture #5: 3D Transformations and Rotations. 05-3DTransformations.key - September 21, 2016 1 CS-184: Compute Gaphics Lectue #5: D Tansfomations and Rotations Pof. James O Bien Univesity of Califonia, Bekeley V016-S-05-1.0 Today Tansfomations in D Rotations Matices Eule angles Eponential maps

More information

PHYS 705: Classical Mechanics. Small Oscillations

PHYS 705: Classical Mechanics. Small Oscillations PHYS 705: Classical Mechanics Small Oscillations Fomulation of the Poblem Assumptions: V q - A consevative system with depending on position only - The tansfomation equation defining does not dep on time

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths)

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths) A Tutoial on Multiple Integals (fo Natual Sciences / Compute Sciences Tipos Pat IA Maths) Coections to D Ian Rud (http://people.ds.cam.ac.uk/ia/contact.html) please. This tutoial gives some bief eamples

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

18.06 Problem Set 4 Solution

18.06 Problem Set 4 Solution 8.6 Poblem Set 4 Solution Total: points Section 3.5. Poblem 2: (Recommended) Find the lagest possible numbe of independent vectos among ) ) ) v = v 4 = v 5 = v 6 = v 2 = v 3 =. Solution (4 points): Since

More information

Pledge: Signature:

Pledge: Signature: S 202, Sing 2005 Midtem 1: 24 eb 2005 Page 1/8 Name: KEY E-mail D: @viginia.edu Pledge: Signatue: Thee ae 75 minutes fo this exam and 100 oints on the test; don t send too long on any one uestion! The

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

Cartesian Coordinate System and Vectors

Cartesian Coordinate System and Vectors Catesian Coodinate System and Vectos Coodinate System Coodinate system: used to descibe the position of a point in space and consists of 1. An oigin as the efeence point 2. A set of coodinate axes with

More information

Transformations in Homogeneous Coordinates

Transformations in Homogeneous Coordinates Tansfomations in Homogeneous Coodinates (Com S 4/ Notes) Yan-Bin Jia Aug 4 Complete Section Homogeneous Tansfomations A pojective tansfomation of the pojective plane is a mapping L : P P defined as u a

More information