New approach for the computation of Flow velocity in partially filled pipes Arranged In parallel

Size: px
Start display at page:

Download "New approach for the computation of Flow velocity in partially filled pipes Arranged In parallel"

Transcription

1 New approach for the computation of Flow velocity in partially filled pipes Arranged In parallel Lotfi ZEGHADNIA, 1, Lakhdar DJEMILI 2, Rezgui Nouredin 1 1 Departement of Civil Engineering, Faculty of Sciences&Technology, University of Mohamed Cherif Messaadia, Souk Ahras, Algeria. Zeghadnia_lotfi@yahoo.fr Tel: Departement of Hydraulics, Faculty of Engineering Science, University of Badji- Mokhtar Annaba, Algeria. l_djemili@hotmail.com 1 Departement of Civil Engineering, Faculty of Sciences&Technology, University of Mohamed Cherif Messaadia, Souk Ahras, Algeria. rezguinordine@yahoo.fr ABSTRACT In this paper, a new approach is presented for the computation of the flow velocity in pipes arranged in parallel based on analytic development. This parameter is needed to trail error procedures to be solved, and have big important in flow measurement and design of drainage network, where the flow is mostly flowing in free surface flow. A new method is elaborated to eliminate the need for trial methods, where the computation of the flow velocity become easy, simple and direct with zero deviation compared to Manning equation and others approaches such as Saatçi(1990) and Akgiray (2005) which have been considered as the best approaches but after investigation these approaches are lack accuracy and do cover the entire range of : Key words: Flow velocity, free surface flow, uniform and steady flow, Circular pipe, Manning equation. Introduction Flow velocity calculation is an important task for hydraulic engineers in the design of conveyance open channels for irrigation, drainage, and sewage network. Sewer and drainage are frequently flowing in free surface flow, in order to avoid the decrease of the flow crosssectional area and thereby the decrease of the flow efficiency. Manning model is already considerate as the best to describe the free surface flow. A number of authors are discussed the model such as (chow 1959),(Henderson 1966),(Metcalf & Eddy, 1981),(Carlier, 1985),,(Hager,2010) and other. Circular shape is the prefer form for sewer system design. Subwatersheds can be arranged in series form or in parallel; similarly the pipes of the sewer and drainage system can be arranged in series or in parallel form. Using Manning equation the computation of the flow velocity and water surface angle is direct and need to trial method

2 and heavy computation. Based on Manning model, a number of researches are trying to propose explicit solution for the free surface flow computation, among the interesting approaches: (Saâtçi, 1990), (Giroud and al, 2000), (Akgray 2004 and 2005) which have trying to eliminate the need to the trial methods, Where the water surface angle range is between 0 and In this study and based on Manning model we will propose a new approach, much simple and more accuracy than the other methods for the computation of the flow velocity partially filled pipes arranged in parallel form, for all the range of surface water angle :, where the maximum deviation is zero. Theory Manning equation: For a long time Manning equation (Manning, 1891), is already considered as the best formula to compute free surface flow due to its simplicity. The Manning equation can be used for uniform flow in pipe. Graphs (camp, 1946), (Swarna, V. and Modak, P., 1990) and tables are established to facilitate the application of Manning equation for the estimation of the flow characteristics (Terence J, 1991). Manning equation can be written as follow: (1) (2) Q: Flow rate in m3/s, : Hydraulic radius, n: Pipe roughness coefficient (Manning n), A: cross sectional flow area, S: slope of pipe bottom, dimensionless, V: flow velocity m/s, To use the Manning model some hypothesis must be assumed: Flow must be steady and uniform, where the slope, cross-sectional flow area, velocity are related to time, and constant in the length of pipe being analysed (Carlier, 1985). The two equations (1) and (2), can be rewritten as function of the water surface angle of the pipe as shown in figure 01 as follow: Figure 01: Water surface angle

3 ( ) [ ( ) ] (3) ( ) [ ( ) ] (4) ( ( )) (05) P (06) ( ( ) ) (07) D : pipe diameter, P : wetted perimeter, : Water surface angle. According to the equations mentioned above, the computation of the flow velocity is direct, which need iterative methods. A number of authors have trying to propose approximate approaches to eliminate the need of trial procedures, where the interesting approaches are Saatçi (Saatçi, 1990), Giroud (Giroud and al, 2000) and Akgiray (Akgiray, 2005). Saatçi approach is based on two steps; first we estimate the water surface angle using the following formula: (08) Secondly, using equation (4), the flow velocity can be calculated. Saatçi equations able to be used for all range of, Where it can only used for range: (Saatçi, 1990). Giroud(Giroud and al, 2000) and Akgiray (Akgiray, 2005) have also propose approaches in order to improve Saatçi equation, where Giroud model is consist to propose direct relationship between average flow velocity and flow rate for between 0 and , where they have estimated the maximum deviation less than 3%. As well, Akgiray have trying to improve more the approaches proposed before, where he have proposed an explicit approximate solutions from Manning equation for four types of problems: 1. Given Q, D, and S, find h/d and (or) V, 2. Given Q, D and V, find h/d and (or) S,

4 3. Given V, D and S, find h/d and (or) Q, 4. Given Q, V and S, find h/d and (or) D. The four problems mentioned above are studied for two cases, when Manning coefficient n is constant, and for n varies with the depth flow as documented by Camp (Camp, 1946), but both are considered as known parameters. In this research, we interest for the first problem, where author (Akgiray, 2005) have propose the following equations to evaluate water surface angle: ( ( ( )) ) (09) (10) The equation (09) is proposed for between 0 and with maximum error equal to 0.72%. The flow velocity can be estimated according to the equations (09) and (04) where the maximum deviation is 0.29%. New approach Flow velocity 1.1.Subwatershed arranged in parallel Subwatersheds may be arranged whether in series form or in parallel, in this study we will focused on the second case, where the pipes are arranged in parallel as shown in figure 02: CC3 CC1 CC2 M 1 M 2 N1 03 N2 Figure 02: Subwatershed and pipes arranged in parallel.

5 The pipe M1-N1 collects water from subwatershed CC1 (which take number 1); The pipe M2-N1 collect water from the equivalent watershed CC2 (which take number 2); The pipe N1-N2 collects water from the equivalent watershed CC3(which take number 3). The flow Q can be evaluating with agree methods, like rational method or SCS method (Viessman and Lewis 2003). Four types of problems are possible to compute the flow velocity and water surface angle according to the reference pipe: 1. The Computation of as function of the pipe 01 characteristics (pipe 01 is the reference pipe). 2. The Computation of as function of the pipe 02 characteristics (pipe 02 is the reference pipe). 3. The Computation of as function of the pipe 01 characteristics (pipe 1 is the reference pipe). 4. The Computation of as function of the pipe 02 characteristics (pipe 2 is the reference pipe). Cases one and two Flow in pipes is steady and uniform, which means the flow characteristics are constant during flow time and in space (for length of pipe being analysed). Let us to consider that pipe M2-N1(or pipe02) is the reference pipe, with known parameters, where the diameter D2, hydraulic radius Rh2, surface water angle, water cross section A2, slope S2, are known data. The slop S3 and roughness n3 are considerate as known parameters for pipes N1-N2 (or pie03). Many Authors considered that Manning equation (Manning 1889) is the best model to describe the free surface flow (Chow 1959), (Saatçi 1990), (Carlier 1985), (Akgray 2004 and 2005), (prabhata and Swamee 1994 and 2004). Equation (04) can be also written as the following forms (zeghadnia and al, 2009): (11) (( ) ( ) ) (12) : Water surface angle in radians as shown in figure 02. is transported in pipe M1-N1 and produced in subwatershed CC1, transported in pipe M2-N1 and produced in subwatershed CC2, is transported in pipe N1-N2 and produced in subwatershed CC3

6 And the ratio Rq 32 between Q 3 and Q 2 and Rq 31 between Q 3 and Q 1, are given by the following equations: (13) (14) (15) (16) (17) (18) From inequations (13) and (14) for just full pipe (under atmospheric pressure) we obtain the following: (19) This is give: (20) Similarly: (21) (22) Based on the equations (15), (17) and (21) the ratio Rq 32 become as: (23) This yield: (24) Using the equation (22), the equation (2) become as follow: ( ) (25) ( ) ( ) (26)

7 From the combination between the equations (24) and (26) give the following: ( ) ( ) ( ) (27) The equation (27) allows the computation of the flow velocity in just full pipe (pipe N1-N2) as function of the reference pipe. In case of partially filled pipe the precedent formula and according to the equation (12) is rewrite as follow: ( ) ( ) ( ) ( ) (28) Similarly, in the case when pipe M1-N1 is the reference pipe, the flow velocity can be calculate as follow: ( ) ( ) ( ) ( ) (29) The equations (28) and (29) give the exact value of flow velocity in pipe N1-N2 as function of the parameters of the reference pipe. Both in the first or in the second case the maximum deviation is zero compared to equation (4). Case three and four In this case, the reference pipe characteristics are known. Here, we will write the characteristics of the first pipe using the second pipe characteristics (reference pipe) as will be shown in the following sections. Using equations (20) and (22), we obtain the following: (30) ( ) (31) Using equation (31) the velocity equation can be written as follow: ( ) ( ) (32) Based on the equations (16), (17) and (19) the ratio Rq 31 become as: This yield: (33) (34) Also, using equations (24) and (34) we get the following equation:

8 (35) Using the equations (32), (35) and (36) we can estimate the velocity using the characteristics of second pipe for just full as follow: (36) ( ) ( ) ( ) (37) For case of partially full pipe, and according to the equation (12), the equation (37) become as: ( ) ( ) ( ) ( ) (38) The equation (38) is the best formula compared to the equation (04) and the recent approaches, where the maximum error is zero as shown in table 01. For case when pipe 01 is the reference pipe, the same result can be obtain as follow: ( ) ( ) ( ) ( ) (39) 1.2.Accuracy Test From The table 01, the equation (38) is an excellent formula, where the maximum deviation is, Compared to Manning equation (04) and approaches of Saatçi (Saatçi, 1990), Giroud (Giroud and al, 2000) and Akgiray (Akgiray, 2005) where the maximum deviation for Saatçi equation is very lack accuracy and for the entire range of. As well the approach of Giroud for between 0 and 360 the maximum error occurs is 12.76%. For Akgiray formula, which is the most recent proposal approach, it is less accuracy too, where for the entire range of the maximum deviation occur is 23.80%. In other hand, the proposal approach in this study using the equation (38) for the first case or the equation (39) for the second case, is very accuracy, where the maximum error occurs is zero, this result is the best until now, where no authors before have claims that a formula can produced the same deviation compared to the equation (4).

9 Table 01: Accuracy test of the equation (38) compared to the recent approaches and equation (4) Manning Equation (04) Proposed Equation (38) Error % Saatçi equation Error % Giroud equation Error % Akgiray equation Error % , E , , E E-06 83, , E , , E , , E , , E E-06 76, , E , , E , , E E-06 65, , E , , E , , E-06 60, , , , , , , , , , ,7916 0, , , , , E-06 44, , , , , , , , , , , , , , E-06 39, , , , , , ,4059 1, , , , , E-06 31, , , , , , E-06 30, , , , , , , , , , , , , , , , ,5811 1,

10 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,416 0, , , , , , , , , , E-06 5, , , , , , ,

11 E E , , , , , , , , , , , Conclusions This paper presents explicit equations for computation of flow velocity in circular sections partially filled based on the reference pipe, where the deviation between these equations and manning equation is zero. It is hoped that the explicit equations will be useful for designers or engineers to appropriately design open channels. References [1] Chow V-T (1959) Open channel hydraulics. Mc Graw-Hill, New York. [2] Henderson,F.M.(1966) OpenChannelFlow,Macmillan,NewYork. [3] Metcalf & Eddy Inc.(1981) wastewater engineering: collection and pumping of wastewater. McGraw-Hill, New York. [4] Carlier, M., (1980) Hydraulique Générale, Eyrolles. [5] Willi H. Hager.(2010). Wastewater hydraulics theory and practice. Second edition, Springer. [6] Saatçi, A.,(1990)Velocity and depth of flow calculations in partially pipes, J. environment Engineering, ASCE., 116(6), pp

12 [7] Giroud, J.P., palmer, B., and Dove, J.E.,(2000) Calculation of flow Velocity in pipes as function of flow rate, J. Geosynthétics International., 7(4-6), pp [8] Akgiray. Ӧ. (2004). Simple formula for velocity, depth of flow and slope calculations in partially filled circular pipes. Environmental engineering science, 21(3), [9] Akgiray. Ӧ. (2005). Explicit solutions of the Manning equation in partially filled circular pipes. Environmental engineering science, 32, [10] Prabhata K.Swamee.(1994). Normal depth equations for irrigation canals. ASCE Journal of hydraulic division,102(5), [11] Prabhata K.Swamee. Pushpa N. Rathie.(2004).Exact solution for normal depth problem. IAHR Journal of hydraulic research,42(5), [12] Achour b., Bedjaoui a. (2006). Discussion of :Explicit Solutions for Normal Depth problem» by Prabhata K. Swamee, Pushpa N. Rathie, IAHR Journal of hydraulic research, 44(5), [13] Manning, R. (1891). On the flow of water in open channels and pipes, Transactions, Institution of Civil Engineers of Ireland, Vol. 20, pp , Dublin. [14] Camp, T.R. (1946). Design of sewers to facilitate flow, J. Sewage Works.,Vol.18., N 01, pp [15] Swarna, V., Modak, P. (1990). Graphs for Hydraulic Design of Sanitary Sewers. J. Environ. Eng.,ASCE., Vol. 116, No. 3, pp [16] Terence.J.Mc (1991). Water Supply and Sewerage, 6 th edition, McGraw Hill, New York. [17] Viessman, W. and G. L. Lewis (2003). Introduction to hydrology (Fifth ed.). Prentice- Hall. [18] ] Zeghadnia, L., Djemili, L., Houichi, L., Rezgui, N., (2009) Détermination de la vitesse et la hauteur normale dans une conduite Partiellement remplie, J. EJSR., 37(4), pp

Open Channel Flow I - The Manning Equation and Uniform Flow COURSE CONTENT

Open Channel Flow I - The Manning Equation and Uniform Flow COURSE CONTENT Open Channel Flow I - The Manning Equation and Uniform Flow Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Flow of a liquid may take place either as open channel flow or pressure flow. Pressure

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Manning Equation - Open Channel Flow using Excel. Harlan H. Bengtson, PhD, P.E. COURSE CONTENT

Manning Equation - Open Channel Flow using Excel. Harlan H. Bengtson, PhD, P.E. COURSE CONTENT Manning Equation - Open Channel Flow using Excel Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction The Manning equation is a widely used empirical equation for uniform open channel flow of water.

More information

Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April.

Guo, James C.Y. (1999). Critical Flow Section in a Collector Channel, ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April. Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 15, No. 4, April. CRITICAL FLOW SECTION IN A COLLECTOR CHANNEL By James C.Y. Guo, PhD, P.E.

More information

Effect of Roughness on Discharge

Effect of Roughness on Discharge Effect of Roughness on Discharge T.W. Lau, and N.R. Afshar Abstract These Water resource projects and hydraulic engineering works have been developing rapidly throughout the world, thus prediction of water

More information

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION July. 2. Vol. 7. No. 2 MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION 1 J. JOMBA, 2 D.M.THEURI, 2 E. MWENDA, 2 C. CHOMBA ABSTRACT Flow in a closed conduit is regarded as open channel

More information

Lecture Note for Open Channel Hydraulics

Lecture Note for Open Channel Hydraulics Chapter -one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand

More information

Open Channel Hydraulics I - Uniform Flow

Open Channel Hydraulics I - Uniform Flow PDHonline Course H138 (2 PDH) Open Channel Hydraulics I - Uniform Flow Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels DEPRTMENT OF CIVIL ND ENVIRONMENTL ENGINEERING Urban Drainage: Hydraulics Solutions to problem sheet 2: Flows in open channels 1. rectangular channel of 1 m width carries water at a rate 0.1 m 3 /s. Plot

More information

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Archives of Hydro-Engineering and Environmental Mechanics Vol. 56 (29), No. 3 4, pp. 121 137 IBW PAN, ISSN 1231 3726 Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Dariusz

More information

Minimum Cost Design of Lined Canal Sections

Minimum Cost Design of Lined Canal Sections Water Resources Management 14: 1 12, 2000. 2000 Kluwer Academic Publishers. Printed in the Netherlands. 1 Minimum Cost Design of Lined Canal Sections PRABHATA K. SWAMEE 1, GOVINDA C. MISHRA 2 and BHAGU

More information

Design Data 17. Partial Flow Conditions of Box Culverts

Design Data 17. Partial Flow Conditions of Box Culverts Design Data 17 Partial Flow Conditions of Box Culverts Sewers, both sanitary and storm, are designed to carry a peak flow based on anticipated land development. The hydraulic capacity of sewers or culverts

More information

Root-finding and optimisation

Root-finding and optimisation Root-finding and optimisation Reference tets: Chapra, S., R. Canale. Numerical Methods for Engineers, 3rd ed., McGraw-Hill, New York, 1998. Parts 2 and 4. Root-finding Simple mathematical equations have

More information

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water. Design Manual Chapter - Stormwater D - Storm Sewer Design D- Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm

More information

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Engineering Hydrology (ECIV 4323) CHAPTER FOUR Stream flow measurement Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib -١ 4.1 Introduction - Surface water hydrology deals with the movement of water

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Open-Channel Flow Uniform Flow (See CERM Ch. 19) Characterized by constant depth volume, and cross section. It can be steady or unsteady Non-uniform Flow *Not on

More information

A note on critical flow section in collector channels

A note on critical flow section in collector channels Sādhan ā, Vol. 26, Part 5, October 2001, pp. 439 445. Printed in India A note on critical flow section in collector channels 1. Introduction SUBHASISH DEY Department of Civil Engineering, Indian Institute

More information

Basic Hydraulics June 2007

Basic Hydraulics  June 2007 Basic Hydraulics www.concrete-pipe.org June 2007 2007 Overview Open Channel Flow Manning Equation Basic Culvert Design Sanitary Sewer Design Flow, Velocity Stormwater Sewer Design Flow, Velocity 2 Open

More information

STEADY UNIFORM FLOW IN OPEN CHANNEL

STEADY UNIFORM FLOW IN OPEN CHANNEL 11/4/018 School of Environmental Engineering STEY UNIFORM FLOW IN OEN CHNNEL ZULKRNIN BIN HSSN COURSE OUTCOMES CO1: ble to analyze and design the steady flow in pipeline (O1) CO: ble to analyze and design

More information

Optimizing a Trapezoidal Open-channel for Least Velocity Fluctuation during Overflow Using Mathematical Efficiency Criterion

Optimizing a Trapezoidal Open-channel for Least Velocity Fluctuation during Overflow Using Mathematical Efficiency Criterion Applied Mathematical Sciences, Vol. 8, 2014, no. 140, 6979-6987 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4864 Optimizing a Trapezoidal Open-channel for Least Velocity Fluctuation

More information

presented by Umut Türker Open Channel Flow

presented by Umut Türker Open Channel Flow presented by Umut Türker Open Channel Flow What is open channel flow? Open channel flow is a flow which has a free surface and flows due to the gravitational effect What is open channel flow? Open channel

More information

EQUATIONS FOR DISCHARGE CALCULATION IN COMPOUND CHANNELS HAVING HOMOGENEOUS ROUGHNESS * S. M. HOSSEINI **

EQUATIONS FOR DISCHARGE CALCULATION IN COMPOUND CHANNELS HAVING HOMOGENEOUS ROUGHNESS * S. M. HOSSEINI ** Iranian Journal of Science & Technology, Transaction B, Vol. 28, No. B5 Printed in The Islamic Republic of Iran, 2004 Shiraz University EQUATIONS FOR DISCHARGE CALCULATION IN COMPOUND CHANNELS HAVING HOMOGENEOUS

More information

Lecture 10: River Channels

Lecture 10: River Channels GEOG415 Lecture 10: River Channels 10-1 Importance of channel characteristics Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology. - Water balance gives

More information

CHAPTER 07 CANAL DESIGN

CHAPTER 07 CANAL DESIGN CHAPTER 07 CANAL DESIGN Dr. M. R. Kabir Professor and Head, Department of Civil Engineering University of Asia Pacific (UAP), Dhaka LECTURE 17 Canal Design Types Canal Design Drainage Channel Design Irrigation

More information

Modelling fluid flow JAGST Vol. 13(2) 2011 MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS-SECTION

Modelling fluid flow JAGST Vol. 13(2) 2011 MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS-SECTION Modelling fluid flow JAGST Vol. 13(2) 2011 MODELNG FLUD FLOW N OPEN CHANNEL WTH CRCULAR CROSS-SECTON M. N. Kinyanjui, D. P. Tsombe, J. K. Kwanza and K. Gaterere Department of Pure and Applied Mathematics,

More information

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Open channel

More information

Review of pipe flow: Friction & Minor Losses

Review of pipe flow: Friction & Minor Losses ENVE 204 Lecture -1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers

More information

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

More information

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10 Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

Determining Coefficient of Discharge to Compare Coefficients of Resistance for Different Coarse Aggregate Beds

Determining Coefficient of Discharge to Compare Coefficients of Resistance for Different Coarse Aggregate Beds 2015 IJSRSET Volume 1 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Determining Coefficient of Discharge to Compare Coefficients of Resistance for Different

More information

GIS Enabled Automated Culvert Design

GIS Enabled Automated Culvert Design GIS Enabled Automated Culvert Design ASHTON GREER PH.D. STUDENT, THE UNIVERSITY OF ALABAMA DR. ANDREW GRAETTINGER, LEAH CLIFTON, ZACHARY WILBANKS, BRADFORD WILSON Outline Culvert Background Project Objectives

More information

Scattergraph Principles and Practice Evaluating Self-Cleansing in Existing Sewers Using the Tractive Force Method

Scattergraph Principles and Practice Evaluating Self-Cleansing in Existing Sewers Using the Tractive Force Method Scattergraph Principles and Practice Evaluating Self-Cleansing in Existing Sewers Using the Tractive Force Method Kevin L. Enfinger, P.E. and Paul S. Mitchell, P.E. ADS Environmental Services 4940 Research

More information

PREDICTION OF THE CHARACTERISTCS OF FREE RADIAL HYDRAULIC B-JUMPS FORMED AT SUDDEN DROP USING ANNS

PREDICTION OF THE CHARACTERISTCS OF FREE RADIAL HYDRAULIC B-JUMPS FORMED AT SUDDEN DROP USING ANNS Seventh International Water Technology Conference Egypt 1-3 April 003 PREDICTION OF THE CHARACTERISTCS OF FREE RADIAL HYDRAULIC B-JUMPS FORMED AT SUDDEN DROP USING ANNS T.M. Owais 1, A.M. Negm, G.M. Abdel-Aal,

More information

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h.

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h. Uniform Flow in a Partly Full, Circular Pipe Fig. 10.6 shows a partly full, circular pipe with uniform flow. Since frictional resistance increases with wetted perimeter, but volume flow rate increases

More information

Flow in Open Channel Flow Conditions

Flow in Open Channel Flow Conditions Civil Engineering Hydraulics Flow The graduate with a Science degree asks, "Why does it work?" The graduate with an Engineering degree asks, "How does it work?" The graduate with an Accounting degree asks,

More information

EFFECT OF VERTICAL CURVATURE OF FLOW AT WEIR CREST ON DISCHARGE COEFFICIENT

EFFECT OF VERTICAL CURVATURE OF FLOW AT WEIR CREST ON DISCHARGE COEFFICIENT Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt 249 EFFECT OF VERTICAL CURVATURE OF FLOW AT WEIR CREST ON DISCHARGE COEFFICIENT Kassem Salah El-Alfy Associate Prof.,

More information

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience

More information

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 42 Flows with a Free Surface Part II Good morning. I welcome you to this session

More information

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED 1.0 Introduction The Sg. Lui watershed is the upper part of Langat River Basin, in the state of Selangor which located approximately 20

More information

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 1 Associated Professor, Irrigation and Hydraulic Department, College of Technical Engineering,

More information

Uniform Flow in Open Channels

Uniform Flow in Open Channels 1 UNIT 2 Uniform Flow in Open Channels Lecture-01 Introduction & Definition Open-channel flow, a branch of hydraulics, is a type of liquid flow within a conduit with a free surface, known as a channel.

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 1026 CONTINUITY ANALYSIS IN HYDRAULIC GEOMETRY RELATIONSHIPS FOR AL ABBASIA REACH IN EUPHRATES RIVER Asst. Prof.

More information

HEAD LOSSES IN SEWER JUNCTION

HEAD LOSSES IN SEWER JUNCTION E-proceedings of the 6 th IAHR World Congress 8 June July, 0, The Hague, the Netherlands HEAD LOSSES IN SEWER JUNCTION CORRADO GISONNI () & MICHAEL PFISTER () () Dept. of Civil Engineering, Design, Construction

More information

Sewer Area Study. TR No (FOR OUTLET POINTS 1 & 2) January 5, 2016 JN PC11775AS SEWER AREA STUDY APPROVED /08/2016

Sewer Area Study. TR No (FOR OUTLET POINTS 1 & 2) January 5, 2016 JN PC11775AS SEWER AREA STUDY APPROVED /08/2016 Sewer Area Study TR No 53138 (FOR OUTLET POINTS 1 & 2) January 5, 2016 JN 99610-01 PC11775AS SEWER AREA STUDY APPROVED APPROVED BY: RCE NO. DATE 70745 03/08/2016 CHECKED BY: DATE Imelda Ng 03/08/2016 COUNTY

More information

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS 1106 September 11~16, 2005, Seoul, Korea IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS ARTURO S. LEON 1, MOHAMED S. GHIDAOUI 2, ARTHUR R. SCHMIDT 3 and MARCELO

More information

Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow

Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow Archives of Hydro-Engineering and Environmental Mechanics Vol. 61 (2014), No. 3 4, pp. 89 109 DOI: 10.1515/heem-2015-0006 IBW PAN, ISSN 1231 3726 Comparison of Average Energy Slope Estimation Formulas

More information

EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP

EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt 255 EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP O. S. Rageh Irrigation & Hydraulics Dept., Faculty of

More information

IGHEM 2008 MILANO 3 rd -6 th September International Group for Hydraulic Efficiency Measurements

IGHEM 2008 MILANO 3 rd -6 th September International Group for Hydraulic Efficiency Measurements ENERGY LOSS EFFICIENCY MEASURED IN HYDRAULIC JUMPS WITHIN SLOPED CHANNELS J Demetriou* and D Dimitriou** *National Technical University of Athens, Greece School of Civil Engineering Hydraulics Laboratory

More information

Comparative Analysis of the Positive and Negative Steps in a Forced Hydraulic Jump

Comparative Analysis of the Positive and Negative Steps in a Forced Hydraulic Jump Jordan Journal of Civil Engineering, Volume 4, No. 3, 00 Comparative Analysis of the Positive and Negative Steps in a Forced Hydraulic Jump S. Bakhti ) and A. Hazzab ) ) M.A., Laboratoire de Modélisation

More information

Open Channel Flow Part 2. Ch 10 Young, notes, handouts

Open Channel Flow Part 2. Ch 10 Young, notes, handouts Open Channel Flow Part 2 Ch 10 Young, notes, handouts Uniform Channel Flow Many situations have a good approximation d(v,y,q)/dx=0 Uniform flow Look at extended Bernoulli equation Friction slope exactly

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Water Flow in Open Channels

Water Flow in Open Channels The Islamic Universit of Gaza Facult of Engineering Civil Engineering Department Hdraulics - ECIV 33 Chapter 6 Water Flow in Open Channels Introduction An open channel is a duct in which the liquid flows

More information

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water Department of Hydro Sciences, Institute for Urban Water Management Urban Water 1 Global water aspects Introduction to urban water management 3 Basics for systems description 4 Water transport 5 Matter

More information

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-6 (390), 2006 The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model Marcin SKOTNICKI and Marek SOWIŃSKI

More information

VARIATION OF MANNING S ROUGHNESS COEFFICIENT WITH SEEPAGE IN SAND-BED CHANNEL *Satish Patel 1 and Bimlesh Kumar 2

VARIATION OF MANNING S ROUGHNESS COEFFICIENT WITH SEEPAGE IN SAND-BED CHANNEL *Satish Patel 1 and Bimlesh Kumar 2 International Journal of Science, Environment and Technology, Vol. 5, No 6, 2016, 3678 3685 ISSN 2278-3687 (O) 2277-663X (P) VARIATION OF MANNING S ROUGHNESS COEFFICIENT WITH SEEPAGE IN SAND-BED CHANNEL

More information

Investigation of Flow Profile in Open Channels using CFD

Investigation of Flow Profile in Open Channels using CFD Investigation of Flow Profile in Open Channels using CFD B. K. Gandhi 1, H.K. Verma 2 and Boby Abraham 3 Abstract Accuracy of the efficiency measurement of a hydro-electric generating unit depends on the

More information

EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS

EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS Tenth International Water Technology Conference, IWTC1 6, Alexandria, Egypt 19 EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS Kassem Salah El-Alfy Associate Prof., Irrigation

More information

Stormwater Capacity Analysis for Westover Branch Watershed

Stormwater Capacity Analysis for Westover Branch Watershed Stormwater Capacity Analysis for Westover Branch Watershed Pimmit Run Little Pimmit Run, Mainstem Stohman's Run Gulf Branch Pimmit Run Tributary Little Pimmit Run, W. Branch Little Pimmit Run, E. Branch

More information

UNDERSTANDING RE-SUSPENSION RATES

UNDERSTANDING RE-SUSPENSION RATES TECHNICAL PAPER CST-07-002 This paper is one of a series of technical papers that explain the principles involved in the physics and chemistry of water quality design. This is public domain information.

More information

Computation of gradually varied flow in compound open channel networks

Computation of gradually varied flow in compound open channel networks Sādhanā Vol. 39, Part 6, December 014, pp. 153 1545. c Indian Academy of Sciences Computation of gradually varied flow in compound open channel networks 1. Introduction H PRASHANTH REDDY 1,, M HANIF CHAUDHRY

More information

53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPEN-CHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM

53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPEN-CHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM 53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPEN-CHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM Principle Adaptation of the Bernoulli equation to open-channel flows

More information

CEE 3310 Open Channel Flow,, Nov. 18,

CEE 3310 Open Channel Flow,, Nov. 18, CEE 3310 Open Channel Flow,, Nov. 18, 2016 165 8.1 Review Drag & Lit Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! C D

More information

Interphase Transport in Isothermal Systems

Interphase Transport in Isothermal Systems Transport Phenomena Interphase Transport in Isothermal Systems 1 Interphase Transport in Isothermal Systems 1. Definition of friction factors 2. Friction factors for flow in tubes 3. Friction factors for

More information

Characteristics of flow over the free overfall of triangular channel

Characteristics of flow over the free overfall of triangular channel MATEC We of Conferences 16, 03006 (018) BCEE3-017 https://doi.org/10.101/matecconf/0181603006 Characteristics of flow over the free overfall of triangular channel Raad Irzooki 1,*, Safa Hasan 1 Environmental

More information

Name Class Date. t = = 10m. n + 19 = = 2f + 9

Name Class Date. t = = 10m. n + 19 = = 2f + 9 1-4 Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equality properties of real numbers and inverse

More information

Generation of synthetic design storms for the Upper Thames River basin

Generation of synthetic design storms for the Upper Thames River basin Generation of synthetic design storms for the Upper Thames River basin CFCAS project: Assessment of Water Resources Risk and Vulnerability to Changing Climatic Conditions Project Report V. November 2004

More information

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Twelfth International Water Technology Conference, IWTC2 2008, Alexandria, Egypt 299 A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Maysoon Kh. Askar and K. K. Al-Jumaily

More information

Comparative Analysis of Hydraulic Roughness Coefficient at Purna River Sites

Comparative Analysis of Hydraulic Roughness Coefficient at Purna River Sites GRD Journals Global Research and Development Journal for Engineering Recent Advances in Civil Engineering for Global Sustainability March 2016 e-issn: 2455-5703 Comparative Analysis of Hydraulic Roughness

More information

THE EFFECTS OF OBSTACLES ON SURFACE LEVELS AND BOUNDARY RESISTANCE IN OPEN CHANNELS

THE EFFECTS OF OBSTACLES ON SURFACE LEVELS AND BOUNDARY RESISTANCE IN OPEN CHANNELS Manuscript submitted to 0th IAHR Congress, Thessaloniki, 4-9 August 00 THE EFFECTS OF OBSTACLES ON SURFACE LEVELS AND BOUNDARY RESISTANCE IN OPEN CHANNELS J. D. FENTON Department of Civil and Environmental

More information

STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT PHASE 1. DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT

STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT PHASE 1. DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT PHASE 1 DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT Prepared by: PAULUS, SOKOLOWSKI & SARTOR STORMWATER MANAGEMENT 1. Methodology

More information

Detailed Investigation of Velocity Distributions in Compound Channels for both Main Channel and Flood Plain

Detailed Investigation of Velocity Distributions in Compound Channels for both Main Channel and Flood Plain Detailed Investigation of Velocity Distributions in Compound Channels for both Main Channel and Flood Plain Jarmina Nake 1, Dr. Mimi Das Saikia 2 M.Tech Student, Dept. of Civil engineering, ADTU, Guwahati,

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow

Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow International Journal of Integrated Engineering, Vol. 5 No. 1 (2013) p. 58-63 Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow Mazlin Jumain 1,*, Zulkiflee Ibrahim

More information

CHAPTER 2- BACKGROUND. INVESTIGATIONS OF COMPOSITE ROUGHNESS COEFFICIENT IN A RIVER WITH LOW FLOW

CHAPTER 2- BACKGROUND. INVESTIGATIONS OF COMPOSITE ROUGHNESS COEFFICIENT IN A RIVER WITH LOW FLOW 2. Background 2.1 Introduction The estimation of resistant coefficient and hence discharge capacity in a channel or river is one of the fundamental problems facing river engineers. When applying Manning

More information

Hydraulics Part: Open Channel Flow

Hydraulics Part: Open Channel Flow Hydraulics Part: Open Channel Flow Tutorial solutions -by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of

More information

DETERMINATION OF COEFFICIENTS OF INFILTRATION EQUATIONS

DETERMINATION OF COEFFICIENTS OF INFILTRATION EQUATIONS DETERMINATION OF COEFFICIENTS OF INFILTRATION EQUATIONS Wender Lin Research Engineer ~nvironment Alberta Edmonton, Alberta T5J OZ6 and Don M. Gray Chairman, Division of Hydrology College of Engineering

More information

Reservoir Oscillations with Through Flow

Reservoir Oscillations with Through Flow American Journal of Environmental Sciences 3 (): 37-42, 27 ISSN 553-345X 27 Science Publications Reservoir Oscillations with Through Flow A. A. Khan 28 Lowry Hall, epartment of Civil Engineering, Clemson

More information

Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models T. UKON 1, N. SHIGETA, M.

More information

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed 18.1 Introduction A typical packed bed is a cylindrical column that is filled with a

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a

More information

BACKWATERRISE DUE TO FLOW CONSTRICTION BY BRIDGE PIERS

BACKWATERRISE DUE TO FLOW CONSTRICTION BY BRIDGE PIERS Thirteenth International Water Technology Conference, IWTC 1 009, Hurghada, Egypt BACKWATERRISE DUE TO FLOW CONSTRICTION BY BRIDGE PIERS Kassem Salah El-Alfy Prof. Dr., Irrigation &Hydraulics Dept., Faculty

More information

Composite roughness for rough compound channels

Composite roughness for rough compound channels Composite roughness for rough compound channels S. Pradhan Research Scholar (Ph. D), Department of Civil Engineering, National Institute of Technology, Rourkela, Orissa, India K.K.Khatua Associate Professor,

More information

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 Geomorphology Geology 450/750 Spring 2004 Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 This exercise is intended to give you experience using field data you collected

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Evaluation of flow resistance in smooth rectangular open-channels. with modified Prandtl friction law

Evaluation of flow resistance in smooth rectangular open-channels. with modified Prandtl friction law Evaluation of flow resistance in smooth rectangular open-channels with modified Prandtl friction law Nian-Sheng Cheng, Hoai Thanh Nguyen 2, Kuifeng Zhao 3, and Xiaonan Tang 4 Associate Professor, School

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 4

More information

ScienceDirect. An Experimental Approach Regarding the Sewage Self-Cleansing Conditions

ScienceDirect. An Experimental Approach Regarding the Sewage Self-Cleansing Conditions Available online at www.sciencedirect.com ScienceDirect Energy Procedia 85 (2016) 266 272 Sustainable Solutions for Energy and Environment, EENVIRO - YRC 2015, 18-20 November 2015, Bucharest, Romania An

More information

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time).

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time). 56 Review Drag & Lift Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! 8. Open-Channel Flow Pipe/duct flow closed, full,

More information

WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD:

WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: Bivariate Data DEFINITION: In statistics, data sets using two variables. Scatter Plot DEFINITION: a bivariate graph with points plotted to show a possible relationship between the two sets of data. Positive

More information

SOLIDS AHEAD. Evaluating Self Cleansing in Existing Sewers Using the Tractive Force Method. Kevin Enfinger, P.E. ADS Environmental Services

SOLIDS AHEAD. Evaluating Self Cleansing in Existing Sewers Using the Tractive Force Method. Kevin Enfinger, P.E. ADS Environmental Services Evaluating Self Cleansing in Existing Sewers Using the Tractive Force Method Presented By: Paul Mitchell, P.E. Senior Project Engineer ADS Environmental Services Huntington Beach, CA SOLIDS AHEAD Kevin

More information

Math 030 Review for Final Exam Revised Fall 2010 RH/ DM 1

Math 030 Review for Final Exam Revised Fall 2010 RH/ DM 1 Math 00 Review for Final Eam Revised Fall 010 RH/ DM 1 1. Solve the equations: (-1) (7) (-) (-1) () 1 1 1 1 f. 1 g. h. 1 11 i. 9. Solve the following equations for the given variable: 1 Solve for. D ab

More information

Discharge Coefficient for Sharp-Crested Side Weir in Supercritical Flow

Discharge Coefficient for Sharp-Crested Side Weir in Supercritical Flow ENGINEER - Vol. XXXIX, No. 02, pp. 17-24,2006 The Institution of Engineers, Sri Lanka Discharge Coefficient for Sharp-Crested Side Weir in Supercritical Flow K.P.P. Pathirana, M.M. Munas and A.L.A. Jaleel

More information

Open-channel hydraulics

Open-channel hydraulics Open-channel hydraulics STEADY FLOW IN OPEN CHANNELS constant discharge, other geometric and flow characteristics depended only on position Uniform flow Non-uniform flow S; y; v const. i i 0 i E y 1 y

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic

More information

Evaluating methods for 3D CFD Models in sediment transport computations

Evaluating methods for 3D CFD Models in sediment transport computations American Journal of Civil Engineering 2015; 3(2-2): 33-37 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.17 ISSN: 2330-8729 (Print);

More information

STUDY ON ROUGHNESS COEFFICIENT AT NATURAL CHANNEL

STUDY ON ROUGHNESS COEFFICIENT AT NATURAL CHANNEL STUDY ON ROUGHNESS COEFFICIENT AT NATURAL CHANNEL ZARINA MD. ALI 1, NUR HUSNA ABDUL KARIM 2, MOHD ADIB MOHAMAD RAZI 3 1,2,3 Department of Water and Environmental Engineering Faculty of Civil and Environmental

More information

Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin

Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin Hydrology Days 2010 Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin Patrícia Freire Chagas 2, Silvia

More information