= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

Size: px
Start display at page:

Download "= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?"

Transcription

1 Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral f(x) dx is a function whose derivative is f(x).. An object starts moving along a straight line from rest. Its acceleration at time t is equal to 1 + cos t, where t is measured in seconds and its distance is measured in feet. (a) Find its equations of motion, that is, find formulas for its velocity and distance travelled. Use appropriate notation and clearly indicate what each variable you use represents. Solution: Let v represent the velocity and s the distance. We know dv dt = 1 + cos t, so v = 1 + cos t dt = t + sin t + k for some constant k. Since the object starts at rest, v = 0 when t = 0, so we have 0 = 0 + sin 0 + k = k and v = t + sin t. We know ds dt = v = t + sin t, so s = t + sin t dt = t cos t + c for some constant c. Since s = 0 when t = 0, we get 0 = 0 cos 0 + c = c = c 1, so c = 1 and s = t cos t + 1. (b) How fast is it going after π seconds? Solution: v t=π = π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Solution: s t=π = π π cos π + 1 = + π feet in π seconds. π ( 1) + 1 = +, so the object travels Page 1 of 5

2 3. Consider the function f(x) = x 8 ln x. Page of 5 (a) Analyze monotonicity, that is, determine where the function is increasing and where it is decreasing. Solution: f (x) = x 8/x = (x 4) (x + )(x ) =. x x Since f is only defined for x > 0 (because ln is only defined on R + ), there is just one critical point, x =. Clearly, f (x) > 0 for x > while f (x) < 0 for 0 < x <, so f is decreasing on (0, ) and increasing on (, ). (b) Find and identify all local and global extrema. Solution: Clearly, f has a local and global minimum at but has no maxima of any kind. Extra Credit: Analyze concavity and sketch its graph. Solution: f (x) = + 8/x. Clearly, f (x) > 0 for all x in the domain of f, so the function is concave up everywhere. Note that the y axis is a vertical asymptote, since lim x 0 + =. 4. Calculate x (x + 4) 3 dx. Solution: Use the substitution u = x + 4. We have du du = x, du = xdx, dx = dx x. Plugging into the original integral, we get x (x + 4) dx = x 3 u du 3 x = 1 1 u du = 1 3 u 3 du = 1 u = = 4 u 4(x + 4) +k.

3 Page 3 of 5 5. Use a Tangent Line Approximation involving the function f(x) = 3 x to estimate Solution: Writing f(x) = x 1/3, we get f (x) = 1 3 x /3 = 1 3x = 1 / We thus have x f(64) = 3 64 = 4 and f (64) = = = Using the Tangent Line Approximation, we get T (x) = f(x 0 ) + f (x 0 )(x x 0 ) = (x 64). 48 We thus have T (64.1) = ( ) = = Use Newton s Method on the function f(x) = x with x 0 = 4 to estimate Calculate x 1 and x. Solution: f (x) = 3x. Using Newton s Method, we have x n = x n 1 f(x n 1) f (x n 1 ) = x n 1 x3 n x n 1 Letting x 0 = 4, we have: x 1 = x =

4 7. Find the point on the line y = x + 3 closest to the point (0, 13). Page 4 of 5 Solution: Let z be the square of the distance between a point (x, y) on the line and the point (0, 13). z will be minimal for the point closest to the point (0, 13). Using the distance formula, z = (x 0) + (y 13) = x + (y 13). We may proceed three different ways. (a) Since the point is on the line y = x + 3, we have z = x + (x ) = x + (x 10). The minimum must occur at a point where z = 0. We calculate z = x + (x 10) = x + 8x 40 = 10x 40 = 10(x 4). Clearly, z = 0 when x = 4, at which point y = = 11. So the point on the line closest to (0, 13) is (4, 11). (b) Since y = x + 3, we have dy dx =. Also, since z = x + (y 13), we obtain dz dz = x + (y 13)dy. Since the minimal value of z must occur when = 0, we dx dx dx may solve the following equations simultaneously: y = x + 3 dy dx = x + (y 13) dy dx = 0. Using the fact that dy = and dividing both sides of the third equation by, dx we obtain x + (y 13) = 0, x + y 6 = 0. Plugging in y = x + 3, we get x + (x + 3) 6 = 0, 5x 0 = 0, 5x = 0, x = 4. As before, we get y = 4 + = 11 and determine the closest point is (4, 11). (c) This question can also be answered without the use of Calculus, since it is known that the line containing the closest point and the point (0, 13) is perpendicular to the given line. The given line has slope, so the perpendicular line has slope 1 and equation y 13 = 1(x 0) or y 13 = 1 x. Since the point of intersection is also on the line y = x + 3, we may plug in y = x + 3 to get (x + 3) 13 = 1 x, x 10 = 1 x, (x 10) = x, 4x 0 = x, 5x = 0, x = 4. We then get y = = 11, so the point we want is (4, 11)

5 Page 5 of 5 8. As the sun sets, its angle of inclination is decreasing at a rate of 0. radians per hour. How fast is the shadow of a foot tall tree lengthening when the angle of inclination of the sun is 30 or π/6 radians? The angle of inclination is the angle between the ground and a line going from a point on the ground to the sun. Solution: Let x be the length of the shadow and let θ be the angle of inclination. We know tan θ = dθ dx and = 0. and want to find θ = π/6. x dt dt Differentiating, we get d dt (tan θ) = d ( ) dθ, sec θ dθ dt x dt = dx dx x sec θ, so x dt dt = dt. 3 When θ = π/6, we have cos θ =, so sec θ =, so sec θ = We also have tan θ = 1, so 3 x = 1 so x = 3. 3 We thus obtain dx ( 3) 4 dt = 3 ( 0.) = 40, so the shadow is increasing at a rate of 40 feet per hour.

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90 Final practice, Math 31A - Lec 1, Fall 13 Name and student ID: Question Points Score 1 1 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 Total: 9 1. a) 4 points) Find all points x at which the function fx) x 4x + 3 + x

More information

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40 Extreme Values in an Interval AP Calculus BC 1. The absolute maximum value of x = f ( x) x x 1 on the closed interval, 4 occurs at A) 4 B) C) 1 D) 0 E). The maximum acceleration attained on the interval

More information

MIDTERM 2. Section: Signature:

MIDTERM 2. Section: Signature: MIDTERM 2 Math 3A 11/17/2010 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. When you use a major theorem (like

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

AP Calculus AB Winter Break Packet Happy Holidays!

AP Calculus AB Winter Break Packet Happy Holidays! AP Calculus AB Winter Break Packet 04 Happy Holidays! Section I NO CALCULATORS MAY BE USED IN THIS PART OF THE EXAMINATION. Directions: Solve each of the following problems. After examining the form of

More information

SOLUTIONS TO EXAM 2, MATH 10550

SOLUTIONS TO EXAM 2, MATH 10550 SOLUTIONS TO EXAM 2, MATH 0550. Find the critical numbers of f(x) = 6 x2 x /3. We have f (x) = 3 x 3 x 2/3 = [ x 5/3 ] 3 x 2/3. So x = 0 is a critical point. For x 0, the equation f (x) = 0 can be written

More information

CHAPTER 3 APPLICATIONS OF THE DERIVATIVE

CHAPTER 3 APPLICATIONS OF THE DERIVATIVE CHAPTER 3 APPLICATIONS OF THE DERIVATIVE 3.1 Maxima and Minima Extreme Values 1. Does f(x) have a maximum or minimum value on S? 2. If it does have a maximum or a minimum, where are they attained? 3. If

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

MAC 2311 Calculus I Spring 2004

MAC 2311 Calculus I Spring 2004 MAC 2 Calculus I Spring 2004 Homework # Some Solutions.#. Since f (x) = d dx (ln x) =, the linearization at a = is x L(x) = f() + f ()(x ) = ln + (x ) = x. The answer is L(x) = x..#4. Since e 0 =, and

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Calculus AB Topics Limits Continuity, Asymptotes

Calculus AB Topics Limits Continuity, Asymptotes Calculus AB Topics Limits Continuity, Asymptotes Consider f x 2x 1 x 3 1 x 3 x 3 Is there a vertical asymptote at x = 3? Do not give a Precalculus answer on a Calculus exam. Consider f x 2x 1 x 3 1 x 3

More information

AP Calculus AB Semester 1 Practice Final

AP Calculus AB Semester 1 Practice Final Class: Date: AP Calculus AB Semester 1 Practice Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the limit (if it exists). lim x x + 4 x a. 6

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Math. 151, WebCalc Sections December Final Examination Solutions

Math. 151, WebCalc Sections December Final Examination Solutions Math. 5, WebCalc Sections 507 508 December 00 Final Examination Solutions Name: Section: Part I: Multiple Choice ( points each) There is no partial credit. You may not use a calculator.. Another word for

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 8 of these questions. I reserve the right to change numbers and answers on

More information

M151B Practice Problems for Final Exam

M151B Practice Problems for Final Exam M5B Practice Problems for Final Eam Calculators will not be allowed on the eam. Unjustified answers will not receive credit. On the eam you will be given the following identities: n k = n(n + ) ; n k =

More information

AP Calculus AB Chapter 2 Test Review #1

AP Calculus AB Chapter 2 Test Review #1 AP Calculus AB Chapter Test Review # Open-Ended Practice Problems:. Nicole just loves drinking chocolate milk out of her special cone cup which has a radius of inches and a height of 8 inches. Nicole pours

More information

AB 1: Find lim. x a.

AB 1: Find lim. x a. AB 1: Find lim x a f ( x) AB 1 Answer: Step 1: Find f ( a). If you get a zero in the denominator, Step 2: Factor numerator and denominator of f ( x). Do any cancellations and go back to Step 1. If you

More information

Math 2413 General Review for Calculus Last Updated 02/23/2016

Math 2413 General Review for Calculus Last Updated 02/23/2016 Math 243 General Review for Calculus Last Updated 02/23/206 Find the average velocity of the function over the given interval.. y = 6x 3-5x 2-8, [-8, ] Find the slope of the curve for the given value of

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM Name (Print last name first):............................................. Student ID Number:...........................

More information

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):...

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):... CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM Name (Print last name first):............................................. Student ID Number (last four digits):........................

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists).

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists). Please do not write on. Calc AB Semester 1 Exam Review 1. Determine the limit (if it exists). 1 1 + lim x 3 6 x 3 x + 3 A).1 B).8 C).157778 D).7778 E).137778. Determine the limit (if it exists). 1 1cos

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

Math 170 Calculus I Final Exam Review Solutions

Math 170 Calculus I Final Exam Review Solutions Math 70 Calculus I Final Eam Review Solutions. Find the following its: (a (b (c (d 3 = + = 6 + 5 = 3 + 0 3 4 = sin( (e 0 cos( = (f 0 ln(sin( ln(tan( = ln( (g (h 0 + cot( ln( = sin(π/ = π. Find any values

More information

1 Antiderivatives graphically and numerically

1 Antiderivatives graphically and numerically Math B - Calculus by Hughes-Hallett, et al. Chapter 6 - Constructing antiderivatives Prepared by Jason Gaddis Antiderivatives graphically and numerically Definition.. The antiderivative of a function f

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200.

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 20 4 30 5 20 6 20 7 20 8 20 9 25 10 25 11 20 Total: 200 Page 1 of 11 Name: Section:

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0.

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0. Math Sample final problems Here are some problems that appeared on past Math exams. Note that you will be given a table of Z-scores for the standard normal distribution on the test. Don t forget to have

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

AP Calculus BC Chapter 4 AP Exam Problems. Answers

AP Calculus BC Chapter 4 AP Exam Problems. Answers AP Calculus BC Chapter 4 AP Exam Problems Answers. A 988 AB # 48%. D 998 AB #4 5%. E 998 BC # % 5. C 99 AB # % 6. B 998 AB #80 48% 7. C 99 AB #7 65% 8. C 998 AB # 69% 9. B 99 BC # 75% 0. C 998 BC # 80%.

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

5. Find the intercepts of the following equations. Also determine whether the equations are symmetric with respect to the y-axis or the origin.

5. Find the intercepts of the following equations. Also determine whether the equations are symmetric with respect to the y-axis or the origin. MATHEMATICS 1571 Final Examination Review Problems 1. For the function f defined by f(x) = 2x 2 5x find the following: a) f(a + b) b) f(2x) 2f(x) 2. Find the domain of g if a) g(x) = x 2 3x 4 b) g(x) =

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

Final Exam Solutions

Final Exam Solutions Final Exam Solutions Laurence Field Math, Section March, Name: Solutions Instructions: This exam has 8 questions for a total of points. The value of each part of each question is stated. The time allowed

More information

1. The accumulated net change function or area-so-far function

1. The accumulated net change function or area-so-far function Name: Section: Names of collaborators: Main Points: 1. The accumulated net change function ( area-so-far function) 2. Connection to antiderivative functions: the Fundamental Theorem of Calculus 3. Evaluating

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

AP Calculus Chapter 4 Testbank (Mr. Surowski)

AP Calculus Chapter 4 Testbank (Mr. Surowski) AP Calculus Chapter 4 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions 1. Let f(x) = x 3 + 3x 2 45x + 4. Then the local extrema of f are (A) a local minimum of 179 at x = 5 and a local maximum

More information

Answer Key for AP Calculus AB Practice Exam, Section I

Answer Key for AP Calculus AB Practice Exam, Section I Answer Key for AP Calculus AB Practice Exam, Section I Multiple-Choice Questions Question # Key B B 3 A 4 E C 6 D 7 E 8 C 9 E A A C 3 D 4 A A 6 B 7 A 8 B 9 C D E B 3 A 4 A E 6 A 7 A 8 A 76 E 77 A 78 D

More information

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work.

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Fall 7 Test # In #-5, find the indicated limits. For each one, if it does not eist, tell why not. Show all necessary work. lim sin.) lim.) 3.) lim 3 3-5 4 cos 4.) lim 5.) lim sin 6.)

More information

Name Class. (a) (b) (c) 4 t4 3 C

Name Class. (a) (b) (c) 4 t4 3 C Chapter 4 Test Bank 77 Test Form A Chapter 4 Name Class Date Section. Evaluate the integral: t dt. t C (a) (b) 4 t4 C t C C t. Evaluate the integral: 5 sec x tan x dx. (a) 5 sec x tan x C (b) 5 sec x C

More information

AP Calculus (BC) Summer Assignment (169 points)

AP Calculus (BC) Summer Assignment (169 points) AP Calculus (BC) Summer Assignment (69 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim Amherst College, DEPARTMENT OF MATHEMATICS Math, Final Eamination, May 4, Answer Key. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value,

More information

Math 113 (Calculus II) Final Exam KEY

Math 113 (Calculus II) Final Exam KEY Math (Calculus II) Final Exam KEY Short Answer. Fill in the blank with the appropriate answer.. (0 points) a. Let y = f (x) for x [a, b]. Give the formula for the length of the curve formed by the b graph

More information

We can regard an indefinite integral as representing an entire family of functions (one antiderivative for each value of the constant C).

We can regard an indefinite integral as representing an entire family of functions (one antiderivative for each value of the constant C). 4.4 Indefinite Integrals and the Net Change Theorem Because of the relation given by the Fundamental Theorem of Calculus between antiderivatives and integrals, the notation f(x) dx is traditionally used

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

Lecture 4: Integrals and applications

Lecture 4: Integrals and applications Lecture 4: Integrals and applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: autumn 2013 Lejla Batina Version: autumn 2013 Calculus en Kansrekenen 1 / 18

More information

Lecture 5: Integrals and Applications

Lecture 5: Integrals and Applications Lecture 5: Integrals and Applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde 1 1 / 21 Outline The

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals Antiderivatives and Indefinite Integrals MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this lesson we will be able to use the definition

More information

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Assignment 13 Assigned Mon Oct 4

Assignment 13 Assigned Mon Oct 4 Assignment 3 Assigned Mon Oct 4 We refer to the integral table in the back of the book. Section 7.5, Problem 3. I don t see this one in the table in the back of the book! But it s a very easy substitution

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS d d d d t dt 6 cos t dt Second Fundamental Theorem of Calculus: d f tdt d a d d 4 t dt d d a f t dt d d 6 cos t dt Second Fundamental

More information

APPM 1350 Exam 2 Fall 2016

APPM 1350 Exam 2 Fall 2016 APPM 1350 Exam 2 Fall 2016 1. (28 pts, 7 pts each) The following four problems are not related. Be sure to simplify your answers. (a) Let f(x) tan 2 (πx). Find f (1/) (5 pts) f (x) 2π tan(πx) sec 2 (πx)

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Name: Class: Date: Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Short Answer 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required.

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th )

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th ) UNIVERSITY OF REGINA Department of Mathematics and Statistics Calculus I Mathematics 110 Final Exam, Winter 2013 (April 25 th ) Time: 3 hours Pages: 11 Full Name: Student Number: Instructor: (check one)

More information

2011 Form B Solution. Jim Rahn

2011 Form B Solution. Jim Rahn Form B Solution By Jim Rahn Form B AB 6 6 S'( t) dt 7.8 mm 6 S '( t) dt.86 mm or.864 mm c) S '(7).96998 dv d( r h) dh dh r r dt dt dt dt dr since r is constant, dt dv dh r.96998 6.8 mm dt dt day d) D()=M

More information

Purdue University Study Guide for MA Credit Exam

Purdue University Study Guide for MA Credit Exam Purdue University Study Guide for MA 16010 Credit Exam Students who pass the credit exam will gain credit in MA16010. The credit exam is a two-hour long exam with multiple choice questions. No books or

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differential at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

" $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1

 $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1 CALCULUS 2 WORKSHEET #2. The asymptotes of the graph of the parametric equations x = t t, y = t + are A) x = 0, y = 0 B) x = 0 only C) x =, y = 0 D) x = only E) x= 0, y = 2. What are the coordinates of

More information

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points)

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points) BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: United and Continuous! ( points) For #- below, find the its, if they eist.(#- are pt each) ) 7 ) 9 9 ) 5 ) 8 For #5-7, eplain why

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true?

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true? BC Exam 1 - Part I 8 questions No Calculator Allowed - Solutions 6x 5 8x 3 1. Find lim x 0 9x 3 6x 5 A. 3 B. 8 9 C. 4 3 D. 8 3 E. nonexistent ( ) f ( 4) f x. Let f be a function such that lim x 4 x 4 I.

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

Solutions to Math 41 Second Exam November 5, 2013

Solutions to Math 41 Second Exam November 5, 2013 Solutions to Math 4 Second Exam November 5, 03. 5 points) Differentiate, using the method of your choice. a) fx) = cos 03 x arctan x + 4π) 5 points) If u = x arctan x + 4π then fx) = fu) = cos 03 u and

More information