Cylindrical and Spherical Coordinate Systems

Size: px
Start display at page:

Download "Cylindrical and Spherical Coordinate Systems"

Transcription

1 Clindical and Spheical Coodinate Sstems APPENDIX A In Section 1.2, we leaned that the Catesian coodinate sstem is deined b a set o thee mtall othogonal saces, all o which ae planes. The clindical and spheical coodinate sstems also involve sets o thee mtall othogonal saces. Fo the clindical coodinate sstem, the thee saces ae a clinde and two planes, as shown in Fige A.1(a). One o these planes is the same as the = constant plane in the Catesian coodinate sstem. The second plane contains the -ais and makes an angle with a eeence plane, convenientl chosen to be the -plane o the Catesian coodinate sstem. This plane is theeoe deined b = constant. The clindical sace has the -ais as its ais. Since the adial distance om the -ais to points on the clindical sace is a constant, this sace is deined b = constant. Ths, the thee othogonal saces deining the clindical coodinates o a point ae = constant, = constant, and = constant. Onl two o these coodinates ( and ) ae distances; the thid coodinate ( ) is an angle. We note that the entie space is spanned b vaing om 0 to q, om 0 to 2p, and om - q to q. The oigin is given b = 0, = 0, and = 0. An othe point in space is given b the intesection o thee mtall othogonal saces obtained b incementing the coodinates b appopiate amonts. Fo eample, the intesection o the thee saces = 2, = p>4, and = 3 deines the point A(2, p>4, 3), as shown in Fige A.1(a). These thee othogonal saces deine thee cves that ae mtall pependicla. Two o these ae staight lines and the thid is a cicle. We daw nit vectos, a,, and a tangential to these cves at the point A and diected towad inceasing vales o,,and,espectivel.thesetheenitvectosomasetomtallothogonalnit vectos in tems o which vectos dawn at A can be descibed. In a simila manne, we can daw nit vectos at an othe point in the clindical coodinate sstem, as shown, o eample, o point B(1, 3p>4, 5) in Fige A.1(a). It can now be seen that the nit vectos a and at point B ae not paallel to the coesponding nit vectos at point A.Ths,nlike inthecatesiancoodinatesstem,thenitvectosa and in the clindical coodinate sstem do not have the same diections evewhee, that is, the ae not niom. Onl the nit vecto a, which is the same as in the Catesian coodinate sstem, is niom. Finall, we note that o the choice o as in Fige A.l(a), 413

2 414 Appendi A Clindical and Spheical Coodinate Sstems a B a a 3 Q d A a 2 d P d p 4 d d d (a) (b) FIGURE A.1 Clindical coodinate sstem. (a) Othogonal saces and nit vectos. (b) Dieential volme omed b incementing the coodinates. that is, inceasing om the positive -ais towad the positive -ais, the coodinate sstem is ight-handed, that is, a : = a. To obtain epessions o the dieential lengths, saces, and volme in the clindical coodinate sstem, we now conside two points P(,, ) and Q( + d, + d, + d), whee Q is obtained b incementing ininitesimall each coodinate om its vale at P, as shown in Fige A.1(b). The thee othogonal saces intesecting at P and the thee othogonal saces intesecting at Q deine a bo which can be consideed to be ectangla, since d, d, and d ae ininitesimall small. The thee dieential length elements, oming the contigos sides o this bo ae d a, d,and d a.the dieential length vecto dl om P to Q is ths given b dl = d a + d + d a (A.1) The dieential saces omed b pais o the dieential length elements ae ; ds a = ; (d)( d)a = ; d a : d (A.2a) ; ds a = ; ( d)(d)a = ; d : d a (A.2b) ; ds = ; (d)(d) = ; d a : d a (A.2c) Finall, the dieential volme dv omed b the thee dieential lengths is simpl the volme o the bo, that is, dv = (d)( d)(d) = d d d (A.3)

3 Appendi A 415 Fo the spheical coodinate sstem, the thee mtall othogonal saces ae asphee,a cone,and a plane,as shown in Fige A.2(a).The plane is the same as the = constant plane in the clindical coodinate sstem. The sphee has the oigin as its cente. Since the adial distance om the oigin to points on the spheical sace is a constant, this sace is deined b = constant. The spheical coodinate shold not be consed with the clindical coodinate. When these two coodinates appea in the same epession, we shall se the sbscipts c and s to distingish between clindical and spheical. The cone has its vete at the oigin and its sace is smmetical abot the -ais. Since the angle is the angle that the conical sace makes with the -ais, this sace is deined b = constant. Ths, the thee othogonal saces deining the spheical coodinates o a point ae = constant, = constant, and = constant. Onl one o these coodinates () is distance; the othe two coodinates ( and ) ae angles. We note that the entie space is spanned b vaing om 0 to q, om 0 to p, and om 0 to 2p. p 6 A a a B p 3 3 sin d d P d d d d d Q (a) (b) FIGURE A.2 Spheical coodinate sstem. (a) Othogonal saces and nit vectos. (b) Dieential volme omed b incementing the coodinates. The oigin is given b = 0, = 0, and = 0. An othe point in space is given b the intesection o thee mtall othogonal saces obtained b incementing the coodinates b appopiate amonts. Fo eample, the intesection o the thee saces = 3, = p>6, and = p>3 deines the point A(3, p>6, p>3) as shown in Fige A.2(a). These thee othogonal saces deine thee cves that ae mtall pependicla. One o these is a staight line and the othe two ae cicles.we daw nit vectos a,, and tangential to these cves at point A and diected towad inceasing vales o,, and, espectivel. These thee nit vectos om a set o mtall

4 416 Appendi A Clindical and Spheical Coodinate Sstems othogonal nit vectos in tems o which vectos dawn at A can be descibed. In a simila manne, we can daw nit vectos at an othe point in the spheical coodinate sstem, as shown, o eample, o point B(1, p>2, 0) in Fige A.2(a). It can now be seen that these nit vectos at point B ae not paallel to the coesponding nit vectos at point A. Ths, in the spheical coodinate sstem, all thee nit vectos a,, and do not have the same diections evewhee, that is, the ae not niom. Finall, we note that o the choice o as in Fige A.2(a), that is, inceasing om the positive -ais towad the -plane, the coodinate sstem is ight-handed, that is, a : =. To obtain epessions o the dieential lengths, saces, and volme in the spheical coodinate sstem, we now conside two points P(,, ) and Q( + d, + d, + d), whee Q is obtained b incementing ininitesimall each coodinate om its vale at P, as shown in Fige A.2(b). The thee othogonal saces intesecting at P and the thee othogonal saces intesecting at Q deine a bo that can be consideed to be ectangla, since d, d, and d ae ininitesimall small. The thee dieential length elements oming the contigos sides o this bo ae d a, d, and sin d.the dieential length vecto dl om P to Q is ths given b dl = d a + d + sin d (A.4) The dieential saces omed b pais o the dieential length elements ae ; ds = ; (d)( d) = ; d a : d ; ds a = ; ( d)( sin d)a = ; d : sin d ; ds = ; ( sin d)(d) = ; sin d : d a (A.5a) (A.5b) (A.5c) Finall, the dieential volme dv omed b the thee dieential lengths is simpl the volme o the bo, that is, dv = (d)( d)( sin d) = 2 sin d d d (A.6) In the std o electomagnetics it is sometimes sel to be able to convet the coodinates o a point and vectos dawn at a point om one coodinate sstem to anothe, paticlal om the Catesian sstem to the clindical sstem and vice vesa, and om the Catesian sstem to the spheical sstem and vice vesa.to deive ist the elationships o the convesion o the coodinates, let s conside Fige A.3(a), which illstates the geomet petinent to the coodinates o a point P in the thee dieent coodinate sstems. Ths, om simple geometical consideations, we have = c cos = c sin = = s sin cos = s sin sin = s cos (A.7) (A.8) Convesel, we have c = = tan - 1 = (A.9) s = = tan = tan - 1 (A.10)

5 Appendi A 417 a s P a a a s a c O c a c a (b) (c) (a) FIGURE A.3 (a) Fo convesion o coodinates o a point om one coodinate sstem to anothe. (b) and (c) Fo epessing nit vectos in clindical and spheical coodinate sstems, espectivel, in tems o nit vectos in the Catesian coodinate sstem. Relationships (A.7) and (A.9) coespond to convesion om clindical coodinates to Catesian coodinates and vice vesa. Relationships (A.8) and (A.10) coespond to convesion om spheical coodinates to Catesian coodinates and vice vesa. Consideing net the convesion o vectos om one coodinate sstem to anothe, we note that in ode to do this, we need to epess each o the nit vectos o the ist coodinate sstem in tems o its components along the nit vectos in the second coodinate sstem. Fom the deinition o the dot podct o two vectos, the component o a nit vecto along anothe nit vecto, that is, the cosine o the angle between the nit vectos, is simpl the dot podct o the two nit vectos. Ths, consideing the sets o nit vectos in the clindical and Catesian coodinate sstems, we have with the aid o Fige A.3(b), a c # a = cos a c # a = sin a c # a = 0 # a = - sin # a = cos # a = 0 a # a = 0 a # a = 0 a # a = 1 (A.11a) (A.11b) (A.11c) Similal, o the sets o nit vectos in the spheical and Catesian coodinate sstems, we obtain with the aid o Fige A.3(c) and Fige A.3(b), a s # a = sin cos a s # a = sin sin a s # a = cos # a = cos cos # a = cos sin # a = - sin # a = - sin # a = cos # a = 0 (A.12a) (A.12b) (A.12c) We shall now illstate the se o these elationships b means o an eample.

6 418 Appendi A Clindical and Spheical Coodinate Sstems Eample A.1 Let s conside the vecto 3a + 4a + 5a at the point (3, 4, 5) and convet the vecto to one in spheical coodinates. Fist, om the elationships (A.10), we obtain the spheical coodinates o the point (3, 4, 5) to be s = = 522 = tan = tan = 45 5 = tan = Then noting om the elationships (A.12) that at the point nde consideation, a = sin cos a s + cos cos - sin = 0.322a s a = sin sin a s + cos sin + cos = 0.422a s a = cos a s - sin = 0.522a s we obtain 3a + 4a + 5a = ( )a s + ( ) + ( ) = 522a s This eslt is to be epected since the given vecto has components eqal to the coodinates o the point at which it is speciied. Hence, its magnitde is eqal to the distance o the point om the oigin, that is, the spheical coodinate o the point, and its diection is along the line dawn om the oigin to the point, that is, along the nit vecto a s at that point. In act, the given vecto is a paticla case o the vecto a + a + a = s a s, known as the position vecto,since it is the same as the vecto dawn om the oigin to the point (,, ). 3a a REVIEW QUESTIONS A.1. What ae the thee othogonal saces deining the clindical coodinate sstem? A.2. What ae the limits o vaiation o the clindical coodinates? A.3. Which o the nit vectos in the clindical coodinate sstem ae not niom? at the point (2, p>2, 3) ae eqal o not. A.4. State whethe the vecto 3a a at the point (1, 0, 2) and the vecto A.5. What ae the dieential length vectos in clindical coodinates? A.6. What ae the thee othogonal saces deining the spheical coodinate sstem? A.7. What ae the limits o vaiation o the spheical coodinates?

7 Appendi A 419 A.8. Which o the nit vectos in the spheical coodinate sstem ae not niom? A.9. State i the vecto 3a + 4 at the point (1, p>2, 0) and the vecto 3a + 4 at the point (2, 0, p>2) ae eqal o not. A.10. What ae the dieential length vectos in spheical coodinates? A.11. Otline the pocede o conveting a vecto at a point om one coodinate sstem to anothe. A.12. What is the epession o the position vecto in the clindical coodinate sstem? PROBLEMS (1, p>4, 2) (2, p>3, p>6) p>4, 0) A.1. Epess in tems o Catesian coodinates the vecto dawn om the point P(2, p>3, 1) to the point Q(4, 2p>3, 2) in clindical coodinates. A.2. Epess in tems o Catesian coodinates the vecto dawn om the point P(1, p>3, p>4) to the point Q(2, 2p>3, 3p>4) in spheical coodinates. A.3. Detemine i the vecto a + + 2a at the point and the vecto 22a + 2a at the point (2, p>2, 3) ae eqal o not. A.4. Detemine i the vecto 3a at the point and the vecto a at the point (1, p>6, p>3) ae eqal o not. A.5. Find the dot and coss podcts o the nit vecto a at the point (1, 0, 0) and the nit vecto at the point (2, p>4, 1) in clindical coodinates. A.6. Find the dot and coss podcts o the nit vecto a at the point (1, and the nit vecto at the point (2, p>2, p>2) in spheical coodinates. A.7. Convet the vecto 5a + 12a + 6a at the point (5, 12, 4) to one in clindical coodinates. A.8. Convet the vecto 3a + 4a - 5a at the point (3, 4, 5) to one in spheical coodinates.

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in ME 01 DYNAMICS Chapte 1: Kinematics of a Paticle Chapte 1 Kinematics of a Paticle A. Bazone 1.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Pola Coodinates Pola coodinates ae paticlaly sitable fo solving

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

Chapter 1: Introduction to Polar Coordinates

Chapter 1: Introduction to Polar Coordinates Habeman MTH Section III: ola Coodinates and Comple Numbes Chapte : Intoduction to ola Coodinates We ae all comfotable using ectangula (i.e., Catesian coodinates to descibe points on the plane. Fo eample,

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables).

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables). II PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES In man engineeing and othe applications, the behaviou o a cetain quantit dependent vaiable will oten depend on seveal othe quantities independent

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

Transformations in Homogeneous Coordinates

Transformations in Homogeneous Coordinates Tansfomations in Homogeneous Coodinates (Com S 4/ Notes) Yan-Bin Jia Aug 4 Complete Section Homogeneous Tansfomations A pojective tansfomation of the pojective plane is a mapping L : P P defined as u a

More information

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

MATH 300: Solutions for Problem Set 1

MATH 300: Solutions for Problem Set 1 Question.a: The de is MATH 300: Solutions fo Poblem Set 2u 4u 4u u 0: So a 2, b 2 and c 4. Hence b 2 ac 4 < 0. The de is ellitic. Question.b: The de is u 2u u u 0: So a, b and c. Hence b 2 ac 2. The de

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

REVIEW Polar Coordinates and Equations

REVIEW Polar Coordinates and Equations REVIEW 9.1-9.4 Pola Coodinates and Equations You ae familia with plotting with a ectangula coodinate system. We ae going to look at a new coodinate system called the pola coodinate system. The cente of

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Much that has already been said about changes of variable relates to transformations between different coordinate systems.

Much that has already been said about changes of variable relates to transformations between different coordinate systems. MULTIPLE INTEGRLS I P Calculus Cooinate Sstems Much that has alea been sai about changes of vaiable elates to tansfomations between iffeent cooinate sstems. The main cooinate sstems use in the solution

More information

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II. Homewok #8. hapte 7 Magnetic ields. 6 Eplain how ou would modif Gauss s law if scientists discoveed that single, isolated magnetic poles actuall eisted. Detemine the oncept Gauss law fo magnetism now eads

More information

Skps Media

Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps Media Skps

More information

Physics for Scientists and Engineers

Physics for Scientists and Engineers Phsics 111 Sections 003 and 005 Instucto: Pof. Haimin Wang E-mail: haimin@flae.njit.edu Phone: 973-596-5781 Office: 460 Tienan Hall Homepage: http://sola.njit.edu/~haimin Office Hou: 2:30 to 3:50 Monda

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

Cartesian Control. Analytical inverse kinematics can be difficult to derive Inverse kinematics are not as well suited for small differential motions

Cartesian Control. Analytical inverse kinematics can be difficult to derive Inverse kinematics are not as well suited for small differential motions Catesian Contol Analtical invese kinematics can e diicult to deive Invese kinematics ae not as well suited o small dieential motions Let s take a look at how ou use the acoian to contol Catesian position

More information

Cartesian Coordinate System and Vectors

Cartesian Coordinate System and Vectors Catesian Coodinate System and Vectos Coodinate System Coodinate system: used to descibe the position of a point in space and consists of 1. An oigin as the efeence point 2. A set of coodinate axes with

More information

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

Physics Tutorial V1 2D Vectors

Physics Tutorial V1 2D Vectors Physics Tutoial V1 2D Vectos 1 Resolving Vectos & Addition of Vectos A vecto quantity has both magnitude and diection. Thee ae two ways commonly used to mathematically descibe a vecto. y (a) The pola fom:,

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

6 Vector Operators. 6.1 The Gradient Operator

6 Vector Operators. 6.1 The Gradient Operator 6 Vecto Opeatos 6. The Gadient Opeato In the B2 couse ou wee intoduced to the gadient opeato in Catesian coodinates. Fo an diffeentiable scala function f(x,, z), we can define a vecto function though (

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam Math 259 Winte 2009 Handout 6: In-class Review fo the Cumulative Final Exam The topics coveed by the cumulative final exam include the following: Paametic cuves. Finding fomulas fo paametic cuves. Dawing

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

g D from the frequency, g x Gx

g D from the frequency, g x Gx These changes wee made /7/2004 to these notes:. Added an eplanato note (in pink! in paentheses on page 2. 2. Coected total deivatives to patial deivatives in Eq. (4 and peceding equation on page 4 and

More information

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths)

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths) A Tutoial on Multiple Integals (fo Natual Sciences / Compute Sciences Tipos Pat IA Maths) Coections to D Ian Rud (http://people.ds.cam.ac.uk/ia/contact.html) please. This tutoial gives some bief eamples

More information

PDF Created with deskpdf PDF Writer - Trial ::

PDF Created with deskpdf PDF Writer - Trial :: A APPENDIX D TRIGONOMETRY Licensed to: jsamuels@bmcc.cun.edu PDF Ceated with deskpdf PDF Wite - Tial :: http://www.docudesk.com D T i g o n o m e t FIGURE a A n g l e s Angles can be measued in degees

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Kinematics in 2-D (II)

Kinematics in 2-D (II) Kinematics in 2-D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte

More information

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving Physics 11 Chapte 4: Foces and Newton s Laws of Motion Thee is nothing eithe good o bad, but thinking makes it so. William Shakespeae It s not what happens to you that detemines how fa you will go in life;

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

dq 1 (5) q 1 where the previously mentioned limit has been taken.

dq 1 (5) q 1 where the previously mentioned limit has been taken. 1 Vecto Calculus And Continuum Consevation Equations In Cuvilinea Othogonal Coodinates Robet Maska: Novembe 25, 2008 In ode to ewite the consevation equations(continuit, momentum, eneg) to some cuvilinea

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

MATH 155/GRACEY CH. 10 PRACTICE. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 155/GRACEY CH. 10 PRACTICE. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH /GRACEY CH. PRACTICE Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. At the given point, find the line that is nomal to the cuve at the given point.

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Vectors Serway and Jewett Chapter 3

Vectors Serway and Jewett Chapter 3 Vectos Sewa and Jewett Chapte 3 Scalas and Vectos Vecto Components and Aithmetic Vectos in 3 Dimensions Unit vectos i, j, k Pactice Poblems: Chapte 3, poblems 9, 19, 31, 45, 55, 61 Phsical quantities ae

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Figure 1. We will begin by deriving a very general expression before returning to Equations 1 and 2 to determine the specifics.

Figure 1. We will begin by deriving a very general expression before returning to Equations 1 and 2 to determine the specifics. Deivation of the Laplacian in Spheical Coodinates fom Fist Pinciples. Fist, let me state that the inspiation to do this came fom David Giffiths Intodction to Electodynamics textbook Chapte 1, Section 4.

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Notes 11 Gauss s Law II

Notes 11 Gauss s Law II ECE 3318 Applied Electicit and Magnetism ping 218 Pof. David R. Jackson Dept. of ECE Notes 11 Gauss s Law II Notes pepaed b the EM Goup Univesit of Houston 1 Eample Infinite unifom line chage Find the

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Coordinate Geometry. = k2 e 2. 1 e + x. 1 e. ke ) 2. We now write = a, and shift the origin to the point (a, 0). Referred to

Coordinate Geometry. = k2 e 2. 1 e + x. 1 e. ke ) 2. We now write = a, and shift the origin to the point (a, 0). Referred to Coodinate Geomet Conic sections These ae pane cuves which can be descibed as the intesection of a cone with panes oiented in vaious diections. It can be demonstated that the ocus of a point which moves

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS

SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS Cicle instucto: Moow o Yethiaj Name: MEMORIL UNIVERSITY OF NEWFOUNDLND DEPRTMENT OF PHYSICS ND PHYSICL OCENOGRPHY Final Eam Phsics 5 Winte 3:-5: pil, INSTRUCTIONS:. Do all SIX (6) questions in section

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Chapter Eight Notes N P U1C8S4-6

Chapter Eight Notes N P U1C8S4-6 Chapte Eight Notes N P UC8S-6 Name Peiod Section 8.: Tigonometic Identities An identit is, b definition, an equation that is alwas tue thoughout its domain. B tue thoughout its domain, that is to sa that

More information

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil CBN 98-1 Developale constant peimete sufaces: Application to the end design of a tape-wound quadupole saddle coil G. Dugan Laoatoy of Nuclea Studies Conell Univesity Ithaca, NY 14853 1. Intoduction Constant

More information

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle?

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle? 9. Tigonometic Functions of An Angle Essential Question How can ou use the unit cicle to define the tigonometic functions of an angle? Let be an angle in standad position with, ) a point on the teminal

More information

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics Lesson 1 Stationay Point Chages and Thei Foces Class Today we will: lean the basic chaacteistics o the electostatic oce eview the popeties o conductos and insulatos lean what is meant by electostatic induction

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Momentum Heat Mass Transfer

Momentum Heat Mass Transfer Momentm Heat Mass ansfe D Dt soce Rles, database, ensoial calcls Rdolf Žitný, Ústav pocesní a pacovatelské technik ČVU FS 00 Intodction and les (fom of lectes, pesentations of papes b stdents, eqiements

More information

RADIATION OF ANTENNA ARRAYS WITH GENERALLY ORIENTED DIPOLES

RADIATION OF ANTENNA ARRAYS WITH GENERALLY ORIENTED DIPOLES Jounal of ELECTRICAL ENGINEERING, VOL. 53, NO. 7-8, 22, 22 27 RADIATION OF ANTENNA ARRAYS WITH GENERALLY ORIENTED DIOLES Štefan Beník ete Hajach The aim of this aticle is to show the possibilities of shaping

More information

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti Page 1 CONCPT: JB-, Nea Jitenda Cinema, City Cente, Bokao www.vidyadishti.og Gauss Law Autho: Panjal K. Bhati (IIT Khaagpu) Mb: 74884484 Taget Boads, J Main & Advanced (IIT), NT 15 Physics Gauss Law Autho:

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 ) Pola Coodinates We now intoduce anothe method of labelling oints in a lane. We stat by xing a oint in the lane. It is called the ole. A standad choice fo the ole is the oigin (0; 0) fo the Catezian coodinate

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Physics 121: Electricity & Magnetism Lecture 1

Physics 121: Electricity & Magnetism Lecture 1 Phsics 121: Electicit & Magnetism Lectue 1 Dale E. Ga Wenda Cao NJIT Phsics Depatment Intoduction to Clices 1. What ea ae ou?. Feshman. Sophomoe C. Junio D. Senio E. Othe Intoduction to Clices 2. How man

More information

Chapter 1: Mathematical Concepts and Vectors

Chapter 1: Mathematical Concepts and Vectors Chapte : Mathematical Concepts and Vectos giga G 9 mega M 6 kilo k 3 centi c - milli m -3 mico μ -6 nano n -9 in =.54 cm m = cm = 3.8 t mi = 58 t = 69 m h = 36 s da = 86,4 s ea = 365.5 das You must know

More information

ELECTRIC CHARGE AND ELECTRIC FIELD

ELECTRIC CHARGE AND ELECTRIC FIELD LCTRIC CHARG AND LCTRIC FILD (a) IDNTIFY and ST UP: Use the chage of one electon ( 6 C) to find the numbe of electons euied to poduce the net chage XCUT: The numbe of ecess electons needed to poduce net

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

11.2 Proving Figures are Similar Using Transformations

11.2 Proving Figures are Similar Using Transformations Name lass ate 11. Poving igues ae Simila Using Tansfomations ssential Question: How can similait tansfomations be used to show two figues ae simila? esouce ocke ploe onfiming Similait similait tansfomation

More information

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place.

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place. Chapte 7 Peequisite Skills BLM 7-1.. Convet a Beaing to an Angle in Standad Position 1. Convet each beaing to an angle in standad position on the Catesian gaph. a) 68 127 c) 215 d) 295 e) N40 W f) S65

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information