Linear Motion: Velocity and Acceleration

Size: px
Start display at page:

Download "Linear Motion: Velocity and Acceleration"

Transcription

1 Linear Motion: Velocity and Acceleration

2 Relative Motion Everything moves, even things at rest Relative regarded in relation to something else; depends on point of view, or frame of reference A book at rest, relative to you, is actually moving at 30 km/s with respect to the sun, and even faster the center of the galaxy Unless stated otherwise, when we discuss speeds of things in our environment, we mean speed with respect to the surface of Earth Motion is relative!

3 Motion is relative!

4 Speed Measured in meters/second [m/s] Speed The measure of how fast something is moving; the rate at which distance is covered. Instantaneous Speed The speed at any instant in time Average Speed The total distance covered divided by the total time

5 Average vs. Instantaneous Speed

6 Check for Understanding Which of the following are speeds? (Hint: There may be more than one correct answer!) a. 5 m b. 10 m/s c mph d s e. 17 miles f km/hr g. 12 cm/min a. 5 m b. 10 m/s c mph d s e. 17 miles f km/hr g. 12 cm/min

7 Velocity Measured in meters/second [m/s] Velocity Speed in a given direction Velocity can be (+) or (-) Constant Velocity Requires that both constant speed and constant direction must be maintained Changing Velocity Either the speed or the direction changes, so the velocity changes

8 Average Velocity change in position/change in time. v avg = Δx Δt v avg = average speed [m/s] Δ = change x = position [m] t = time [s] **Note: Average speed is different from average velocity. Average speed = distance traveled/time Average velocity = change in position/change in time

9 Check for Understanding The speedometer in every car also has an odometer that records the distance traveled. If the odometer reads zero at the beginning of a trip and 35 km a half hour later (assuming the car is traveling forward in a straight line), what is the average velocity?

10 What is the difference between speed and velocity? Speed is always (+). Speed does not have direction. Speed = 5 m/s Velocity = -5 m/s Velocity can be (+) or (-). Velocity has direction.

11 Acceleration Measured in meters/second² (m/s²) Acceleration The rate at which velocity is changing Term applies to both increases and decreases in velocity (difference between positive and negative acceleration) a avg = Δv Δt a avg = average acceleration[m/s 2 ] Δ = change v = velocity[m/s] t = time [s]

12 Acceleration applies to changes in direction also; when the direction changes, the acceleration changes Most of the time we will concern ourselves with motion in a straight line, and can look at the change in speed. Gravity The acceleration that causes objects to move towards the Earth or other large objects Gravity = g = 9.8 m/s² 10 m/s 2

13 In 1977 off the coast of Australia, the fastest speed by a vessel on the water was achieved. If this vessel were to undergo an average acceleration of 1.80 m/s 2, it would go from rest to its top speed in 85.6 s. What was the speed of this vessel?

14 Velocity vs. Acceleration

15 Observe the animation of the three cars below. Which car or cars (red, green, and/or blue) are undergoing an acceleration? Study each car individually in order to determine the answer. If necessary, review the definition of acceleration.

16 Check for Understanding In Summary Speed and are different because is a measure of how fast something is moving, and velocity is a measure of how fast something is moving in a certain. Average is the rate at which the velocity is changing with time. is the change in position divided by the change in time. The units of acceleration are.

17 Linear Motion: Part II Chapter 2 FLT: I can solve word problems using the equations for linear motion with constant acceleration.

18 What we already know: Velocity tells us how fast and in what direction an object is moving. Acceleration tells us the rate at which the velocity is changing. v avg = Δx Δt a avg = Δv Δt

19 a avg = Δv Δt v = at + v 0 a= acceleration [m/s 2 ] v 0 = initial velocity [m/s] v = final velocity t = time [s]

20 Example 1 A runner is initially moving at 0.5 m/s and accelerates at the rate of 0.9 m/s 2 for 6 s. What is the velocity of the runner after the 6 s?

21 How far does an object move? The position of an object is related to the acceleration, time, initial velocity, and initial position of the object. x = 1 2 at 2 + v 0 t + x 0 x or y = position [m] x 0 or y 0 = initial position [m] a = acceleration [m/s 2 ] v 0 = initial velocity [m/s] t = time [s]

22 Example 2 A ball is rolling across a table with an initial velocity of 5 m/s. It accelerates at 2 m/s 2. If the ball rolls for 3 seconds, how much distance does it cover?

23 Example 3 A ball moving with a speed of 2.00 m/s increases speed uniformly, so that in 40 s it has traveled 70.2 m. What is the magnitude of the ball s acceleration?

24 One Last Equation If you are given a problem where you are not give time, and you are not asked to find time, use: v 2 v 0 2 = 2a(x x 0 ) x = position [m] x 0 = initial position [m] a = acceleration [m/s 2 ] v 0 = initial velocity [m/s] v = velocity [m/s]

25 Example A radio-controlled toy car increases speed over a distance 0f 15.2 m. If the car starts at rest and has a final speed of 0.76 m/s, what is the magnitude of its acceleration?

26 Linear Motion Equations v = at + v 0 v avg = Δx Δt 3. x = 1 2 at 2 + v 0 t + x 0 4. v 2 v 0 2 = 2a(x x 0 )

27 Linear Motion: Free Fall Chapter 2 FLT: I can solve free fall problems using the 3 equations for linear motion with constant acceleration.

28 Free Fall Free Fall Objects that are only affected by gravity (neglecting air resistance) Elapsed Time The time that has passed since the beginning of the fall We can find out about the motion of objects in free fall using the four linear motion equations.

29 Linear Motion Equations v = at + v 0 v avg = Δx Δt 3. x = 1 2 at 2 + v 0 t + x 0 4. v 2 v 0 2 = 2a(x x 0 )

30 Acceleration due to gravity, g If an object is in free fall (aka falling through the air towards the earth), it ALWAYS accelerates at g. (Remember, g = 10 m/s 2 ) Gravity pulls objects towards earth (down), therefore we use acceleration due to gravity a = -g when we are solving free fall problems In other words, a = -10 m/s 2 for ANY object in free fall ALWAYS!

31

32 Check for Understanding Miss Stein drops a ball off the roof of the gym. What is its acceleration? -10 m/s 2 Miss Stein throws a tomato into the air. What is its acceleration? -10 m/s 2

33 Keys for solving free fall problems: 1. Draw a picture! 2. a = -10 m/s 2 For objects moving up then down (as below) 1. v at top = 0 m/s 2. t to top = 1/2 (total t)

34 Example 2 A pumpkin is released from rest at the top of the gym, which is 271 m tall. Disregarding air resistance, calculate the displacement of the pumpkin after 2 s.

35 Example Miss Stein throws an orange straight up into the air with a speed of 60 m/s. The orange is in the air for 12 seconds. How high does the orange rise?

36 Air Resistance Air resistance is responsible for the differences in accelerations that we see between an elephant and a feather. With a lack of air, these two items would fall at the same rate!! Air resistance less noticeably effects more condense objects (i.e. baseballs and stones)

37 The Elephant and the Feather, Air Drag

Chapter 4 Linear Motion

Chapter 4 Linear Motion Chapter 4 Linear Motion You can describe the motion of an object by its position, speed, direction, and acceleration. I. Motion Is Relative A. Everything moves. Even things that appear to be at rest move.

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

changes acceleration vector

changes acceleration vector Motion The change in position relative to some fixed point. There is no such thing as absolute motion, only motion relative to something else. Examples: Motion of bouncing ball relative to me, my motion

More information

Chapter 2: Motion along a straight line

Chapter 2: Motion along a straight line Chapter 2: Motion along a straight line This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless

More information

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force.

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. From last time Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. I.e. either at rest, or straight line motion at constant speed This

More information

Physics 101 Prof. Ekey. Chapter 2

Physics 101 Prof. Ekey. Chapter 2 Physics 11 Prof. Ekey Chapter 2 Kinematics in one dimension Uniform motion, s vs t, v vs t, a vs t, kinematic equations fun. In this chapter, you will learn how to solve problems about motion along a straight

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Linear Motion Review Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Distance vs. Displacement Distance is the

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

Using Units in Science

Using Units in Science Using Units in Science 5 cm x 2 cm=?10 cm 2 2 cm 2 1 How much is 150 miles divided by 3 hours? 150 miles/hr 50 miles 50 hrs 50 hrs/mile E 50 miles/hr 3 pears per orange 2 You buy 10 gallons of gas and

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Lecture 2-1 02-1 1 Last time: Displacement, velocity, graphs Today: Using graphs to solve problems Constant acceleration, free fall 02-1 2 1-2.6-8: Acceleration from graph of

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c. Class: Date: Chapter 2 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the speed of an object at rest? a. 0.0 m/s c. 9.8 m/s

More information

Chapter 2 Describing Motion

Chapter 2 Describing Motion Chapter 2 Describing Motion Chapter 2 Overview In chapter 2, we will try to accomplish two primary goals. 1. Understand and describe the motion of objects. Define concepts like speed, velocity, acceleration,

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion Unit 3: Kinematics Uniform Rectilinear Motion (velocity is constant) Uniform Accelerated Rectilinear Motion The Motion of Projectiles Jan 31 8:19 PM Chapter 9: Uniform Rectilinear Motion Position: point

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics-B Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Motion in One Dimension Sections 2-1 Displacement and Velocity 2-2 Acceleration 2-3 Falling objects Motion Displacement and Velocity One-dimensional motion is the simplest

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity

Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity Physics Ch. 4 Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity (either in magnitude or direction) is

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the motion

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6 Linear Motion Dane, Ben, Julian, and Lilliana P. 6 Concepts: Kinematics vs. Dynamics Reference Frames Distance vs. Displacement Scalars vs. Vectors Speed vs. Velocity Acceleration Objects in motion Freefall

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration Chapter 2 What You Will Learn In This Chapter Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration 2.1 Introduction to kinematics Kinematics is the study

More information

Kinematics 2. Kinematics Equations. How to solve a Physics problem:

Kinematics 2. Kinematics Equations. How to solve a Physics problem: Kinematics Equations Kinematics 2 How to solve a Physics problem: What is the question asking for? List the given quantities with units Equation Substitution with units Solution with units Does the answer

More information

Welcome Back to Physics 211!

Welcome Back to Physics 211! Welcome Back to Physics 211! (General Physics I) Thurs. Aug 30 th, 2012 Physics 211 -Fall 2014 Lecture01-2 1 Last time: Syllabus, mechanics survey Unit conversions Today: Using your clicker 1D displacement,

More information

Physics. Chapter 3 Linear Motion

Physics. Chapter 3 Linear Motion Physics Chapter 3 Linear Motion Motion is Relative How fast are you moving? We can only speak of how fast in relation to some other thing. Unless otherwise specified, we will assume motion relative to

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

Chapter 2 Kinematics in One Dimension:

Chapter 2 Kinematics in One Dimension: Chapter 2 Kinematics in One Dimension: Vector / Scaler Quantities Displacement, Velocity, Acceleration Graphing Motion Distance vs Time Graphs Velocity vs Time Graphs Solving Problems Free Falling Objects

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Web Resources for Physics 1 Physics Classroom http://www.khanacademy.org/science/physics http://ocw.mit.edu/courses/physics/ Quantities in Motion Any motion involves three

More information

Chapter 5 - Differentiating Functions

Chapter 5 - Differentiating Functions Chapter 5 - Differentiating Functions Section 5.1 - Differentiating Functions Differentiation is the process of finding the rate of change of a function. We have proven that if f is a variable dependent

More information

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14 Agenda We need a note-taker! If you re interested, see me after class. Today: HW Quiz #1, 1D Motion Lecture for this week: Chapter 2 (finish reading Chapter 2 by Thursday) Homework #2: continue to check

More information

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS)

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS) !! www.clutchprep.com CONSTANT / AVERAGE VELOCITY AND SPEED Remember there are two terms that deal with how much something moves: - Displacement ( ) is a vector (has direction; could be negative) - Distance

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Specifically, the description of motion. Examples: The Earth orbits around

More information

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover?

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: 1.

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Chapter 2. Kinematics in one dimension

Chapter 2. Kinematics in one dimension Chapter 2 Kinematics in one dimension Galileo - the first modern kinematics 1) In a medium totally devoid of resistance all bodies will fall at the same speed 2) During equal intervals of time, a falling

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

INTRODUCTION. 1. One-Dimensional Kinematics

INTRODUCTION. 1. One-Dimensional Kinematics INTRODUCTION Mechanics is the area of physics most apparent to us in our everyday lives Raising an arm, standing up, sitting down, throwing a ball, opening a door etc all governed by laws of mechanics

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics Trigonometry I Pythagorean theorem: Trigonometry II 90 180 270 360 450 540 630 720 sin(x) and cos(x) are mathematical functions that describe oscillations. This will be important later, when we talk about

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing

Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing Name: Period: Date: / / Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing Acceleration Notes: 1. What are the three things

More information

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ]

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ] Chapter 8 : Motion KEY CONCEPTS [ *rating as per the significance of concept ] 1 Motion **** 2 Graphical Representation of Motion *** & Graphs 3 Equation of motion **** 4 Uniform Circular Motion ** 1 Motion

More information

Unit Assessment: Relationship Between Force, Motion, and Energy

Unit Assessment: Relationship Between Force, Motion, and Energy Assessment Unit Assessment: Relationship Between Force, Motion, and Energy Instructions Check your understanding with this assessment. 1) Lifting a 20,000 N anvil one meter requires 20,000 joules (newtons/meter).

More information

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion Physics 11a Motion along a straight line Motion Position and Average velocity and average speed Instantaneous velocity and speed Acceleration Constant acceleration: A special case Free fall acceleration

More information

1. Complete the following table: Term Definition Unit Examples Speed Velocity Scalar Vector Displacement Distance

1. Complete the following table: Term Definition Unit Examples Speed Velocity Scalar Vector Displacement Distance Motion Review Name: Answer ALL questions on separate paper. Draw diagrams to help you visualize each scenario. Show all steps, as we have in class, to solve math questions. 1. Complete the following table:

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 Simplest case with non-zero acceleration Constant acceleration: a

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

Motion in 1 Dimension

Motion in 1 Dimension Motion in 1 Dimension Physics is all about describing motion. For now we are going to discuss motion in 1 dimension, which means either along the x axis or the y axis. To describe an object s motion, we

More information

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics.

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics. Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0.

Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0. Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0. The position of this car at 50 cm describes where the

More information

Chapter 3: Introduction to Motion

Chapter 3: Introduction to Motion Chapter 3: Introduction to Motion Motion... Particle Models Vectors vs. Scalars Position, Displacement and Distance Velocity vs. Speed Instantaneous vs. Average Acceleration start time Particle motion

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion. Multiple-Choice Questions

Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion. Multiple-Choice Questions Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion Multiple-Choice Questions 1) Whereas Aristotle relied on logic in explaining nature, Galileo relied on A) observation. B) patterns.

More information

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute Physics 30S Unit 2 Motion Graphs Mrs. Kornelsen Teulon Collegiate Institute 1 Grade 11 Physics Graphing Properties Property d-t Graph v-t Graph a-t Graph Not Moving Does Not Apply Constant Velocity Change

More information

Welcome Back to Physics 211!

Welcome Back to Physics 211! Welcome Back to Physics 211! (General Physics I) Thurs. Aug 30 th, 2012 Physics 211 -Fall 2012 Lecture01-2 1 Last time: Syllabus, mechanics survey Particle model Today: Using your clicker 1D displacement,

More information

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian HW Chapter 3 Q 14,15 P 2,7,812,18,24,25 Chapter 3 Motion in the Universe Dr. Armen Kocharian Predictability The universe is predictable and quantifiable Motion of planets and stars description of motion

More information

First evidence of study of mechanics traced back to Ancient Sumeria. First systematic studies conducted by the Ancient Greeks around 300 B.C.

First evidence of study of mechanics traced back to Ancient Sumeria. First systematic studies conducted by the Ancient Greeks around 300 B.C. Serway AP Physics Ch 2 1 dimensional motion-kinematics dynamics-study of motion that involves force and mass. Kinetics-study of motion without regard to causes. First evidence of study of mechanics traced

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

12.2 Acceleration. You will need a calculator today!

12.2 Acceleration. You will need a calculator today! 12.2 Acceleration You will need a calculator today! Acceleration Acceleration A vector that changes speed or direction or both. When a object changes velocity Measured in m/s 2 Acceleration may be positive,

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Chapter 2 Physics Table of Contents Position and Displacement Velocity Acceleration Motion with Constant Acceleration Falling Objects The Big Idea Displacement is a change of position

More information

1.1 Graphing Motion. IB Physics 11 Kinematics

1.1 Graphing Motion. IB Physics 11 Kinematics IB Physics 11 Kinematics 1.1 Graphing Motion Kinematics is the study of motion without reference to forces and masses. We will need to learn some definitions: A Scalar quantity is a measurement that has

More information

ONE-DIMENSIONAL KINEMATICS

ONE-DIMENSIONAL KINEMATICS ONE-DIMENSIONAL KINEMATICS Chapter 2 Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

A scalar quantity has just magnitude A vector quantity has both magnitude and direction Name Date Mods REVIEW FOR MIDYEAR ASSESSMENT 1. Physics is the most basic science because Physics supports chemistry, chemistry supports biology. The ideas of physics are fundamental to these more complicated

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Basic Physics SE-Motion

Basic Physics SE-Motion Basic Physics SE-Motion James H. Dann, Ph.D. (JamesHD) James J. Dann, (JamesJD) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this

More information

Chapter 3: Introduction to Kinematics

Chapter 3: Introduction to Kinematics Chapter 3: Introduction to Kinematics Kari Eloranta 2018 Jyväskylän Lyseon lukio Pre Diploma Program Year October 11, 2017 1 / 17 3.1 Displacement Definition of Displacement Displacement is the change

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

Distance vs. Displacement, Speed vs Velocity, Velocity vs Acceleration

Distance vs. Displacement, Speed vs Velocity, Velocity vs Acceleration Distance vs. Displacement, Speed vs Velocity, and Velocity vs Acceleration Everything in the universe is in motion. How do we know? Motion David is in Motion Megan is in Motion Everything in the universe

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Recap: Position and displacement

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Recap: Position and displacement Physics 5 Fall 28 Mechanics, Thermodynamics, Waves, Fluids Lecture 3: motion in a straight line II Slide 3- Recap: Position and displacement In one dimension, position can be described by a positive or

More information

General Physics. Linear Motion. Life is in infinite motion; at the same time it is motionless. Debasish Mridha

General Physics. Linear Motion. Life is in infinite motion; at the same time it is motionless. Debasish Mridha General Physics Linear Motion Life is in infinite motion; at the same time it is motionless. Debasish Mridha High Throw How high can a human throw something? Mechanics The study of motion Kinematics Description

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

New HW : complete handout work on lab (due Tuesday) review new notes on website (pdf)

New HW : complete handout work on lab (due Tuesday) review new notes on website (pdf) Physics HW due Today a. Read in book: pages 43 51 b. define/explain in notes: particle model, position vector, vector quantity, scalar quantity, displacement, distance c. p.60: 2 3 4 5 d. Write this list

More information

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension 2.1 Conceptual Questions 1) Consider a deer that runs from point A to point B. The distance the deer runs can be greater

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 3: LINEAR MOTION This lecture will help you understand: Motion Is Relative Speed : Average and Instantaneous Velocity Acceleration Free Fall Motion Is Relative

More information

Would you risk your life driving drunk? Intro

Would you risk your life driving drunk? Intro Martha Casquete Would you risk your life driving drunk? Intro Assignments: For next class: Finish reading Ch. 2, read Chapter 3 (Vectors) HW3 Set due next Wednesday, 9/11 HW3 will be in weebly. Question/Observation

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information