8.2 Graphs of Polar Equations

Size: px
Start display at page:

Download "8.2 Graphs of Polar Equations"

Transcription

1 8. Graphs of Polar Equations Definition: A polar equation is an equation whose variables are polar coordinates. One method used to graph a polar equation is to convert the equation to rectangular form. Example 1: Identify and graph the equation r = 3 on the xy-plane. Solution: Convert the polar equation to a rectangular equation. r = 3 = r = 9 = x + y = 9 The graph of r = 3 on the xy-plane is a circle with center at the pole and radius 3. 1

2 Example : Identify and graph the equation θ = 4. Solution: Convert the polar equation to a rectangular equation. θ = ( ) = tan θ = tan 4 4 = y x = 1 = y = x The graph of θ = 4 on the xy-plane is a line through the origin with slope 1. Tests for Symmetry Let r = f(θ) be a polar equation. Symmetry with Respect to the Polar Axis (x-axis) If f( θ) = f(θ) for all θ, then the graph is symmetric with respect to the polar axis.

3 Symmetry with Respect to the Line θ = (y-axis) If f( θ) = f(θ) for all θ, then the graph is symmetric with respect to the line θ =. 3

4 Symmetry with Respect to the Pole (Origin) If f(θ + ) = f(θ) for all θ or if replacing r with r results in an equivalent equation, then the graph is symmetric with respect to the pole. Note: The three tests for symmetry given here are sufficient conditions for symmetry, but they are not necessary conditions. In other words, an equation may fail any one of these tests and still have a graph that is symmetric with respect to the polar axis, the line θ =, or the pole. For example, the graph of r = sin(θ) is symmetric with respect to the polar axis, the line θ, and the pole, but only the test for symmetry with respect to the pole is satisfied. Example 3: Graph the equation: r = 1 sin θ on the xy-plane. Solution: Here, f(θ) = 1 sin θ. Let s check for symmetry first. Polar Axis: Replace θ with θ. f( θ) = 1 sin( θ) = 1 + sin θ f(θ) The test fails, so the graph may or may not be symmetric with respect to the polar axis. 4

5 The Line θ = : Replace θ with θ. f( θ) = 1 sin( θ) = 1 [sin cos θ cos sin θ] = 1 [0 + sin θ] = 1 sin θ = f(θ) The test is satisfied, so the graph is symmetric with respect to the line θ =. The Pole: Replace r with r. r = 1 sin θ = r = 1 + sin θ Since replacing r with r yields an equation that is not equivalent to the original one, the test fails. Let s try replacing θ with θ +. f(θ + ) = 1 sin(θ + ) = 1 [sin θ cos + cos θ sin ] = 1 [ sin θ + 0] = 1 + sin θ f(θ) This test also fails, so the graph may or may not be symmetric with respect to the pole. Since the graph is symmetric with respect to the line θ =, we only need to assign values of θ from to. Once we trace the part of the graph on θ, we will need to reflect the graph about the line θ = to obtain the complete graph. 5

6 θ r = 1 sin θ 1 ( 1) = ( ) ( 1 ) = = = 1 6 ( 3 ) = 0 This curve is called a cardioid (a heart-shaped curve). Definition: Cardioids are characterized by equations of the form: r = a(1 + cos θ) r = a(1 + sin θ) r = a(1 cos θ) r = a(1 sin θ) where a > 0. The graph of a cardioid passes through the pole. Example 4: Graph the equation: r = 1 + cos θ on the xy-plane. Solution: Here, f(θ) = 1 + cos θ. Let s check for symmetry first. Polar Axis: Replace θ with θ. f( θ) = 1 + cos( θ) = 1 + cos θ = f(θ) The test is satisfied, so the graph is symmetric with respect to the polar axis. 6

7 The Line θ = : Replace θ with θ. f( θ) = 1 + cos( θ) = 1 + [cos cos θ + sin sin θ] = 1 cos θ f(θ) The test fails, so the graph may or may not be symmetric with respect to the line θ =. The Pole: Replace r with r. r = 1 + cos θ = r = 1 cos θ Since replacing r with r yields an equation that is not equivalent to the original one, the test fails. Let s try replacing θ with θ +. f(θ + ) = 1 + cos(θ + ) = 1 + [cos θ cos sin θ sin ] = 1 + [ cos θ 0] = 1 cos θ f(θ) This test also fails, so the graph may or may not be symmetric with respect to the pole. Since the graph is symmetric with respect to the polar axis, we only need to assign values of θ from 0 to. Once we trace the part of the graph on 0 θ, we will need to reflect the graph about the polar axis to obtain the complete graph. 7

8 θ r = 1 + cos θ (1) = 3 ( 3 ) ( 1 3 ) = 1 + (0) = ( 1) = 0 3 ( ) ( 1) = 1 This curve is called a limaçon with an inner loop. Definition: Limaçons are characterized by equations of the form: r = a + b cos θ r = a + b sin θ r = a b cos θ r = a b sin θ where a > 0 and b > 0. If a > b, then the limaçon has no loop and does not pass through the pole. If a < b, then the limaçon has a loop that passes through the pole twice. If a = b, then the limaçon is a cardioid. Example 5: Graph the equation r = cos(θ) on the xy-plane. Solution: Here f(θ) = cos(θ). As usual, let s check for symmetry first. Polar Axis: Replace θ with θ. f( θ) = cos[( θ)] = cos(θ) = f(θ) The test is satisfied, so the graph is symmetric with respect to the polar axis. 8

9 The Line θ = : Replace θ with θ. f( θ) = cos[( θ)] = cos( θ) = cos( θ) = cos(θ) = f(θ) The test is satisfied, so the graph is symmetric with respect to the line θ =. The Pole: Since the graph is symmetric with respect to both the polar axis and the line θ =, the graph is also symmetric with respect to the pole. (It turns out that the test for symmetry with respect to the pole is satisfied. Replace θ with θ + and simplify to verify this.) Since the graph is symmetric with respect to the polar axis, the line θ =, and the pole, we only need to assign values of θ from 0 to. Below is the part of the graph on 0 θ. θ r = cos(θ) 0 (1) = ( 1 6 ) = 1 (0) = 0 4 ( 1) = 1 3 ( 1) = Since the complete graph is symmetric with respect to the line θ =, let s reflect the graph shown above with respect to this line. The graph shown below is the part of the complete graph on 0 θ. 9

10 Finally, to obtain the complete graph, we ll use the fact that it is symmetric with respect to the polar axis. Reflecting the graph shown right above with respect to the polar axis yields the complete graph (on 0 θ ). This curve is called a rose (with 4 petals). 10

11 Definition: Rose curves are characterized by the equations of the form r = a cos(nθ) r = a sin(nθ) where a 0. If n 0 is even, the rose has n petals. If n ±1 is odd, the rose has n petals. Example 6: Graph the equation r = 4 sin(θ) on the xy-plane. Solution: Note that the tests for symmetry with respect to the polar axis and the line θ = both fail (Verify this). Since replacing r with r results in the same equation, the graph is symmetric with respect to the pole. With symmetry with respect to the pole, we would ordinarily consider values of θ on [0, ]. However, we must be careful here since the equation includes r (instead of just r) which is never negative. Thus, we must only consider values of θ for which 4 sin(θ) 0. Since the period of sin(θ) is, sin(θ) < 0 when θ lies on (, ) (Quadrant II). Therefore, we ll consider values of θ that lie on [0, ] and then use the symmetry with respect to the origin to obtain the complete graph. θ r = 4 sin(θ) r 0 4(0) = 0 0 ( 3 ) 3.5 ± (1) = 4 ± 4 4( 3 3 ) 3.5 ± 1.9 4(0) = 0 0 This curve is called a lemniscate (from the Greek word ribbon ). It is also referred to as a figure eight. 11

12 Definition: Lemniscates are characterized by equations of the form r = a sin(θ) r = a cos(θ) where a 0 and have graphs that are propeller shaped. Example 7: Graph the equation r = e θ/15 on the xy-plane. Solution: The tests for symmetry discussed in this section all fail. Moreover, since the exponential function is never zero, there is no value of θ such that r = 0, which means that the graph neither touches nor crosses the pole. Observe that r increases exponentially as θ increases and r approaches 0 as θ approaches. The following figure illustrates the part of the graph on 4 θ 4. This curve is called a logarithmic spiral since its equation may be written as θ = 15 ln r and it spirals infinitely both toward the pole and away from it. 1

Find the rectangular coordinates for each of the following polar coordinates:

Find the rectangular coordinates for each of the following polar coordinates: WORKSHEET 13.1 1. Plot the following: 7 3 A. 6, B. 3, 6 4 5 8 D. 6, 3 C., 11 2 E. 5, F. 4, 6 3 Find the rectangular coordinates for each of the following polar coordinates: 5 2 2. 4, 3. 8, 6 3 Given the

More information

POLAR FORMS: [SST 6.3]

POLAR FORMS: [SST 6.3] POLAR FORMS: [SST 6.3] RECTANGULAR CARTESIAN COORDINATES: Form: x, y where x, y R Origin: x, y = 0, 0 Notice the origin has a unique rectangular coordinate Coordinate x, y is unique. POLAR COORDINATES:

More information

C10.4 Notes and Formulas. (a) (b) (c) Figure 2 (a) A graph is symmetric with respect to the line θ =

C10.4 Notes and Formulas. (a) (b) (c) Figure 2 (a) A graph is symmetric with respect to the line θ = C10.4 Notes and Formulas symmetry tests A polar equation describes a curve on the polar grid. The graph of a polar equation can be evaluated for three types of symmetry, as shown in Figure. Figure A graph

More information

Polar Coordinates: Graphs

Polar Coordinates: Graphs Polar Coordinates: Graphs By: OpenStaxCollege The planets move through space in elliptical, periodic orbits about the sun, as shown in [link]. They are in constant motion, so fixing an exact position of

More information

Pre-Calc Unit 15: Polar Assignment Sheet May 4 th to May 31 st, 2012

Pre-Calc Unit 15: Polar Assignment Sheet May 4 th to May 31 st, 2012 Pre-Calc Unit 15: Polar Assignment Sheet May 4 th to May 31 st, 2012 Date Objective/ Topic Assignment Did it Friday Polar Discover y Activity Day 1 pp. 2-3 May 4 th Monday Polar Discover y Activity Day

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

9.5 Parametric Equations

9.5 Parametric Equations Date: 9.5 Parametric Equations Syllabus Objective: 1.10 The student will solve problems using parametric equations. Parametric Curve: the set of all points xy,, where on an interval I (called the parameter

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

The choice of origin, axes, and length is completely arbitrary.

The choice of origin, axes, and length is completely arbitrary. Polar Coordinates There are many ways to mark points in the plane or in 3-dim space for purposes of navigation. In the familiar rectangular coordinate system, a point is chosen as the origin and a perpendicular

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

Math 1272 Solutions for Fall 2005 Final Exam

Math 1272 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Exam ) This fraction appears in Problem 5 of the undated-? exam; a solution can be found in that solution set. (E) ) This integral appears in Problem 6 of the Fall 4 exam;

More information

Polar Coordinates; Vectors

Polar Coordinates; Vectors Chapter 10 Polar Coordinates; Vectors 10.R Chapter Review 1. 3, 6 x = 3cos 6 = 3 3. 4, 3 x = 4cos 3 = y = 3sin 6 = 3 3 3, 3 y =4sin 3 = 3 (, 3) 3., 4 3 x = cos 4 3 =1 4. 1, 5 4 x = 1cos 5 4 = y = sin 4

More information

1. Which of the following defines a function f for which f ( x) = f( x) 2. ln(4 2 x) < 0 if and only if

1. Which of the following defines a function f for which f ( x) = f( x) 2. ln(4 2 x) < 0 if and only if . Which of the following defines a function f for which f ( ) = f( )? a. f ( ) = + 4 b. f ( ) = sin( ) f ( ) = cos( ) f ( ) = e f ( ) = log. ln(4 ) < 0 if and only if a. < b. < < < < > >. If f ( ) = (

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

HW - Chapter 10 - Parametric Equations and Polar Coordinates

HW - Chapter 10 - Parametric Equations and Polar Coordinates Berkeley City College Due: HW - Chapter 0 - Parametric Equations and Polar Coordinates Name Parametric equations and a parameter interval for the motion of a particle in the xy-plane are given. Identify

More information

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i}

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i} Chapter 8 Complex Numbers, Polar Equations, and Parametric Equations 6. { ± 6i} Section 8.1: Complex Numbers 1. true. true. true 4. true 5. false (Every real number is a complex number. 6. true 7. 4 is

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3.

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3. Complex Numbers Class Work Simplify using i. 1. 16 2. 36b 4 3. 8a 2 4. 32x 6 y 7 5. 16 25 6. 8 10 7. 3i 4i 5i 8. 2i 4i 6i 8i 9. i 9 10. i 22 11. i 75 Complex Numbers Homework Simplify using i. 12. 81 13.

More information

Parametric Curves You Should Know

Parametric Curves You Should Know Parametric Curves You Should Know Straight Lines Let a and c be constants which are not both zero. Then the parametric equations determining the straight line passing through (b d) with slope c/a (i.e.

More information

9.2 CALCULUS IN THE POLAR COORDINATE SYSTEM

9.2 CALCULUS IN THE POLAR COORDINATE SYSTEM 9.2 alculus In The Polar oordinate System ontemporary alculus 9.2 LULUS IN THE POLR OORINTE SYSTEM The previous section introduced the polar coordinate system and discussed how to plot points, how to create

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

This set of questions goes with the pages of applets and activities for Lab 09. Use the applets and activities there to answer the questions.

This set of questions goes with the pages of applets and activities for Lab 09. Use the applets and activities there to answer the questions. Page 1 of 5 Lab 09 Name: Start time: Number of questions: 11 This set of questions goes with the pages of applets and activities for Lab 09. Use the applets and activities there to answer the questions.

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

Math Test #3 Info and Review Exercises

Math Test #3 Info and Review Exercises Math 181 - Test #3 Info and Review Exercises Fall 2018, Prof. Beydler Test Info Date: Wednesday, November 28, 2018 Will cover sections 10.1-10.4, 11.1-11.7. You ll have the entire class to finish the test.

More information

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Section 10.1 Geometry of Parabola, Ellipse, Hyperbola a. Geometric Definition b. Parabola c. Ellipse d. Hyperbola e. Translations f.

More information

Unit 10 Parametric and Polar Equations - Classwork

Unit 10 Parametric and Polar Equations - Classwork Unit 10 Parametric and Polar Equations - Classwork Until now, we have been representing graphs by single equations involving variables x and y. We will now study problems with which 3 variables are used

More information

10.2 Polar Equations and Graphs

10.2 Polar Equations and Graphs SECTIN 0. Polar Equations and Grahs 77 Elaining Concets: Discussion and Writing 85. In converting from olar coordinates to rectangular coordinates, what formulas will ou use? 86. Elain how ou roceed to

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( ) Syllabus Objectives: 5.1 The student will explore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

8.1 Solutions to Exercises

8.1 Solutions to Exercises Last edited 9/6/17 8.1 Solutions to Exercises 1. Since the sum of all angles in a triangle is 180, 180 = 70 + 50 + α. Thus α = 60. 10 α B The easiest way to find A and B is to use Law of Sines. sin( )

More information

Lone Star College-CyFair Formula Sheet

Lone Star College-CyFair Formula Sheet Lone Star College-CyFair Formula Sheet The following formulas are critical for success in the indicated course. Student CANNOT bring these formulas on a formula sheet or card to tests and instructors MUST

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Go over the illustrated examples in each section.

Go over the illustrated examples in each section. Math 242 Fall 2009 Please before you start the practice problems, go over the illustrated examples in each section first. Cover up the solutions and try to work out the answers on your own. Practice Problems

More information

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x) Evaluate the function: c. (g o f )(x + 2) d. ( f ( f (x)) 1. f x = 4x! 2 a. f( 2) b. f(x 1) c. f (x + h) f (x) h 4. g x = 3x! + 1 Find g!! (x) 5. p x = 4x! + 2 Find p!! (x) 2. m x = 3x! + 2x 1 m(x + h)

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

Definition (Polar Coordinates) Figure: The polar coordinates (r, )ofapointp

Definition (Polar Coordinates) Figure: The polar coordinates (r, )ofapointp Polar Coordinates Acoordinatesystemusesapairofnumberstorepresentapointontheplane. We are familiar with the Cartesian or rectangular coordinate system, (x, y). It is not always the most convenient system

More information

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections Chapter 11 Parametric Equations, Polar Curves, and Conic Sections ü 11.1 Parametric Equations Students should read Sections 11.1-11. of Rogawski's Calculus [1] for a detailed discussion of the material

More information

Summer Assignment MAT 414: Calculus

Summer Assignment MAT 414: Calculus Summer Assignment MAT 414: Calculus Calculus - Math 414 Summer Assignment Due first day of school in September Name: 1. If f ( x) = x + 1, g( x) = 3x 5 and h( x) A. f ( a+ ) x+ 1, x 1 = then find: x+ 7,

More information

C. 3 D. 3. The 12th term in the Fibonacci characteristic sequence 2, 3, 5, 8, 13,... is A. 610 B. 377 C. 233 D. 144 E. 269

C. 3 D. 3. The 12th term in the Fibonacci characteristic sequence 2, 3, 5, 8, 13,... is A. 610 B. 377 C. 233 D. 144 E. 269 Dr Numsen High School Mathematics Practice Test Set F Test. ( ) ( ) = 0. The slope of the line x 8 y = is. The th term in the Fibonacci characteristic sequence,, 5, 8,,... is 60 69. At a computer equipment

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

AP Calculus AB Summer Packet 2018

AP Calculus AB Summer Packet 2018 AP Calculus AB Summer Packet 2018 Dear Calculus Student: To be successful in AP Calculus AB, you must be proficient at solving and simplifying each type of problem in this packet. This is a review of Algebra

More information

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true?

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true? BC Exam 1 - Part I 8 questions No Calculator Allowed - Solutions 6x 5 8x 3 1. Find lim x 0 9x 3 6x 5 A. 3 B. 8 9 C. 4 3 D. 8 3 E. nonexistent ( ) f ( 4) f x. Let f be a function such that lim x 4 x 4 I.

More information

Math 112, Precalculus Mathematics Sample for the Final Exam.

Math 112, Precalculus Mathematics Sample for the Final Exam. Math 11, Precalculus Mathematics Sample for the Final Exam. Solutions. There is no promise of infallibility. If you get a different solution, do not be discouraged, but do contact me. (1) If the graph

More information

Alpha Trigonometry Solutions MA National Convention. Answers:

Alpha Trigonometry Solutions MA National Convention. Answers: Answers: 1 A C C D 5 A 6 C 7 B 8 A 9 A 10 A 11 C 1 D 1 E 1 B 15 C 16 C 17 D 18 C 19 B 0 C 1 E A C C 5 E 6 B 7 E 8 D 9 D 0 B 1 Solutions: 1 A Need to check each answer to 1 k60 and 1 (60 ) = 06. C An even

More information

Calculus. Summer Assignment

Calculus. Summer Assignment Summer Review Packet for All Students Enrolling in Calculus #160 Next Year. Name: To earn credit, show all necessary work to support your answer in the space provided. Calculus Summer Assignment Name This

More information

Math 116 Second Midterm November 16, 2011

Math 116 Second Midterm November 16, 2011 Math 6 Second Midterm November 6, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 9 problems. Note that

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1.

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1. MATH 222 LEC SECOND MIDTERM EXAM THU NOV 8 PROBLEM ( 5 points ) Find the standard-form equation for the hyperbola which has its foci at F ± (±2, ) and whose asymptotes are y ± 3 x The calculations b a

More information

The Geometry of Some Families of Curves Described by Conchoids

The Geometry of Some Families of Curves Described by Conchoids The Geometry of Some Families of Curves Described by Conchoids A conchoid is a way of deriving a new curve based on a given curve, a fixed point, and a positive constant k. Curves generated in this way

More information

Lesson 28 Working with Special Triangles

Lesson 28 Working with Special Triangles Lesson 28 Working with Special Triangles Pre-Calculus 3/3/14 Pre-Calculus 1 Review Where We ve Been We have a new understanding of angles as we have now placed angles in a circle on a coordinate plane

More information

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator. University of Toronto Faculty of Applied Science and Engineering Solutions to Final Examination, June 216 Duration: 2 and 1/2 hrs First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT187H1F - Calculus

More information

School of Distance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B Sc Mathematics. (2011 Admission Onwards) IV Semester.

School of Distance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B Sc Mathematics. (2011 Admission Onwards) IV Semester. School of Dtance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc Mathematics 0 Admsion Onwards IV Semester Core Course CALCULUS AND ANALYTIC GEOMETRY QUESTION BANK The natural logarithm

More information

AP CALCULUS. DUE THE FIRST DAY OF SCHOOL! This work will count as part of your first quarter grade.

AP CALCULUS. DUE THE FIRST DAY OF SCHOOL! This work will count as part of your first quarter grade. Celina High School Math Department Summer Review Packet AP CALCULUS DUE THE FIRST DAY OF SCHOOL! This work will count as part of your first quarter grade. The problems in this packet are designed to help

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1 MA112 Section 750001: Prepared by Dr.Archara Pacheenburawana 1 Exercise Exercise 1.1 1 8 Find the vertex, focus, and directrix of the parabola and sketch its graph. 1. x = 2y 2 2. 4y +x 2 = 0 3. 4x 2 =

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

The Laplacian in Polar Coordinates

The Laplacian in Polar Coordinates The Laplacian in Polar Coordinates R. C. Trinity University Partial Differential Equations March 17, 15 To solve boundary value problems on circular regions, it is convenient to switch from rectangular

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as, where a and b may be constants or functions of. To find the derivative of when

More information

Radian measure and trigonometric functions on the reals

Radian measure and trigonometric functions on the reals Trigonometry Radian measure and trigonometric functions on the reals The units for measuring angles tend to change depending on the context - in a geometry course, you re more likely to be measuring your

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

ALGEBRA 2 X. Final Exam. Review Packet

ALGEBRA 2 X. Final Exam. Review Packet ALGEBRA X Final Exam Review Packet Multiple Choice Match: 1) x + y = r a) equation of a line ) x = 5y 4y+ b) equation of a hyperbola ) 4) x y + = 1 64 9 c) equation of a parabola x y = 1 4 49 d) equation

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9 Chapter Review. Lines Eample. Find the equation of the line that goes through the point ( 2, 9) and has slope 4/5. Using the point-slope form of the equation we have the answer immediately: y = 4 5 ( (

More information

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS ACS MATHEMATICS GRADE 0 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS DO AS MANY OF THESE AS POSSIBLE BEFORE THE START OF YOUR FIRST YEAR IB HIGHER LEVEL MATH CLASS NEXT SEPTEMBER Write as a single

More information

REVIEW Polar Coordinates and Equations

REVIEW Polar Coordinates and Equations REVIEW 9.1-9.4 Pola Coodinates and Equations You ae familia with plotting with a ectangula coodinate system. We ae going to look at a new coodinate system called the pola coodinate system. The cente of

More information

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001 Math D Calculus Exam Practice Problems Fall This is not a comprehensive set of problems, but I ve added some more problems since Monday in class.. Find the derivatives of the following functions a) y =

More information

Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green

Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green Name: 1. Calculators are allowed. 2. You must show work for full and partial credit unless otherwise noted. In particular, you must evaluate

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 116 Practice for Exam Generated October 1, 015 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 7 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

2 Recollection of elementary functions. II

2 Recollection of elementary functions. II Recollection of elementary functions. II Last updated: October 5, 08. In this section we continue recollection of elementary functions. In particular, we consider exponential, trigonometric and hyperbolic

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Summer Packet Greetings Future AP Calculus Scholar,

Summer Packet Greetings Future AP Calculus Scholar, Summer Packet 2017 Greetings Future AP Calculus Scholar, I am excited about the work that we will do together during the 2016-17 school year. I do not yet know what your math capability is, but I can assure

More information

MATH 1301, Solutions to practice problems

MATH 1301, Solutions to practice problems MATH 1301, Solutions to practice problems 1. (a) (C) and (D); x = 7. In 3 years, Ann is x + 3 years old and years ago, when was x years old. We get the equation x + 3 = (x ) which is (D); (C) is obtained

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

Math 107 Fall 2007 Course Update and Cumulative Homework List

Math 107 Fall 2007 Course Update and Cumulative Homework List Math 107 Fall 2007 Course Update and Cumulative Homework List Date: 8/27 Sections: 5.4 Log: Review of course policies. The mean value theorem for definite integrals. The fundamental theorem of calculus,

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

PreCalculus First Semester Exam Review

PreCalculus First Semester Exam Review PreCalculus First Semester Eam Review Name You may turn in this eam review for % bonus on your eam if all work is shown (correctly) and answers are correct. Please show work NEATLY and bo in or circle

More information

a factors The exponential 0 is a special case. If b is any nonzero real number, then

a factors The exponential 0 is a special case. If b is any nonzero real number, then 0.1 Exponents The expression x a is an exponential expression with base x and exponent a. If the exponent a is a positive integer, then the expression is simply notation that counts how many times the

More information

MATH 152, Fall 2017 COMMON EXAM II - VERSION A

MATH 152, Fall 2017 COMMON EXAM II - VERSION A MATH 15, Fall 17 COMMON EXAM II - VERSION A LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited.. TURN OFF cell phones

More information

AP CALCULUS BC ~ (Σer) ( Force Distance) and ( L1,L2,...) of Topical Understandings ~

AP CALCULUS BC ~ (Σer) ( Force Distance) and ( L1,L2,...) of Topical Understandings ~ Name: Previous Math Teacher: AP CALCULUS BC ~ (Σer) ( Force Distance) and ( L1,L,...) of Topical Understandings ~ As instructors of AP Calculus, we have extremely high expectations of students taking our

More information

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS The two methods we will use to solve systems are substitution and elimination. Substitution was covered in the last lesson and elimination is covered in this lesson. Method of Elimination: 1. multiply

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information