Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance

Size: px
Start display at page:

Download "Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance"

Transcription

1 A family, Z,of random vecors : Ω R k defined on a probabiliy space Ω, A,P) is called a saionary process if he mean vecors E E =E M = M k E and he auocovariance marices are independen of. k cov, -h )=E E ) -h E -h ) he auocovariance funcion of a saionary process is defined by Γh)=cov, -h ). Exercise: Show ha Γh)=Γ h). MS A saionary process is called whie noise if is auocovariance funcion saisfies Γh)= h. Since Γ) does no have o be a diagonal marix, any wo componens of whie noise can be correlaed wih each oher conemporaneously. A saionary process is called a firs order auoregressive process or AR) process) if i can be expressed as φ φk ) M = M O M M + M, k 3 k 4 φ φkk 443 ) k 443 k 3 Φ where is whie noise wih mean vecor. Each componen of an AR) process depends no only on lagged values of iself bu also on lagged values of he oher componens.

2 Subsiuing in an AR) equaion =Φ - + firs Φ for - and hen Φ for -, gives =ΦΦ )+ =Φ - +Φ - + =Φ Φ )+Φ - + =Φ 3-3 +Φ - +Φ - + M m =Φ m -m + Φ j j Suppose ha Φ is diagonalizable, i.e., here is an inverible marix C such ha Λ=C - ΦC is a diagonal marix. I hen follows from Λ=C - ΦC Φ=CΛC - For example, any Hermiian marix a complex square marix ha is equal o is own conjugae ranspose) is diagonalizable. hus, real symmeric marices are diagonalizable. ha Φ =ΦΦ=CΛC - CΛC - =CΛ C - Φ 3 =Φ Φ=CΛ C - CΛC - =CΛ 3 C - hus, M Φ m =CΛ m C -. λ Φ m =C M m λ =C M λ λ m O O m M λ k M m λ k C - C - will vanish as m only if he no necessarily real numbers λ,,λ k have modulus less han. MR

3 A k k marix Φ is diagonalizable if and only if i has k linearly independen eigenvecors diagonalizaion heorem). Proof: Suppose ha c,,c k are linearly independen eigenvecors wih eigenvalues λ,,λ k. hen If hen λ Φ = c,,c k ) M O M c,,c k ) -, λ k Φ = Φc,,c k )c,,c k ) - Φc,,Φc k ) = Φc,,c k ) = Φc,,Φc k )c,,c k ) - = λ c,,λ k c k )c,,c k ) - λ = c,,c k ) M O M c,,c k ) -. λk = c,,c k ) λ M = λ c,,λ k c k ). O λ M k MD 3

4 Exercise: Show ha if a marix Φ has differen eigenvalues λ and λ, he corresponding eigenvecors c and c will be linearly independen. Soluion: Since λ and λ are differen, a leas one of hem, say λ, is no equal o zero. Assuming ha he anihesis is valid, we obain c =νc for some ν Φc =νφc, λ c =νλ c, and c = λ λ νc, Since λ and c, c, his is in conradicion wih he λ anihesis. ME Exercise: Find he eigenvalues λ and λ of he marix Φ=. Hin: If c is an eigenvecor wih eigenvalue λ, i.e., or, equivalenly, Φc=λc λiφ)c=, hen he inveribiliy of he marix λiφ would imply ha c=λiφ) - =, which is inconsisen wih he requiremen ha c mus be a non-zero vecor. he eigenvalues can herefore be found by solving he equaion deλiφ)=. MV 4

5 If Φ is a k k marix, he characerisic polynomial deλiφ) has degree k. According o he fundamenal heorem of algebra i has herefore k complex) roos, if each roo is couned wih is algebraic mulipliciy. Since eigenvecors corresponding o differen eigenvalues are independen, Φ can only be non-diagonalizable if here exiss an eigenvalue wih algebraic mulipliciy m a > and geomeric mulipliciy m g <m a. he geomeric mulipliciy of an eigenvalue is he number of linearly independen eigenvecors wih ha eigenvalue. Exercise: Show ha he marix MN is non-diagonalizable. Φ= 3 Hin: he eigenvecors corresponding o an eigenvalue λ can be found by solving he equaion λiφ)c= for c. he condiion ha all he eigenvalues of Φ are less han in absolue value, i.e., is equivalen o z deφzi), z de z ΦzI)), z dei z Φ), and z deizφ). Remark: If all roos of he polynomial dei-zφ) lie ouside of he uni circle, he sequence Φ, Φ, Φ 3, is absoluely summable and j j converges componenwise) in mean square o. Φ 5

6 sing lag-operaor noaion he equaion can also be wrien as Φ - = IΦ) =, where IΦ is a marix-valued polynomial. For example, in he bivariae case we have I Φ) = φ = φ φ φ φ φ φ φ φ) φ = φ + φ) A saionary process is called an auoregressive process of order p or ARp) process) if i can be expressed as or, equivalenly, as =Φ - + +Φ p -p + Φ - Φ p -p =, where is whie noise wih mean vecor. sing lag-operaor noaion, he laer equaion can also be wrien as where Φ) =, Φ)=IΦ Φ p p is a marix-valued polynomial. = φ φ ) ) φ φ ) ). 6

7 e be a general linear process represened by = Ψ j j, where is whie noise wih E = and var )=Σ. We have and E = Ψ je j = Γ k)=cov, -k )=E Ψ j = Ψ r= r j E = Ψ j+ kσψ j. j k)j Ψ -r -j+ k) Since neiher E nor cov, -k ) depend on, he process is weakly saionary. P Ψ j he specral densiies of and are given by f ω)= π f ω)= π e k= iωk iωk e = π k= Γ k)= Σ, π Ψ i k e ω = π k= j+ k Γ k) ΣΨ j Ψ j ΣΨ iωj e Ψ jσ) k= = π Ψ j e -iωj Σ k= = π Ψ jk Ψ jk e iωj-k) j+ k e iωj+k) Ψ j e -iωj Σ Ψ -iωk k e * ) k=. PD 7

8 A represenaion IΦ) = of an AR) process is called causal if can be expressed in erms of presen and pas shocks, i.e., = j j Is specral densiy is given by f ω)= π j j Φ ) = Φ. j Φ e -iωj Σ iω = π Φe ) I Σ k= k e -iωk Φ ) * iω ) * I Φe ). Exercise: Derive he sum formula PG n Φ j =IΦ n+ )IΦ) for a geomeric series of marices. Hin: Muliply each side of he equaion by IΦ. Remark: Moreover, if all eigenvalues of Φ have modulus less han, we have = j j Φ =IΦ). Exercise: Show ha PV = j j Φ e -iωj =IΦe -iω ), if all eigenvalues of Φ have modulus less han. Analogously, f ω)= π IΦ e -iω Φ p e -iωp ) - Σ IΦ e -iω Φ p e -iωp ) - ) * is he specral densiy of an ARp) process wih causal represenaion IΦ Φ p p ) =. 8

9 Exercise: Reexamine he relaionship beween changes in he indusrial producion and changes in he duraion of unemploymen wih parameric mehods. Wrie an R funcion for he calculaion of he specral densiy of a vecor auoregressive process. var.spec <- funcionfr,ar.p) { # fr vecor of frequencies # AR.p ARp) model esimaed by R funcion ar nf <- lenghfr); p <- AR.p$order sigma <- AR.p$var.pred; k <- lenghsigma[,]) Id <- diag,nrow=k,ncol=k) # ideniy marix sp <- arraydim=cnf,k,k)) for w in :nf) { A <- Id for l in :p) A <- A-AR.p$ar[l,,]*exp-i*fr[w]*l) A <- solvea) # inverse of A sp[w,,] <- A%*%sigma%*%ConjA)) } reurnsp/*pi)) } Esimae AR model of order p=3. AR.3 <- arxy,order.max=3,aic=f,demean=) # aic=f order is fixed, no seleced auomaically # AR.3$ar: array of dim 3,,) wih AR coefficiens AR.3$ar[,,] # lag Series Series Series Series AR.3$ar[,,] # lag Series Series Series Series AR.3$ar[3,,] # lag 3 Series Series Series Series AR.3$var.pred # variance no explained by AR model Series Series Series 4.437e e-6 Series e e-3 9

10 Esimae he univariae specral densiies. parmfrow=c,),mar=c,,,)) p <- spec.pgramxy[,],aper=,der=f,fas=f,plo=f) f <- p$freq**pi; plof,p$spec/*pi),ype="l") sp.3 <- var.specf,ar.3); linesf,sp.3[,,],col="red") p <- spec.pgramxy[,],aper=,der=f,fas=f,plo=f) plof,p$spec/*pi),ype="l") linesf,sp.3[,,],col="red") Esimae he cospecrum. parmfrow=c,)) plof,resp.3[,,]),ype="l") ablineh=,ly="dashed") # dashed horizonal line he overall negaive relaionship beween he wo variables is mainly due o he low frequencies.

11 Esimae he squared coherency and he phase specrum. parmfrow=c,)) plof,modsp.3[,,])^/sp.3[,,]*sp.3[,,]),ype="l") plof,argsp.3[,,]),ype="l") he squared coherency is large a he low frequencies. here he slope of he phase specrum is approximaely, which indicaes ha changes in he duraion of unemploymen lag wo monhs behind changes in indusrial producion.

12 A saionary process is called an auoregressive moving average process of order p,q) or ARMAp,q) process) if i can be expressed as =Φ - + +Φ p -p + +Θ - + +Θ q -q or, equivalenly, as Φ - Φ p -p = +Θ - + +Θ q -q, where is whie noise wih mean vecor. sing lag-operaor noaion, he laer equaion can also be wrien as where and Φ) =Θ), Φ)=IΦ Φ p p Θ)=I+Θ + +Θ q q are marix-valued polynomials. An ARMAp,) process is an ARp) process. An ARMA,q) process is also called a moving average process of order q or MAq) process). he ARMAp,q) equaion IΦ Φ p p ) = I+Θ + +Θ q q ) is said o be causal if z deizφ z p Φ p ). I is said o be inverible if z dei+zθ+ +z q Θ q ). Exercise: Show ha he bivariae AR) process 4 ) ) = is causal and inverible. PC

13 3 Exercise: Show ha he bivariae MA) process = + 3 ) ) + ) ) is causal and inverible. PI Exercise: Show ha he bivariae ARMA,) process ) ) = ) ) is causal and inverible. PA I does no make sense o esimae he parameer marices Φ,,Φ p,θ,,θ q, and Σ of an ARMAp,q) process if hey are no unique. o ensure idenifiabiliy in he univariae case, where Φ) and Θ) are jus scalar polynomials, we mus require, in addiion o causaliy and inveribiliy, ha Φz) and Θz) have no common zeros. For example, he equaion 4 ) =+ ) can be wrien more parsimoniously as ) =, because he polynomials 4 z =+ z) z) and + z have a common zero.

14 In he mulivariae case, he marix-valued polynomials Φz) and Θz) can have a common lef facor even if deφz)) and deθz)) have no common zero. o avoid he difficulies involved in he idenificaion of mulivariae ARMA processes, many ime series analyss use only mulivariae AR models for he modeling of mulivariae ime series. Exercise: Show ha he equaion P φ + θ ) ) can be wrien more parsimoniously as φ = θ + ) ) = ) ) alhough he polynomials and have no common zero. φ + θ deφz))=dei z) θ deθz))=dei+ z) Hin: Muliply boh Φz) and Θz) by Θ - θz z)=. Remark: he inverse of he marix-valued polynomial Θz) is also a marix-valued polynomial. Is deerminan is a consan unequal o zero. Such a marix-valued polynomial is called unimodular. 4

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University DYNAMIC ECONOMETRIC MODELS vol.. - NICHOLAS COPERNICUS UNIVERSITY - TORUŃ 996 Józef Sawicki and Joanna Górka Nicholas Copernicus Universiy ARMA represenaion for a sum of auoregressive processes In he ime

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Exercises: Similarity Transformation

Exercises: Similarity Transformation Exercises: Similariy Transformaion Problem. Diagonalize he following marix: A [ 2 4 Soluion. Marix A has wo eigenvalues λ 3 and λ 2 2. Since (i) A is a 2 2 marix and (ii) i has 2 disinc eigenvalues, we

More information

White noise processes

White noise processes Whie noise processes A d-dimensional ime series X = {, Z} is said o be whie noise wih mean 0 and covariance marix Σ, if WN(0, Σ), E = 0, E( ) = Σ, E( X( + u) ) = 0 for u 0. Example: iid N (0, 1) 3 2 1

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Y 0.4Y 0.45Y Y to a proper ARMA specification. HG Jan 04 ECON 50 Exercises II - 0 Feb 04 (wih answers Exercise. Read secion 8 in lecure noes 3 (LN3 on he common facor problem in ARMA-processes. Consider he following process Y 0.4Y 0.45Y 0.5 ( where

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

MATH 2050 Assignment 9 Winter Do not need to hand in. 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 9 Winter Do not need to hand in. 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignmen 9 Winer 206 Do no need o hand in Noe ha he final exam also covers maerial afer HW8, including, for insance, calculaing deerminan by row operaions, eigenvalues and eigenvecors, similariy

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

After the completion of this section the student. Theory of Linear Systems of ODEs. Autonomous Systems. Review Questions and Exercises

After the completion of this section the student. Theory of Linear Systems of ODEs. Autonomous Systems. Review Questions and Exercises Chaper V ODE V.5 Sysems of Ordinary Differenial Equaions 45 V.5 SYSTEMS OF FIRST ORDER LINEAR ODEs Objecives: Afer he compleion of his secion he suden - should recall he definiion of a sysem of linear

More information

2 Univariate Stationary Processes

2 Univariate Stationary Processes Univariae Saionary Processes As menioned in he inroducion, he publicaion of he exbook by GEORGE E.P. BOX and GWILYM M. JENKINS in 97 opened a new road o he analysis of economic ime series. This chaper

More information

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag.

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag. Saionary Processes Sricly saionary - The whole join disribuion is indeenden of he dae a which i is measured and deends only on he lag. - E y ) is a finie consan. ( - V y ) is a finie consan. ( ( y, y s

More information

STATIONARY LINEAR VECTOR TIME SERIES PROCESSES Richard T Baillie, ( ).

STATIONARY LINEAR VECTOR TIME SERIES PROCESSES Richard T Baillie, ( ). STATIONARY LINEAR VECTOR TIME SERIES PROCESSES Richard T Baillie, (.4.4). Inroducion In he case of univariae ime series processes, i was seen ha he Wold decomposiion provides a rich class of linear models

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k)

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k) Ger sgorin Circle Chaper 9 Approimaing Eigenvalues Per-Olof Persson persson@berkeley.edu Deparmen of Mahemaics Universiy of California, Berkeley Mah 128B Numerical Analysis (Ger sgorin Circle) Le A be

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at BOX-JENKINS MODEL NOAION he Box-Jenkins ARMA(,q) model is denoed b he equaion + + L+ + a θ a L θ a 0 q q. () he auoregressive (AR) ar of he model is + L+ while he moving average (MA) ar of he model is

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differenial Equaions 5. Examples of linear differenial equaions and heir applicaions We consider some examples of sysems of linear differenial equaions wih consan coefficiens y = a y +... + a

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Chapter Three Systems of Linear Differential Equations

Chapter Three Systems of Linear Differential Equations Chaper Three Sysems of Linear Differenial Equaions In his chaper we are going o consier sysems of firs orer orinary ifferenial equaions. These are sysems of he form x a x a x a n x n x a x a x a n x n

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

Linear Dynamic Models

Linear Dynamic Models Linear Dnamic Models and Forecasing Reference aricle: Ineracions beween he muliplier analsis and he principle of acceleraion Ouline. The sae space ssem as an approach o working wih ssems of difference

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

Application 5.4 Defective Eigenvalues and Generalized Eigenvectors

Application 5.4 Defective Eigenvalues and Generalized Eigenvectors Applicaion 5.4 Defecive Eigenvalues and Generalized Eigenvecors The goal of his applicaion is he soluion of he linear sysems like where he coefficien marix is he exoic 5-by-5 marix x = Ax, (1) 9 11 21

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

2 Some Property of Exponential Map of Matrix

2 Some Property of Exponential Map of Matrix Soluion Se for Exercise Session No8 Course: Mahemaical Aspecs of Symmeries in Physics, ICFP Maser Program for M 22nd, January 205, a Room 235A Lecure by Amir-Kian Kashani-Poor email: kashani@lpensfr Exercise

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

ST4064. Time Series Analysis. Lecture notes

ST4064. Time Series Analysis. Lecture notes ST4064 Time Series Analysis ST4064 Time Series Analysis Lecure noes ST4064 Time Series Analysis Ouline I II Inroducion o ime series analysis Saionariy and ARMA modelling. Saionariy a. Definiions b. Sric

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Let ( α, β be the eigenvector associated with the eigenvalue λ i

Let ( α, β be the eigenvector associated with the eigenvalue λ i ENGI 940 4.05 - Sabiliy Analysis (Linear) Page 4.5 Le ( α, be he eigenvecor associaed wih he eigenvalue λ i of he coefficien i i) marix A Le c, c be arbirary consans. a b c d Case of real, disinc, negaive

More information

Distance Between Two Ellipses in 3D

Distance Between Two Ellipses in 3D Disance Beween Two Ellipses in 3D David Eberly Magic Sofware 6006 Meadow Run Cour Chapel Hill, NC 27516 eberly@magic-sofware.com 1 Inroducion An ellipse in 3D is represened by a cener C, uni lengh axes

More information

Math 1. Two-Hours Exam December 10, 2017.

Math 1. Two-Hours Exam December 10, 2017. Mah. Two-Hours Exam December, 7. JE/JKL..7 Problem resar;wih(linearalgebra): Given he inhomogeneous linear sysem of equaions lign:=x-*x+3*x3=a^+*a-3; lign x x 3 x3 = a a 3 lign:=x+*x-*x3=a^+3; lign x x

More information

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution Økonomisk Kandidaeksamen 2005(II) Economerics 2 Soluion his is he proposed soluion for he exam in Economerics 2. For compleeness he soluion gives formal answers o mos of he quesions alhough his is no always

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Regular Variation and Financial Time Series Models

Regular Variation and Financial Time Series Models Regular Variaion and Financial Time Series Models Richard A. Davis Colorado Sae Universiy www.sa.colosae.edu/~rdavis Thomas Mikosch Universiy of Copenhagen Bojan Basrak Eurandom Ouline Characerisics of

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4.

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4. Seasonal models Many business and economic ime series conain a seasonal componen ha repeas iself afer a regular period of ime. The smalles ime period for his repeiion is called he seasonal period, and

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

Homework Solution Set # 3. Thursday, September 22, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Lalo, Second Volume Complement G X

Homework Solution Set # 3. Thursday, September 22, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Lalo, Second Volume Complement G X Deparmen of Physics Quanum Mechanics II, 570 Temple Universiy Insrucor: Z.-E. Meziani Homework Soluion Se # 3 Thursday, Sepember, 06 Texbook: Claude Cohen Tannoudji, Bernard Diu and Franck Lalo, Second

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l,

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l, Comb Filers The simple filers discussed so far are characeried eiher by a single passband and/or a single sopband There are applicaions where filers wih muliple passbands and sopbands are required The

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Lie Derivatives operator vector field flow push back Lie derivative of

Lie Derivatives operator vector field flow push back Lie derivative of Lie Derivaives The Lie derivaive is a mehod of compuing he direcional derivaive of a vecor field wih respec o anoher vecor field We already know how o make sense of a direcional derivaive of real valued

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Indusrial Robos Kinemaics 1 Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables

More information

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand Excel-Based Soluion Mehod For The Opimal Policy Of The Hadley And Whiin s Exac Model Wih Arma Demand Kal Nami School of Business and Economics Winson Salem Sae Universiy Winson Salem, NC 27110 Phone: (336)750-2338

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

Tests of Nonlinear Resonse Theory. We compare the results of direct NEMD simulation against Kawasaki and TTCF for 2- particle colour conductivity.

Tests of Nonlinear Resonse Theory. We compare the results of direct NEMD simulation against Kawasaki and TTCF for 2- particle colour conductivity. ess of Nonlinear Resonse heory We compare he resuls of direc NEMD simulaion agains Kawasaki and CF for 2- paricle colour conduciviy. 0.0100 0.0080 0.0060 Direc CF, BK and RK J x 0.0040 0.0020 DIR KAW CF

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

Y, where. 1 Estimate St.error

Y, where. 1 Estimate St.error 1 HG Feb 2014 ECON 5101 Exercises III - 24 Feb 2014 Exercise 1 In lecure noes 3 (LN3 page 11) we esimaed an ARMA(1,2) for daa) for he period, 1978q2-2013q2 Le Y ln BNP ln BNP (Norwegian Model: Y Y, where

More information

EE363 homework 1 solutions

EE363 homework 1 solutions EE363 Prof. S. Boyd EE363 homework 1 soluions 1. LQR for a riple accumulaor. We consider he sysem x +1 = Ax + Bu, y = Cx, wih 1 1 A = 1 1, B =, C = [ 1 ]. 1 1 This sysem has ransfer funcion H(z) = (z 1)

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information