9.1 (10.1) Parametric Curves ( 參數曲線 )

Size: px
Start display at page:

Download "9.1 (10.1) Parametric Curves ( 參數曲線 )"

Transcription

1 9.1 (10.1) Parametric Curves ( 參數曲線 ) [Ex]Sketch and identify the curve defined by parametric equations x= 6 t, y = t, t 4 (a) Sketch the curve by using the parametric equations to plot points: (b) Eliminate the parameter to find a Cartesian equation ( 笛卡兒方程式 ) of the curve: Substituting into the expression for x, we have t = y x= 6 t = 6 ( y) = 6 4y x = 6 4 y So the curve represented by the given parametric equations is. The point (,-1) is called the initial point and (-10,) is called the terminal point. 起點終點

2 [Ex] What curve is represented by the parametric equations 0 t? x = cos t, y = sin t, (a) Sketch the curve by using the parametric equations to plot points: t x y 0 0 /3 1 / / 0 - (b) Eliminate the parameter to find a Cartesian equation of the curve: Observe that x y ( t ) ( t ) + = cos + sin = 4 So the curve represented by the given parametric equations is the unit circle 單位圓. x + y =4 4

3 [Ex]What curve is represented by the parametric equations 4 (a) x = t 1, y = t and (b) x = t 1, y = t. (a) (b) ( x+ 1) = y+ ( x+ 1) = y+, x 1

4 [Ex] Find parametric equations for the portion of the parabola y = x from (-1, 1) to (3, 9). Any equation of the form y = f (x) can be converted to parametric form by simply letting x equal t. Here, this gives us y = x = t. x= t y = t t,, for 1 3. Then is a parametric representation of the curve. [Ex5] [Ex5] Sketch the curve with parametric equations x = sin t, y = sin t. ( sin ) y = t = x So the curve represented by the given parametric equations is the parabola. y = x, 1 x 1

5 Exercise Sketch the curve with parametric Equations (a) x = cos t, y = 3sin t, (b) x = +4cos t, y = 3 + 4sin t and (c) x = 3cos t, y = 3sin t all for 0 t. (a) x =cost t, y =3sint t (b) x = +4cos t, y =3+4sint t (c) x =3cost t, y =3sint x y + = 1 3 ( x ) + ( y 3) = 16 ( x ) + ( y ) = 9

6 The Cycloid ( 擺線 ) [Ex7][Ex7] The curve traces out ( 描繪 ) by a point on the circumference ( 圓周 ) of a circle as the circle rolls ( 滾動 ) along a straight line is called a cycloid, as shown below. If the circle has radius r and rolls along the x-axis and if one position of P is the origin, find parametric equations for the cycloid. ( sin ) x = rθ rsinθ = r θ θ ( ) y = r rcosθ = r 1 cos θ, θ R

7 9. (10.) Calculus with Parametric Curves ( 參數曲線的微積分 ) Tangents ( 切線 ) dy dy d dy dt =, if 0 d y d dy dt =, if 0 dt = dt dt dt [Ex1][Ex1] 3 A curve C is defined by the parametric equations x = t y = t 3t. (a) Show that C has tangents at the point (3,0) and find their equations. (b) Find the points on C where the tangent is horizontal or vertical. (c) Determine where the curve is concave upward or downward. (d) Sketch the curve.,

8 (a) { x = t =3 dy dy dt 3t = 3 t = ± 3 and = = t y = t 3t = 0 dt t t dy ± 6 = = ± 3. So the equations of the tangents at (3,0) are t=± 3 3 y = 3 ( x 3) and y = 3 ( x 3. ) (b) Horizontal tangent: dy = 0 dy dt = 0 t = ± 1 So the corresponding points ( 相對應的點 ) on C are (1,-) and (1,). Vertical tangent: dt = t = 0 t = 0 So the corresponding points on C is (0,0). (c) d dy 3 1 (d) d y dt 1 + = t = t dt t < 0 t > 0 d y + the curve C C.D C.U +

9 [Ex][Ex] (a) Find the tangent to the cycloid x = r ( θ sinθ ) and y = r ( 1 cosθ ) at the point where θ = 3. (b) At what point is the tangent horizontal? When is it vertical? (a) dy dy dθ r sinθ sinθ dy = = = = dθ r (1 cos θ ) (1 cos θ ) θ= 3 When θ = 3, we have x = r( 3 3 ) and y = r. So the equation of the tangent is y r = 3( x r( 3 3 )) 3 (b) horizontal tangent: dy = 0 sinθ = 0 and 1 cosθ 0 θ = (n + 1) So the corresponding points are (( n + 1) r, ) r. vertical tangent: dθ = 0 θ = n dy sinθ cosθ dy lim = lim = lim = and lim = θ n + θ n + (1 cosθ ) θ n + sinθ θ n So the corresponding points are ( n r,0).

10 Exercise Find the slope of the tangent line to the path of the Scrambler x = cos t +sint t, y = sin t + cos t at (a) t = 0 ; (b) t = 4 and (c) the point (0, -3). Ans: (a) dy t= (b) dy 0 = 1 = t= 4 (c) θ lim ( 3 ) dy = This says that the slope of the tangent line at (0,-3) is undefined. The tangent line at the point (0, -3) is vertical.

11 Areas b The area under the curve y = F ( x ) from a to b is A =. F ( x) a If x = f(), t y = g() t, and the curve is traversed ( 橫越 ) once as t increases from α to β, then b A = y = g () t f () t dt a A = y = g () t f () t dt β α b α a ( ( ), ( )) β if ( f ( α ), g( α )) is the leftmost endpoint. if f β g β is the leftmost endpoint. [Ex3][Ex3] Find the area under one arch ( 拱形 ) of the cycloid x = r( θ sin θ) y = r( 1 cosθ) r A y = r(1 cos θ ) r(1 cosθ ) dθ = 0 0 ( ) = r (1 cos θ ) dθ = r 1 cosθ + cos θ dθ = r 1 cos θ + (1 + cos θ ) dθ = r θ sinθ + sinθ = r = 3r 4 0,.

12 Arc length Suppose that C is given by the parametric equations x = f(), t y = g() t, α t β and dt = f () t > 0, then the arc length of C L β dy = ds = dt α + dt dt, where a = f ( α ), b = f ( β ). [Ex5][Ex5] g y x = r ( θ sin θ ), y = r ( 1 cosθ ) Find the length of arch of the cycloid,. dy L = + d = (1- r cos + r sin d 0 θ θ θ θ dθ dθ ( )) ( ) 0 = r( 1 cosθ + cos θ + sin θ) dθ = r ( 1 cosθ) dθ 0 0 = r 4sin ( θ ) dθ = r sin( θ ) dθ 0 0 [ θ ] 0 = r cos( ) = r(+ ) = 8r

13 [Ex]Find the arc length of the plane curve x = cos 5t, y = sin 7t, for 0 t. Lissajous curve

14 9.3 (10.3) Polar Coordinates r ( ) P(, r θ ) = P x, y i y r = x + y x = rcosθ y = rsinθ O θ x tan θ = y x r = [Ex4][Ex4] What curve is represented by the polar equation 極方程? [Ex] Sketch the polar curve θ = 3.

15 [Ex6][Ex6] (a) Sketch the curve with polar equation r = cos. θ (b) Find a Cartesian equation for this curve. (a) Sketch the curve by using the parametric equations to plot points: (b) r = cosθ r = rcosθ x + y = x Completing the square ( 配方 ), we have ( x 1) + y = 1 which is an equation of a circle with center (1,0) and radius 1.

16 [Ex7][Ex7]Sketch the curve r = 1+ sinθ. [Ex8][Ex8]Sketch ] the curve r = cos θ.

17 [Ex] Sketch the curve r = θ. [Ex] Sketch the curve r = 3+ cosθ. [Ex] Sketch the curve r = 1 sin θ.

18 The graph of r = 1+ csinθ

19 Tangents to Polar Curves ( 極座標曲線的切線 ) dy dy dr sinθ + r cosθ = dθ = dθ, if 0 dr cosθ r sinθ d θ dθ dθ [Ex9][Ex9] (a) For the cardioid ( 心臟線 ) r = 1+ sinθ of Example 7, find the slope of the tangent line when θ = 3. (b) Find the points on the cardioid where the tangent is horizontal or vertical. Since r = 1+ sinθ, we have x= rcos θ = (1 + sin θ) cosθ and y = r sin θ = (1 + sin θ )sin θ,so dy d ((1 + sin θ)sin θ) dy dθ cos sin (1 sin )cos (1 sin )cos = dθ θ θ + + θ θ + θ θ = = = d ((1+ sin θ)cos θ) cosθ cos θ (1 + sin θ)sin θ (1 + sin θ)(1 sin θ) dθ dθ

20 (a) The slope of the tangent at the point where θ = 3 is dy cosθsin θ + (1 + sin θ) cosθ = = 1 θ= 3 cosθcos θ (1 + sin θ)sinθ θ= 3 (b) Observe that dy (1 sin θ)cosθ 0 θ,,, dθ = + = = (1 sin θ)(1 sin θ) 0 θ,, 6 6 dθθ = + = = ( ) ( ) ( ) ( ) So, there are horizontal tangents at,,1, 7 6,1,11 6 and vertical tangents at (3, 6) and 3,5 6. Besides, dy (1 + sin θ ) cosθ 1 sinθ lim = lim lim = lim = (1 sin θ ) (1+ sin θ) 3 cosθ θ (3 ) θ (3 ) θ (3 ) θ (3 ) Similarly, lim dy 1 sinθ = lim = 3 cosθ + + θ (3 ) θ (3 ) ( ) Thus, there is a vertical tangent at 0,3 which is the pole.

21 Exercise Find the slope of the tangent line to the three-leaf rose ( 三瓣玫瑰線 ) r at θ = 0and θ = 4. = sin 3θ Ans: (1) dy θ = 0 = 0 () dy θ = 4 1 =

22 9.4 (10.4) Areas and Lengths in Polar Coordinates ( 極座標曲線的面積與弧長 ) A 1 1 θ θ θ dθ n b * lim ( f( i )) Δ = ( f( )) n 1 a i=1 = = The area of the region bounded by the polar curve r = f ( θ ) and the rays ( θ ) θ θ, 0, = a and = b where f and 0< b a, is b 1 b 1 A = ( f ( θ )) dθ or A = rdθ a a

23 [Ex1][Ex1] Find the area enclosed by one loop of the four-leaved rose r = cos θ. Let r = 0 i.e. cosθ = 0 θ =, θ = 4 and θ = A = rd = ( cos ) d 4 4 θ θ θ = ( cos ) d = ( 1+ cos 4 ) d sin 4 = sin 4 θ + θ = θ θ θ θ Exercise Find the area enclosed by one loop of the three-leaved rose r = sin 3θ. Ans: 1

24 [Ex][Ex] Find the area of the region that lies inside the circle r = 3sinθ and outside the cardioid r = 1+ sinθ. r = 3sin θ 1 5 sinθ = θ = or θ = r = 1+ sinθ A= ( 3sin θ ) ( 1 + sin θ ) d θ = ( 8sin 1 sin ) d θ θ θ = ( ) 3 4cosθ sinθ dθ 6 1 = 3 θ sin θ + cos θ = [ ] Exercise Find the area of the region that lies inside the circle r = and outside the cardioid r = 3+ cosθ Ans: 3

25 [Ex3][Ex3] Find all points of intersection of the curves r = cos θ and r = 1. (1) r r = cos θ cos θ = θ =,,, = () So there are four points of intersection: ,,,,,,, r = cos θ 1 cosθ = θ = r = 1 4 5,,, So there are another four points of fintersection: ti ,,,,,,,

26 Arc length The length of a polar curve r = f( θ ), a θ b, is b b dy dr L = d r d a + θ = + θ dθ dθ a dθ f, if is continuous. [Ex4][Ex4] Find the length of the cardioid r = 1+ sinθ. dr L = () r + dθ 0 dθ = ( 1+ si nθ ) + ( cosθ ) dθ Exercise 0 = + sin θ d θ = = 8 0 Set up the integral for the arc length of the curve r = sin 3. θ

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par-

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par- Parametric Curves: Suppose a particle is moving around in a circle or any curve that fails the vertical line test, then we cannot describe the path of this particle using an equation of the form y fx)

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

Section 8.4 Plane Curves and Parametric Equations

Section 8.4 Plane Curves and Parametric Equations Section 8.4 Plane Curves and Parametric Equations Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f(t), y = g(t) (called parametric equations).

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

Math156 Review for Exam 4

Math156 Review for Exam 4 Math56 Review for Eam 4. What will be covered in this eam: Representing functions as power series, Taylor and Maclaurin series, calculus with parametric curves, calculus with polar coordinates.. Eam Rules:

More information

Find the rectangular coordinates for each of the following polar coordinates:

Find the rectangular coordinates for each of the following polar coordinates: WORKSHEET 13.1 1. Plot the following: 7 3 A. 6, B. 3, 6 4 5 8 D. 6, 3 C., 11 2 E. 5, F. 4, 6 3 Find the rectangular coordinates for each of the following polar coordinates: 5 2 2. 4, 3. 8, 6 3 Given the

More information

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1 MA112 Section 750001: Prepared by Dr.Archara Pacheenburawana 1 Exercise Exercise 1.1 1 8 Find the vertex, focus, and directrix of the parabola and sketch its graph. 1. x = 2y 2 2. 4y +x 2 = 0 3. 4x 2 =

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

worked out from first principles by parameterizing the path, etc. If however C is a A path C is a simple closed path if and only if the starting point

worked out from first principles by parameterizing the path, etc. If however C is a A path C is a simple closed path if and only if the starting point III.c Green s Theorem As mentioned repeatedly, if F is not a gradient field then F dr must be worked out from first principles by parameterizing the path, etc. If however is a simple closed path in the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

POLAR FORMS: [SST 6.3]

POLAR FORMS: [SST 6.3] POLAR FORMS: [SST 6.3] RECTANGULAR CARTESIAN COORDINATES: Form: x, y where x, y R Origin: x, y = 0, 0 Notice the origin has a unique rectangular coordinate Coordinate x, y is unique. POLAR COORDINATES:

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #5 Completion Date: Frida Februar 5, 8 Department of Mathematical and Statistical Sciences Universit of Alberta Question. [Sec.., #

More information

Parametric Curves You Should Know

Parametric Curves You Should Know Parametric Curves You Should Know Straight Lines Let a and c be constants which are not both zero. Then the parametric equations determining the straight line passing through (b d) with slope c/a (i.e.

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus Chapter 10 Conics, Parametric Equations, and Polar Coordinates 10.1 Conics and Calculus 1. Parabola A parabola is the set of all points x, y ( ) that are equidistant from a fixed line and a fixed point

More information

Frequency Response (Bode Plot) with MATLAB

Frequency Response (Bode Plot) with MATLAB Frequency Response (Bode Plot) with MATLAB 黃馨儀 216/6/15 適應性光子實驗室 常用功能選單 File 選單上第一個指令 New 有三個選項 : M-file Figure Model 開啟一個新的檔案 (*.m) 用以編輯 MATLAB 程式 開始一個新的圖檔 開啟一個新的 simulink 檔案 Help MATLAB Help 查詢相關函式 MATLAB

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

MATH 152, Fall 2017 COMMON EXAM II - VERSION A

MATH 152, Fall 2017 COMMON EXAM II - VERSION A MATH 15, Fall 17 COMMON EXAM II - VERSION A LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited.. TURN OFF cell phones

More information

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as, where a and b may be constants or functions of. To find the derivative of when

More information

Parametric Curves. Calculus 2 Lia Vas

Parametric Curves. Calculus 2 Lia Vas Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate AP Calculus BC Review Chapter (Parametric Equations and Polar Coordinates) Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch

More information

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible. Practice Problems: Exam MATH, Spring Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.. Write down a table of x and y values associated with a few t values. Then, graph

More information

The choice of origin, axes, and length is completely arbitrary.

The choice of origin, axes, and length is completely arbitrary. Polar Coordinates There are many ways to mark points in the plane or in 3-dim space for purposes of navigation. In the familiar rectangular coordinate system, a point is chosen as the origin and a perpendicular

More information

Figure: Aparametriccurveanditsorientation

Figure: Aparametriccurveanditsorientation Parametric Equations Not all curves are functions. To deal with curves that are not of the form y = f (x) orx = g(y), we use parametric equations. Define both x and y in terms of a parameter t: x = x(t)

More information

CURVATURE AND RADIUS OF CURVATURE

CURVATURE AND RADIUS OF CURVATURE CHAPTER 5 CURVATURE AND RADIUS OF CURVATURE 5.1 Introduction: Curvature is a numerical measure of bending of the curve. At a particular point on the curve, a tangent can be drawn. Let this line makes an

More information

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions?

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions? Lecture Wise Questions from 23 to 45 By Virtualians.pk Q105. What is the impact of double integration in finding out the area and volume of Regions? Ans: It has very important contribution in finding the

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

This is example 3 on page 44 of BGH and example (b) on page 66 of Troutman.

This is example 3 on page 44 of BGH and example (b) on page 66 of Troutman. Chapter 4 The brachistochrone This is example 3 on page 44 of BGH and example (b) on page 66 of Troutman. We seek the shape of a frictionless wire starting at the origin and ending at some point (, d)

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

Math Test #3 Info and Review Exercises

Math Test #3 Info and Review Exercises Math 181 - Test #3 Info and Review Exercises Fall 2018, Prof. Beydler Test Info Date: Wednesday, November 28, 2018 Will cover sections 10.1-10.4, 11.1-11.7. You ll have the entire class to finish the test.

More information

Calculus III. Exam 2

Calculus III. Exam 2 Calculus III Math 143 Spring 011 Professor Ben Richert Exam Solutions Problem 1. (0pts) Computational mishmash. For this problem (and only this problem), you are not required to supply any English explanation.

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

ENGI Parametric Vector Functions Page 5-01

ENGI Parametric Vector Functions Page 5-01 ENGI 3425 5. Parametric Vector Functions Page 5-01 5. Parametric Vector Functions Contents: 5.1 Arc Length (Cartesian parametric and plane polar) 5.2 Surfaces of Revolution 5.3 Area under a Parametric

More information

8.1 Solutions to Exercises

8.1 Solutions to Exercises Last edited 9/6/17 8.1 Solutions to Exercises 1. Since the sum of all angles in a triangle is 180, 180 = 70 + 50 + α. Thus α = 60. 10 α B The easiest way to find A and B is to use Law of Sines. sin( )

More information

University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, JUNE, 2012 First Year - CHE, CIV, IND, LME, MEC, MSE

University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, JUNE, 2012 First Year - CHE, CIV, IND, LME, MEC, MSE University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, JUNE, 212 First Year - CHE, CIV, IND, LME, MEC, MSE MAT187H1F - CALCULUS II Exam Type: A Examiner: D. Burbulla INSTRUCTIONS:

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

HW - Chapter 10 - Parametric Equations and Polar Coordinates

HW - Chapter 10 - Parametric Equations and Polar Coordinates Berkeley City College Due: HW - Chapter 0 - Parametric Equations and Polar Coordinates Name Parametric equations and a parameter interval for the motion of a particle in the xy-plane are given. Identify

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Coordinate goemetry in the (x, y) plane

Coordinate goemetry in the (x, y) plane Coordinate goemetr in the (x, ) plane In this chapter ou will learn how to solve problems involving parametric equations.. You can define the coordinates of a point on a curve using parametric equations.

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

9.2 CALCULUS IN THE POLAR COORDINATE SYSTEM

9.2 CALCULUS IN THE POLAR COORDINATE SYSTEM 9.2 alculus In The Polar oordinate System ontemporary alculus 9.2 LULUS IN THE POLR OORINTE SYSTEM The previous section introduced the polar coordinate system and discussed how to plot points, how to create

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( ) Syllabus Objectives: 5.1 The student will explore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.1 INTEGRATION APPLICATIONS 1 (Second moments of an arc) by A.J.Hobson 13.1.1 Introduction 13.1. The second moment of an arc about the y-axis 13.1.3 The second moment of an

More information

MATH 118, LECTURES 13 & 14: POLAR EQUATIONS

MATH 118, LECTURES 13 & 14: POLAR EQUATIONS MATH 118, LECTURES 13 & 1: POLAR EQUATIONS 1 Polar Equations We now know how to equate Cartesian coordinates with polar coordinates, so that we can represents points in either form and understand what

More information

Trigonometric Functions. Section 1.6

Trigonometric Functions. Section 1.6 Trigonometric Functions Section 1.6 Quick Review Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc that ACB cuts from the unit circle. Radian

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true?

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true? BC Exam 1 - Part I 8 questions No Calculator Allowed - Solutions 6x 5 8x 3 1. Find lim x 0 9x 3 6x 5 A. 3 B. 8 9 C. 4 3 D. 8 3 E. nonexistent ( ) f ( 4) f x. Let f be a function such that lim x 4 x 4 I.

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i}

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i} Chapter 8 Complex Numbers, Polar Equations, and Parametric Equations 6. { ± 6i} Section 8.1: Complex Numbers 1. true. true. true 4. true 5. false (Every real number is a complex number. 6. true 7. 4 is

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

8.2 Graphs of Polar Equations

8.2 Graphs of Polar Equations 8. Graphs of Polar Equations Definition: A polar equation is an equation whose variables are polar coordinates. One method used to graph a polar equation is to convert the equation to rectangular form.

More information

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

Warmup for AP Calculus BC

Warmup for AP Calculus BC Nichols School Mathematics Department Summer Work Packet Warmup for AP Calculus BC Who should complete this packet? Students who have completed Advanced Functions or and will be taking AP Calculus BC in

More information

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS. Parametric Equations Preliminar Questions. Describe the shape of the curve = cos t, = sin t. For all t, + = cos t + sin t = 9cos t + sin t =

More information

What is Parametric Equation?

What is Parametric Equation? Chapter 13 Parametric Equation and Locus Wh the graph is so strange? Let s investigate a few points. t -5-4 -3 - -1 0 1 3 4 4 15 8 3 0-1 0 3 8 15-4.04-3.4-3.14 -.91-1.84 0 1.84.91 3.14 3.4 B plotting these

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

Polar Coordinates: Graphs

Polar Coordinates: Graphs Polar Coordinates: Graphs By: OpenStaxCollege The planets move through space in elliptical, periodic orbits about the sun, as shown in [link]. They are in constant motion, so fixing an exact position of

More information

9.4 CALCULUS AND PARAMETRIC EQUATIONS

9.4 CALCULUS AND PARAMETRIC EQUATIONS 9.4 Calculus with Parametric Equations Contemporary Calculus 1 9.4 CALCULUS AND PARAMETRIC EQUATIONS The previous section discussed parametric equations, their graphs, and some of their uses for visualizing

More information

Module 7 : Applications of Integration - I. Lecture 21 : Relative rate of growth of functions [Section 21.1] Objectives

Module 7 : Applications of Integration - I. Lecture 21 : Relative rate of growth of functions [Section 21.1] Objectives Module 7 : Applications of Integration - I Lecture 21 : Relative rate of growth of functions [Section 211] Objectives In this section you will learn the following : How to compare the rate of growth of

More information

2( 2 r 2 2r) rdrdθ. 4. Your result fits the correct answer: get 2 pts, if you make a slight mistake, get 1 pt. 0 r 1

2( 2 r 2 2r) rdrdθ. 4. Your result fits the correct answer: get 2 pts, if you make a slight mistake, get 1 pt. 0 r 1 Page 1 of 1 112 微甲 7-11 班期末考解答和評分標準 1. (1%) Find the volume of the solid bounded below by the cone z 2 4(x 2 + y 2 ) and above by the ellipsoid 4(x 2 + y 2 ) + z 2 8. Method 1 Use cylindrical coordinates:

More information

Solutions to Practice Exam 2

Solutions to Practice Exam 2 Solutions to Practice Eam Problem : For each of the following, set up (but do not evaluate) iterated integrals or quotients of iterated integral to give the indicated quantities: Problem a: The average

More information

Exam 3 Solutions. Multiple Choice Questions

Exam 3 Solutions. Multiple Choice Questions MA 4 Exam 3 Solutions Fall 26 Exam 3 Solutions Multiple Choice Questions. The average value of the function f (x) = x + sin(x) on the interval [, 2π] is: A. 2π 2 2π B. π 2π 2 + 2π 4π 2 2π 4π 2 + 2π 2.

More information

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12 Philippe B. Laval KSU Today Philippe B. Laval (KSU) Arc Length Today 1 / 12 Introduction In this section, we discuss the notion of curve in greater detail and introduce the very important notion of arc

More information

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves:

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves: 5 微甲 6- 班期末考解答和評分標準. (%) Find the orthogonal trajectories of the family of curves y = tan (kx), where k is an arbitrary constant. For the original curves: dy dx = tan y k = +k x x sin y cos y = +tan y

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

Plane Curves and Parametric Equations

Plane Curves and Parametric Equations Plane Curves and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We typically think of a graph as a curve in the xy-plane generated by the

More information

lim 2 x lim lim sin 3 (9) l)

lim 2 x lim lim sin 3 (9) l) MAC FINAL EXAM REVIEW. Find each of the following its if it eists, a) ( 5). (7) b). c). ( 5 ) d). () (/) e) (/) f) (-) sin g) () h) 5 5 5. DNE i) (/) j) (-/) 7 8 k) m) ( ) (9) l) n) sin sin( ) 7 o) DNE

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number.

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number. 997 AP Calculus BC: Section I, Part A 5 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number..

More information

we can conclude that ϕ(x, y, z) = sin (xz) + e yz + const. If ϕ is written as a vector but the above three calculations are right, you lose 3pts.

we can conclude that ϕ(x, y, z) = sin (xz) + e yz + const. If ϕ is written as a vector but the above three calculations are right, you lose 3pts. 5 微甲 6- 班期末考解答和評分標準. (%) Let F = z cos(z)i + ze yz j + ( cos(z) + ye yz )k. (a) (8%) Find a scalar function ϕ(, y, z) such that ϕ = F. (b) (%) Evaluate C F dr, where C is the curve r(t) = (cos(t ), ln(t

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections Chapter 11 Parametric Equations, Polar Curves, and Conic Sections ü 11.1 Parametric Equations Students should read Sections 11.1-11. of Rogawski's Calculus [1] for a detailed discussion of the material

More information

MAC Calculus II Spring Homework #6 Some Solutions.

MAC Calculus II Spring Homework #6 Some Solutions. MAC 2312-15931-Calculus II Spring 23 Homework #6 Some Solutions. 1. Find the centroid of the region bounded by the curves y = 2x 2 and y = 1 2x 2. Solution. It is obvious, by inspection, that the centroid

More information

Unit 10 Parametric and Polar Equations - Classwork

Unit 10 Parametric and Polar Equations - Classwork Unit 10 Parametric and Polar Equations - Classwork Until now, we have been representing graphs by single equations involving variables x and y. We will now study problems with which 3 variables are used

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000

EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000 EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000 This examination has 30 multiple choice questions. Problems are worth one point apiece, for a total of 30 points for the whole examination.

More information

27. Folds (I) I Main Topics A What is a fold? B Curvature of a plane curve C Curvature of a surface 10/10/18 GG303 1

27. Folds (I) I Main Topics A What is a fold? B Curvature of a plane curve C Curvature of a surface 10/10/18 GG303 1 I Main Topics A What is a fold? B Curvature of a plane curve C Curvature of a surface 10/10/18 GG303 1 http://upload.wikimedia.org/wikipedia/commons/a/ae/caledonian_orogeny_fold_in_king_oscar_fjord.jpg

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

Page 1

Page 1 nswers: (008-09 HKMO Heat Events) reated by: Mr. Francis Hung Last updated: 8 ugust 08 08-09 Individual 00 980 007 008 0 7 9 8 7 9 0 00 (= 8.) Spare 0 9 7 Spare 08-09 Group 8 7 8 9 0 0 (=.) Individual

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 116 Practice for Exam Generated October 1, 015 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 7 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information