Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

Size: px
Start display at page:

Download "Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models"

Transcription

1 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models T. UKON 1, N. SHIGETA, M. WATANABE 3 *, H. SHIRAISHI 4 and M. UOTANI 5 1 Department of Design and Development, NIHON KOGYO Co., Ltd., 61, Kaniwa, Miki, Kita, KAGAWA, , JAPAN. Graduate School of Civil and Environmental Engineering, Ehime University, 3, Bunkyo-cho, Matsuyama, EHIME, , JAPAN. 3 Department of Civil and Environmental Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, EHIME, , JAPAN. 4 Aratani Civil Engineering Consultants Co., Ltd., -1-, Yogo-naka, Matsuyama, EHIME, 79-45, JAPAN. 5 ZERO Co., Ltd., 199-1, Takasu-cho, Onomichi, HIROSHIMA, , JAPAN. *Corresponding author, nabemasa@dpc.ehime-u.ac.jp ABSTRACT The Preissmann slot model and the MOUSE slot model have been widely used to simulate a pressurized flow in urban drainage sewer pipe systems. In the runoff simulations utilizing theses two models, the slot width is often widened to make the computational time increment large and save the computing time. The resulting simulated water level, however, is likely to decrease to the extent that the simulated water level can not be considered for practical use. The main reason for the tendency mentioned above, in the case of the Preissmann slot model, is that the discharge through the slot, the friction loss is not taken into account, increases considerably according to the enlargement of the slot width, and the main reason, in the case of the MOUSE slot model, is that the excess storage of runoff water in the slot increases to a considerable extent according to the enlargement. In this paper, firstly, two correction methods that can improve the accuracy of the runoff simulations are proposed for the Preissmann slot model and the MOUSE slot model respectively. Secondly, the adaptabilities of the methods are examined through numerical runoff experiments. KEYWORDS Preissmann slot model, MOUSE slot model, Lateral model, manholes, pressurized flow, urban drainage sewer pipe system INTRODUCTION Recently, a localized torrential rain has happened frequently by global warming and heat island, and the occurrence of the flood damage in urban drainage sewer pipe systems has increased. The countermeasures against the flood damage, therefore, must be planned as soon as possible. In order to achieve this, it is necessary the simulation model that can simulate precisely the storm water runoff with a pressurized flow in the sewer pipe system has been developed. The Preissmann and MOUSE slot models have been widely used to simulate accurately the pressurized flow in urban drainage sewer pipe systems. In the runoff simulations utilizing these two models, the slot width is often widened without an assurance that the accuracy of T. Ukon, et al. 1

2 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 the simulation results does not decrease to make the computational time increment large and save the computing time. The resulting simulated water level, however, is likely to decrease to the extent that the simulated water level can not be considered for practical use, especially in the case of runoff simulations with flooding from the sewer pipe systems. In this paper, two correction methods that can improve the accuracy of the runoff simulations are proposed for the Preissmann slot model and the MOUSE slot model respectively, and the adaptabilities of the methods are examined through numerical runoff experiments. PREISSMANN SLOT MODEL, MOUSE SLOT MODEL AND LATERAL MODEL Preissmann slot model In the Preissmann slot model, a very narrow slot is started up in the top of the sewer pipe as shown in Figure 1, and then an actual pressurized flow can be handled as an open-channel flow. The following assumptions are made in the derivation of the flow equations of the model. (1) Water is incompressible. () The sewer pipe is rigid. (3) The slot wall does not take part in friction loss. (4) The slot width is very narrow. (5) The slot width is decided depending on the sound wave velocity of the pressure wave. Using the assumptions mentioned above, the flow equations of motion and continuity for the pressurized flow are derived as follows (Cunge and Wegner, 1964) : 1 V V V n V V + + I + = (1) 4 / 3 g t g R c + V + t g V = ga gb ga S p c = = a 1 + ( y D) ; a = (3) BS Ap BS where V = the mean cross-sectional velocity; y = the depth of flow; R = the hydraulic radius; I = the slope of the sewer pipe; n = Manning s roughness coefficient; c = the celerity of the small gravity wave; B S = the slot width; A = the flow cross-sectional area; A p = the crosssectional area of the sewer pipe; D = the diameter of the sewer pipe; a = the pressure wave celerity; g = the gravitational acceleration; t = the time; x = the distance along the sewer pipe. () (Surcharged Flow) Hypothetical Slot Free-surface (Open-channel Flow) Figure 1. Preissmann hypothetical slot. Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

3 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 MOUSE slot model In the MOUSE slot model, a narrow slot is started up in the top of the sewer pipe as shown in Figure, and then an actual pressurized flow can be handled as an open-channel flow. The following assumptions are made in the derivation of the flow equations of the model. (1) Water is compressible. () The sewer pipe wall is elastic. (3) The slot part acts as not a flow area but a storage area. (4) The slot width is very narrow. Using the assumptions mentioned above, the flow equations of motion and continuity for pressurized flow are derived as follows (Danish Hydraulic Institute, 3): Q Q α A + + ga = ga( I I f ) (4) t Q Q ρ gap + + = (5) ρ a t 1+ g( y D) 1 + g( y D) Er e a ρ = ρ, A = Ap, ar =, a = (6) a ar ρ D 1+ a / ar where Q = the discharge; α = velocity distribution coefficient; I f = the friction slope; ρ = the density of water for a free surface flow; a = the speed of sound in water; E r = the Young s modulus of elasticity; e = the pipe wall thickness. B = B S = ga p /a B > B S D Figure. Pipe with a fictitious slot. Lateral model In urban drainage sewer pipe systems, many lateral pipes are installed to transport storm water from inlets to sewer pipes. Considering the storage of runoff water in the lateral pipes as shown in Figure 3, the momentum and continuity equations for the pressurized flow in a sewer pipe are obtained (Watanabe et al. 199, 1991). 1 V V V n V V + + I + = (7) 4 / 3 g t g R T. Ukon, et al. 3

4 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 c + t g V L N = (8) ( sinθ ) A A P c = g (9) l where c = the pressure wave celerity; L = the length of the sewer pipe; A l, N, and θ = the cross-sectional area, number, and angle of the lateral pipes, respectively. Street Inlet Ground Surface Laterals House Inlet Ground Surface y D Laterals θ Combined Sewer Pipe Combined Sewer Pipe Figure 3. Sewer pipe and lateral pipes. CORRECTION METHOD FOR DROPPING OF SIMULATED WATER LEVEL In the runoff simulations utilizing these two models, the slot width is often widened without an assurance that the accuracy of the simulation results does not decrease to make the computational time increment large and save the computing time. The resulting simulated water level, however, is likely to decrease to the extent that the simulated water level can not be considered for practical use. The purpose of this paper is to develop the correction methods for dropping of simulated water level using Preissmann slot model and MOUSE slot model. Correction method for Preissmann slot model First, a correction factor, Г, is introduced in the momentum equation (1) of the Preissmann slot model and the factor is multiplied by the term of the friction loss. Second, the steady pressurized flow condition is assumed and Г is derived so that the hydraulic grade line of the Preissmann slot model coincides with that of the Lateral model. ( y D) B V V S full Γ = F ± F A p c (1) c 4 / 3 R B S F = 1 + ( y D ) (11) 4 / 3 R A p where V full = the velocity of uniform pipe-full flow in the sewer pipe; R = the hydraulic radius except slot part; D = the length from invert to slot joint part; A p = the flow crosssectional area except slot part. 4 Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

5 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 The relation between the correction factor, Г, and y/d is shown in Figure 4. When the slot width is very narrow compared with the diameter of the sewer pipe (for example, B s =.1D), the simulated water level needs not being corrected because the discharge through the slot is very little compared with that through the sewer pipe. Therefore, Γ takes almost 1.. When the slot width is lager (for example, B s =.1D ~.5D), the discharge through the slot can not be ignored compared with that through the sewer pipe, and the simulated water level is likely to decrease because the slot wall does not have the friction loss. Therefore, in order to make the hydraulic grade line greater, Γ takes larger value than 1. according to the discharge through the slot. B S =.1D B S =.1D B S =.5D Γ y/d Figure 4. Correction factor, Г ~ y/d (D = 1. m). Correction method for MOUSE slot model The decrease of the simulated water level is due to the excess storage of runoff water, which is caused by widening the slot width, in the slot. In order to eliminate the excess storage, the same volume as the storage is reduced from the volume of the upper manhole as shown in Figure 5. The relation between the increment of the widened slot width and the reduced area of the manhole cross-sectional area is as follows: FM = α BS L (1) BS = B S BS (13) where FM = the reduced area of the manhole cross-sectional area; α = the correction coefficient (.5 α 1.); BS = the increment of the widened slot width; B S = the original slot width; B = the widened slot width. S V 1 = Excess storage of runoff water in slot Figure 5. Correction method for MOUSE slot model. V = Reduced volume of upper manhole V 1 = V T. Ukon, et al. 5

6 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 EXAMINATION OF ADDAPTABILITIES OF CORRECTION METHODS THROUGH NUMERICAL RUNOFF EXPERIMENTS The adaptabilities of the correction methods mentioned above were examined through the following numerical runoff experiments using the sewer pipe system as shown in Figure 6, Table 1, Table, and Table 3. The numerical runoff simulations under the following conditions were conducted: the inflow hydrographs at the upstream end of the pipe system are sinusoidal; the stage hydrographs at the downstream end are constant; the inundation on the ground surface never occurs; the periods of the inflow discharge hydrographs are 6 s and 1,8 s; the initial flow condition is the uniform pipe-full flow; the slot widths are assigned to be.1 m,.1 m, and.5 m. The simulated runoff hydrographs using the Preissmann slot model are shown in Figure 7 and Figure 8, and the ones using the MOUSE slot model are shown in Figure 9 and Figure 1. From these figures, it is apparent that the improvement of the dropping of the simulated water level as well as the accuracy of the simulated runoff hydrographs is achieved by making use of the correction methods. Q p Q Q full t T Level (m) 1 5 Q D Ground Surface L T G L T I Manholes Distance (m) Figure 6. Sewer pipe system used in numerical experiments. Table 1. Dimensions of sewer pipe system used in numerical experiments. D F M L T G I N T (m) (m N ) (m) (m) ( ) (m -1/3 Q s) p (s) Q full 1,8 Table. Slot width and pressure wave celerity. (D = 1. m) B S (m) a (m/s).1 D D D.5 Table 3. Corrected manhole cross-sectional area, F' M. (MOUSE slot model) α B' S =.1 m B' S =.5 m F M F' M F M F' M Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

7 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, B S =.1m B S =.1m B S =.5m. Water Level (m) 7 6 Discharge (m 3 /s) (i) non- corrected (ii) corrected (i) non- corrected (ii) corrected (a) Water level hydrographs (b) Discharge hydrographs Figure 7. Simulated hydrographs (Preissmann slot model, T = 6 s). 9 8 B S =.1m B S =.1m B S =.5m. Water Level (m) 7 6 Discharge (m 3 /s) (i) non- corrected (ii) corrected (i) non- corrected (ii) corrected (a) Water level hydrographs (b) Discharge hydrographs Figure 8. Simulated hydrographs (Preissmann slot model, T = 1,8 s). T. Ukon, et al. 7

8 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, B S =.1m B S =.1m B S =.5m. α =.75 α =.75 Water Level (m) 7 6 Discharge (m 3 /s) (i) non- corrected (ii) corrected (i) non- corrected (ii) corrected (a) Water level hydrographs (b) Discharge hydrographs Figure 9. Simulated hydrographs (MOUSE slot mode, T = 6 s). 9 8 B S =.1m B S =.1m B S =.5m. α =.75 α =.75 Water Level (m) 7 6 Discharge (m 3 /s) (i) non- corrected (ii) corrected (i) non- corrected (ii) corrected (a) Water level hydrographs (b) Discharge hydrographs Figure 1. Simulated hydrographs (MOUSE slot model, T = 1,8 s). 8 Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

9 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 CONCLUSIONS It was clarified that the dropping of the simulated water level caused by widening the slot width can be improved through the simulations making use of the correction methods proposed in this paper. REFERENCES Cunge, J. A. and Wegner, M. (1964). Numerical integration of Barré de Saint-Venant s flow equations by means of an implicit scheme of finite differences. La Houille Blanche., No.1, Chaudhry, M. H. (1979). Applied Hydraulic Transients. VNR Company, New York, Watanabe, M., Etoh, T. and Murota, A. (199). Runoff simulation model of sewer pipe systems considering pressure-relaxation effect by lateral pipes. Proc. 5 th Int. Conf. on Urban Storm Drainage..1, Watanabe, M., Etoh, T. and Murota, A. (1991). Runoff simulation of sewer pipe systems with lateral pipes. Journal of Natural Disaster Science., 13(1), MOUSE PIPE FLOW Reference Manual. (3). Danish Hydraulic Institute, Denmark, Chapter 3, 1-7. T. Ukon, et al. 9

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water. Design Manual Chapter - Stormwater D - Storm Sewer Design D- Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm

More information

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 1 Associated Professor, Irrigation and Hydraulic Department, College of Technical Engineering,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction One-dimensional unsteady flow computation in channels with floodplains D. Bousmar, R. Scherer & Y. Zech Civil Engineering Dept., Universite Catholique de Louvain, Place du Levant, 1, B-1348 Louvain-la-Neuve,

More information

Lecture Note for Open Channel Hydraulics

Lecture Note for Open Channel Hydraulics Chapter -one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand

More information

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Archives of Hydro-Engineering and Environmental Mechanics Vol. 56 (29), No. 3 4, pp. 121 137 IBW PAN, ISSN 1231 3726 Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Dariusz

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS

EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS INDIAN INSTITUTE OF TECHNOLOGY ROORKEE EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS Muthiah Perumal and C. Madhusudana

More information

Design Data 17. Partial Flow Conditions of Box Culverts

Design Data 17. Partial Flow Conditions of Box Culverts Design Data 17 Partial Flow Conditions of Box Culverts Sewers, both sanitary and storm, are designed to carry a peak flow based on anticipated land development. The hydraulic capacity of sewers or culverts

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April.

Guo, James C.Y. (1999). Critical Flow Section in a Collector Channel, ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April. Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 15, No. 4, April. CRITICAL FLOW SECTION IN A COLLECTOR CHANNEL By James C.Y. Guo, PhD, P.E.

More information

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK OPEN CHANNEL FLOW Numerical Methods and Computer Applications Roland Jeppson TECHNISCHE INFORMATlONSBiBUOTHEK UNIVERSITATSB'BUOTHEK HANNOVER Si. i. CRC Press Taylor &.Francis Group Boca Raton London New

More information

D. MATHEMATICAL MODEL AND SIMULATION

D. MATHEMATICAL MODEL AND SIMULATION D. MATHEMATICAL MODEL AND SIMULATION D - i TABLE OF CONTENTS D.1 Objective of Model Development... D - 1 D.2 Selection of Software... D - 1 D.3 General Steps of Simulation by MOUSE... D - 1 D.4 Cases of

More information

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water Department of Hydro Sciences, Institute for Urban Water Management Urban Water 1 Global water aspects Introduction to urban water management 3 Basics for systems description 4 Water transport 5 Matter

More information

Numerical Hydraulics

Numerical Hydraulics ETH Zurich, Fall 2017 Numerical Hydraulics Assignment 2 Numerical solution of shallow water wave propagation (www.surfertoday.com) 1 Introduction 1.1 Equations Understanding the propagation of shallow

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels DEPRTMENT OF CIVIL ND ENVIRONMENTL ENGINEERING Urban Drainage: Hydraulics Solutions to problem sheet 2: Flows in open channels 1. rectangular channel of 1 m width carries water at a rate 0.1 m 3 /s. Plot

More information

Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin

Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin Hydrology Days 2010 Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin Patrícia Freire Chagas 2, Silvia

More information

ScienceDirect. A pipe network simulation model with dynamic transition between free surface and pressurized flow

ScienceDirect. A pipe network simulation model with dynamic transition between free surface and pressurized flow Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 70 ( 2014 ) 641 650 12th International Conference on Computing and Control for the Water Industry, CCWI2013 A pipe network simulation

More information

88 MODERN SEWER DESIGN

88 MODERN SEWER DESIGN 88 MODERN SEWER DESIGN Fabricated fittings reduce head losses in the system. 4. HYDRAULICS OF STORM SEWERS CHAPTER 4 Hydraulics of Storm Sewers 89 Storm sewers may be designed as either open channels,

More information

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS Routing MODULE - ROUTING METHODS Routing is the process of find the distribution of flow rate and depth in space and time along a river or storm sewer. Routing is also called Flow routing or flood routing.

More information

FHWA Headloss in InfoWorks ICM. August 2013

FHWA Headloss in InfoWorks ICM. August 2013 FHWA Headloss in InfoWorks ICM August 2013 Innovyze 1 August 2013 Contents FHWA Headloss... 1 Contents... 2 1. Introduction... 3 2. Step 1, Calculation of E ai... 3 3. Step 2, Adjustment of E ai to Provide

More information

Simulation of Transcritical Flow in Hydraulic structures

Simulation of Transcritical Flow in Hydraulic structures Simulation of Transcritical Flow in Hydraulic structures Cornelius E Agu 1 Geir Elseth Bernt Lie 3 1,3 Faculty of Technology, Telemark University College, Norway, {corneliuseagu,berntlie}@hitno Statoil

More information

Development of Kanako, a wide use 1-D and 2-D debris flow simulator equipped with GUI

Development of Kanako, a wide use 1-D and 2-D debris flow simulator equipped with GUI Monitoring, Simulation, Prevention and Remediation of Dense Debris Flows II 49 Development of Kanako, a wide use 1-D and 2-D debris flow simulator equipped with GUI K. Nakatani, T. Wada, Y. Satofuka &

More information

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Twelfth International Water Technology Conference, IWTC2 2008, Alexandria, Egypt 299 A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Maysoon Kh. Askar and K. K. Al-Jumaily

More information

FLOOD ROUTING FOR A SPECIFIC ORIENTATION OF PLANNED DEVELOPMENTS FOR AL-SHAMIYA RIVER IN IRAQ AS CASE STUDY

FLOOD ROUTING FOR A SPECIFIC ORIENTATION OF PLANNED DEVELOPMENTS FOR AL-SHAMIYA RIVER IN IRAQ AS CASE STUDY Journal of Civil Engineering and Technology (JCIET) Volume 4, Issue 2, July-December 2017, pp. 1 12, Article ID: JCIET_04_02_001 Available online at http: //www.iaeme.com/jciet/issues.asp?jtype=jciet&vtype=4&itype=2

More information

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h.

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h. Uniform Flow in a Partly Full, Circular Pipe Fig. 10.6 shows a partly full, circular pipe with uniform flow. Since frictional resistance increases with wetted perimeter, but volume flow rate increases

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X A new Crank-Nicholson algorithm for solving the diffusive wave flood routing equation along a complex channel network R. Moussa," C. BouquilW* " Institut National de la Recherche Agronomique, 34060 Montpellier,

More information

Determination of Urban Runoff Using ILLUDAS and GIS

Determination of Urban Runoff Using ILLUDAS and GIS Texas A&M University Department of Civil Engineering Instructor: Dr. Francisco Olivera CVEN689 Applications of GIS to Civil Engineering Determination of Urban Runoff Using ILLUDAS and GIS Tae Jin Kim 03.

More information

Stage Discharge Tabulation for Only Orifice Flow

Stage Discharge Tabulation for Only Orifice Flow Stage Discharge Tabulation for Only Orifice Flow DEPTH STAGE DISCHARGE (meters) (feet) (meters) (feet) (m 3 /s) (ft 3 /s) 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0.7 1.3 2.0 2.6 3.3 3.9 4.6

More information

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS 1106 September 11~16, 2005, Seoul, Korea IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS ARTURO S. LEON 1, MOHAMED S. GHIDAOUI 2, ARTHUR R. SCHMIDT 3 and MARCELO

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numerical simulation of overland flood flows in an urban bay area M. Takeda, T, Uetsuka, K. Inoue, K. Toda Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 611, Japan Abstract

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in Debris Flow Fan Areas

Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in Debris Flow Fan Areas DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS) Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in Debris Flow Fan Areas Kana Nakatani, Dr. 1

More information

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Flood routing Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Guwahati, Assam Email: rkbc@iitg.ernet.in Web: www.iitg.ernet.in/rkbc Visiting Faculty NIT Meghalaya Q (m 3 /sec)

More information

CHANGES IN RIVER BED AROUND THE FUKAWA CONTRACTION AREA BY FLOODS AND CHANNEL IMPROVEMENT WORKS IN THE LOWER TONE RIVER

CHANGES IN RIVER BED AROUND THE FUKAWA CONTRACTION AREA BY FLOODS AND CHANNEL IMPROVEMENT WORKS IN THE LOWER TONE RIVER The 1 th Int. Conf. on Hydroscience and Engineering (ICHE-212), Nov. 4 Nov. 7, Orlando, USA 1 CHANGES IN RIVER BED AROUND THE FUKAWA CONTRACTION AREA BY FLOODS AND CHANNEL IMPROVEMENT WORKS IN THE LOWER

More information

Open Channel Flow I - The Manning Equation and Uniform Flow COURSE CONTENT

Open Channel Flow I - The Manning Equation and Uniform Flow COURSE CONTENT Open Channel Flow I - The Manning Equation and Uniform Flow Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Flow of a liquid may take place either as open channel flow or pressure flow. Pressure

More information

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION July. 2. Vol. 7. No. 2 MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION 1 J. JOMBA, 2 D.M.THEURI, 2 E. MWENDA, 2 C. CHOMBA ABSTRACT Flow in a closed conduit is regarded as open channel

More information

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1 3 FLOOD PROPAGATION 3.1 Reservoir routing The most important equation to describe the water balance of a reservoir is the water balance: ds = I Q + A P E dt ( ) In finite differences form this equation

More information

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines. 4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,

More information

Transactions on Ecology and the Environment vol 8, 1994 WIT Press, ISSN

Transactions on Ecology and the Environment vol 8, 1994 WIT Press,   ISSN Dam breachfloods- downstream inundation analyses M. Hartnett,' T. Hayes,* B. Mangan,* o Department of Civil, Structural & Environmental Engineering, Trinity College, Dublin 2, Ireland, UK * ESB International,

More information

1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring Problem Set 4 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

A finite volume method for solving the gravity wave-model equations

A finite volume method for solving the gravity wave-model equations Journal of Physics: Conference Series PAPER OPEN ACCESS A finite volume method for solving the gravity wave-model equations To cite this article: Cecilia Heru Purwitaningsih and Sudi Mungkasi 2018 J. Phys.:

More information

Flood Capacity of Shirakawa River at Tatsudajinnnai Area in Kumamoto Prefecture

Flood Capacity of Shirakawa River at Tatsudajinnnai Area in Kumamoto Prefecture International Journal of Economy, Energy and Environment 218; 3(5): 51-57 http://www.sciencepublishinggroup.com/j/ijeee doi: 1.11648/j.ijeee.21835.13 ISSN: 2575-513 (Print); ISSN: 2575-521 (Online) Flood

More information

Rock Sizing for Batter Chutes

Rock Sizing for Batter Chutes Rock Sizing for Batter Chutes STORMWATER MANAGEMENT PRACTICES Photo 1 Rock-lined batter chute Photo 2 Rock-lined batter chute 1. Introduction In the stormwater industry a chute is a steep drainage channel,

More information

Appendix E Guidance for Shallow Flooding Analyses and Mapping

Appendix E Guidance for Shallow Flooding Analyses and Mapping Appendix E Guidance for Shallow Flooding Analyses and Mapping E.1 Introduction Different types of shallow flooding commonly occur throughout the United States. Types of flows that result in shallow flooding

More information

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

More information

UNIVERSITY OF BOLTON. ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2014/2015 WATER ENGINEERING MODULE NO: BLT3023

UNIVERSITY OF BOLTON. ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2014/2015 WATER ENGINEERING MODULE NO: BLT3023 [TW59] UNIVERSITY OF BOLTON ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 014/015 WATER ENGINEERING MODULE NO: BLT303 Date: Tuesday, 0 January 015 Time: 10.00-1.00 INSTRUCTIONS

More information

Notes: We all know that Toulmins Spring Branch is a sub-watershed of Three Mile Creek watershed. Some part of it is in Mobile area and rest of it is

Notes: We all know that Toulmins Spring Branch is a sub-watershed of Three Mile Creek watershed. Some part of it is in Mobile area and rest of it is 1 Notes: This presentation is about some of our findings from a study carried out over the last 3-4 months on stormwater management of Toulmins Spring Branch watershed by NEP. The objective of this study

More information

Effects of Forming Conditions of Roll Offset Method on Sectional Shape at the Corner of Square Steel Pipe +

Effects of Forming Conditions of Roll Offset Method on Sectional Shape at the Corner of Square Steel Pipe + Materials Transactions, Vol. 54, No. 9 (2013) pp. 1703 to 1708 2013 The Japan Society for Technology of Plasticity Effects of Forming Conditions of Roll Offset Method on Sectional Shape at the Corner of

More information

Experiment (4): Flow measurement

Experiment (4): Flow measurement Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

More information

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then: Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing

More information

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow.

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. P10.5 Water flows down a rectangular channel that is 4 ft wide and ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. Solution: Convert the flow rate from 15,000 gal/min

More information

c 2007 by Arturo S. León. All rights reserved.

c 2007 by Arturo S. León. All rights reserved. c 2007 by Arturo S. León. All rights reserved. IMPROVED MODELING OF UNSTEADY FREE SURFACE, PRESSURIZED AND MIXED FLOWS IN STORM-SEWER SYSTEMS BY ARTURO S. LEÓN B.S., National University of San Cristobal

More information

Flow in Open Channel Flow Conditions

Flow in Open Channel Flow Conditions Civil Engineering Hydraulics Flow The graduate with a Science degree asks, "Why does it work?" The graduate with an Engineering degree asks, "How does it work?" The graduate with an Accounting degree asks,

More information

Experimental Study for Investigating the Impact Force on a Wooden House by Driftwood in Steady and Unsteady Surge-type Flow

Experimental Study for Investigating the Impact Force on a Wooden House by Driftwood in Steady and Unsteady Surge-type Flow Experimental Study for Investigating the Impact Force on a Wooden House by Driftwood in Steady and Unsteady Surge-type Flow K. Miyahara 1 and N. Tanaka 2 1 Graduate School of Science and Engineering, Saitama

More information

Block 3 Open channel flow

Block 3 Open channel flow Numerical Hydraulics Block 3 Open channel flow Markus Holzner Contents of the course Block 1 The equations Block Computation of pressure surges Block 3 Open channel flow (flow in rivers) Block 4 Numerical

More information

Basic Hydraulics June 2007

Basic Hydraulics  June 2007 Basic Hydraulics www.concrete-pipe.org June 2007 2007 Overview Open Channel Flow Manning Equation Basic Culvert Design Sanitary Sewer Design Flow, Velocity Stormwater Sewer Design Flow, Velocity 2 Open

More information

DYNAMICS OF FLOOD FLOWS AND BED VARIATIONS IN RIVER SECTIONS REPAIRED TO SHIP-BOTTOM SHAPED CHANNELS FROM COMPOUND CHANNLS

DYNAMICS OF FLOOD FLOWS AND BED VARIATIONS IN RIVER SECTIONS REPAIRED TO SHIP-BOTTOM SHAPED CHANNELS FROM COMPOUND CHANNLS E-proceedings of the 36 th IAHR World Congress DYNAMICS OF FLOOD FLOWS AND BED VARIATIONS IN RIVER SECTIONS REPAIRED TO SHIP-BOTTOM SHAPED CHANNELS FROM COMPOUND CHANNLS TAKUMA SASAKI (1) & SHOJI FUKUOKA

More information

Two-dimensional urban flood simulation: Fukuoka flood disaster in 1999

Two-dimensional urban flood simulation: Fukuoka flood disaster in 1999 Flood Recovery, Innovation and Response I 59 Two-dimensional urban flood simulation: Fukuoka flood disaster in 999 H. Hashimoto & K. Park Department of Civil Engineering, Kyushu University, Japan Abstract

More information

A fuzzy dynamic wave routing model

A fuzzy dynamic wave routing model HYDROLOGICAL PROCESSES Hydrol. Process., 564 57 () Published online October 7 in Wiley InterScience (www.interscience.wiley.com).677 A fuzzy dynamic wave routing model R. Gopakumar and P. P. Mujumdar *

More information

Continuing Education Course #101 Drainage Design with WinTR-55

Continuing Education Course #101 Drainage Design with WinTR-55 1 of 5 Continuing Education Course #101 Drainage Design with WinTR-55 1. WinTR-55 uses the Kinematic Wave method for calculating storm runoff rates and volumes. 2. According to the Velocity Method, the

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

SOLUTIONS TO SELECTED PROBLEMS

SOLUTIONS TO SELECTED PROBLEMS URBAN DRAINAGE, rd edition, David Butler and John W Davies SOLUTIONS TO SELECTED PROBLEMS This solutions manual is made available free of charge. Details of the accompanying textbook Urban Drainage rd

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Open-Channel Flow Uniform Flow (See CERM Ch. 19) Characterized by constant depth volume, and cross section. It can be steady or unsteady Non-uniform Flow *Not on

More information

HEAD LOSSES IN SEWER JUNCTION

HEAD LOSSES IN SEWER JUNCTION E-proceedings of the 6 th IAHR World Congress 8 June July, 0, The Hague, the Netherlands HEAD LOSSES IN SEWER JUNCTION CORRADO GISONNI () & MICHAEL PFISTER () () Dept. of Civil Engineering, Design, Construction

More information

Prediction of landslide-induced debris flow hydrograph: the Atsumari debris flow disaster in Japan

Prediction of landslide-induced debris flow hydrograph: the Atsumari debris flow disaster in Japan Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows 27 Prediction of landslide-induced debris flow hydrograph: the Atsumari debris flow disaster in Japan H. Takaoka 1, H. Hashimoto

More information

Growing and decaying processes and resistance of sand waves in the vicinity of the Tone River mouth

Growing and decaying processes and resistance of sand waves in the vicinity of the Tone River mouth Advances in River Sediment Research Fukuoka et al. (eds) 2013 Taylor & Francis Group, London, ISBN 978-1-138-00062-9 Growing and decaying processes and resistance of sand waves in the vicinity of the Tone

More information

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS M.L. Kavvas and L.Liang UCD J.Amorocho Hydraulics Laboratory University of California, Davis, CA 95616, USA Uncertainties

More information

9. Flood Routing. chapter Two

9. Flood Routing. chapter Two 9. Flood Routing Flow routing is a mathematical procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time at one or more points along a watercourse (waterway

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flow Lecture - 1 Introduction to Uniform Flow Good morning everyone,

More information

STABILITY OF OLD STONE GROINS IN THE KATSURA RIVER DURING FLOODS

STABILITY OF OLD STONE GROINS IN THE KATSURA RIVER DURING FLOODS B-10 Fourth International Conference on Scour and Erosion 008 STABILITY OF OLD STONE GROINS IN THE KATSURA RIVER DURING FLOODS Taisuke ISHIGAKI 1, Takahiro ASANO and Ryuji KAWANAKA 3 1 Member of JSCE,

More information

Project Description. Project Options. End Analysis On... Apr 26, :00:00. Rainfall Details

Project Description. Project Options. End Analysis On... Apr 26, :00:00. Rainfall Details Project Description File Name... 323 - Att Pond 3 East PIPES ONLY.SPF Project Options Flow Units... Elevation Type... Hydrology Method... EPA SWMM Infiltration Method... Link Routing Method... Enable Overflow

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Design Methodology for Hydraulic Ram Pump

Design Methodology for Hydraulic Ram Pump Design Methodology for Hydraulic Ram Pump Aniruddha Deo 1, Atharva Pathak 2, Santosh Khune 3, Mamta Pawar 4 U.G. Student, Department of Mechanical Engineering, Dr. Babasaheb Ambedkar College of Engineering

More information

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation /04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

More information

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow:

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow: Two-Fluid Model 41 If I have seen further it is by standing on the shoulders of giants. Isaac Newton, 1675 3 Two-Fluid Model Simple isothermal two-fluid two-phase models for stratified flow: Mass and momentum

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

ENGINEERING HYDROLOGY

ENGINEERING HYDROLOGY ENGINEERING HYDROLOGY Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS

Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS Risk Analysis V: Simulation and Hazard Mitigation 263 Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS M. Mori Department of Information and Computer Science, Kinki University, Japan

More information

12d Model. Civil and Surveying Software. Version 7. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer

12d Model. Civil and Surveying Software. Version 7. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer 1d Model Civil and Surveying Sotware Version 7 Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 9 December 005 Revised: 10 January 006 8 February 007

More information

CASE STUDIES. Introduction

CASE STUDIES. Introduction Introduction The City of Winston-Salem faces the challenge of maintaining public infrastructure (e.g., water and sewer lines, storm drains, roads, culverts and bridges) while minimizing the potential impacts

More information

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely. Aide Mémoire Suject: Useful formulas for flow in rivers and channels The University cannot take responsiility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

More information

EFFECT OF TWO SUCCESIVE CHECK DAMS ON DEBRIS FLOW DEPOSITION

EFFECT OF TWO SUCCESIVE CHECK DAMS ON DEBRIS FLOW DEPOSITION DOI: 10.4408/IJEGE.2011-03.B-116 EFFECT OF TWO SUCCESIVE CHECK DAMS ON DEBRIS FLOW DEPOSITION Farouk Maricar (*), Haruyuki Hashimoto (*), Shinya Ikematsu (*) & Tomohiro Miyoshi (*) (*) Department of Civil

More information

This file was downloaded from Telemark Open Research Archive TEORA -

This file was downloaded from Telemark Open Research Archive TEORA - This file was downloaded from Telemark Open Research Archive TEORA - http://teora.hit.no/dspace/ Title: Numerical solution of the Saint Venant equation for Non-Newtonian fluid. Authors: Agu, C. E., & Lie,

More information

The Influence of Piers on the Risk of Flooding Upstream from a Bridge

The Influence of Piers on the Risk of Flooding Upstream from a Bridge Archives of Hydro-Engineering and Environmental Mechanics Vol. 52 (2005), No. 4, pp. 287 301 IBW PAN, ISSN 1231 3726 The Influence of Piers on the Risk of Flooding Upstream from a Bridge Marek Sowiński

More information

Minimum Specific Energy and Critical Flow Conditions in Open Channels

Minimum Specific Energy and Critical Flow Conditions in Open Channels Minimum Specific Energy and Critical Flow Conditions in Open Channels by H. Chanson 1 Abstract : In open channels, the relationship between the specific energy and the flow depth exhibits a minimum, and

More information

Surge Analysis Using Transient Pressure Theory

Surge Analysis Using Transient Pressure Theory IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 3-334X, Volume 11, Issue 1 Ver. II (Jan. 14), PP 1-17 Surge Analysis Using Transient Pressure Theory S.S.Valunjkar Government

More information

HYDRAULIC EFFICIENCY OF GRATE AND CURB INLETS FOR URBAN STORM DRAINAGE

HYDRAULIC EFFICIENCY OF GRATE AND CURB INLETS FOR URBAN STORM DRAINAGE HYDRAULIC EFFICIENCY OF GRATE AND CURB INLETS FOR URBAN STORM DRAINAGE Prepared for The Urban Drainage and Flood Control District Prepared by Brendan C. Comport Christopher I. Thornton Amanda L. Cox December

More information

Physical landscapes River landscapes in the UK

Physical landscapes River landscapes in the UK Physical landscapes River landscapes in the UK The shape of river valleys change s as rivers flow downstream - PROCESSES Erosion Abrasion or corrasion Attrition Hydraulic Action Solution or corrosion Deposition

More information

LECTURE NOTES - III. Prof. Dr. Atıl BULU

LECTURE NOTES - III. Prof. Dr. Atıl BULU LECTURE NOTES - III «FLUID MECHANICS» Istanbul Technical University College of Civil Engineering Civil Engineering Department Hydraulics Division CHAPTER KINEMATICS OF FLUIDS.. FLUID IN MOTION Fluid motion

More information

Stage Discharge Prediction in a Prismatic Compound Channel

Stage Discharge Prediction in a Prismatic Compound Channel International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 3 (2014), pp. 227-232 Research India Publications http://www.ripublication.com/ijcer.htm Stage Discharge Prediction

More information

Application of Fuzzy Set Theory to Flood Risk Analysis in Natural Rivers as a Function of Hydraulic Parameters

Application of Fuzzy Set Theory to Flood Risk Analysis in Natural Rivers as a Function of Hydraulic Parameters Hydrology Days 2010 Application of Fuzzy Set Theory to Flood Risk Analysis in Natural Rivers as a Function of Hydraulic Parameters Silvia Helena Santos 2,Patrícia Freire Chagas 2, Carla Freitas Andrade

More information

Storm Water Best Management Practice: Development of Debris Filtering Structure for Supercritical Flow

Storm Water Best Management Practice: Development of Debris Filtering Structure for Supercritical Flow Storm Water Best Management Practice: Development of Debris Filtering Structure for Supercritical Flow Jungseok Ho 1, Todd Marti 2, and Julie Coonrod 3 1 Department of Civil Engineering, University of

More information

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-6 (390), 2006 The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model Marcin SKOTNICKI and Marek SOWIŃSKI

More information

Continuing Education Associated with Maintaining CPESC and CESSWI Certification

Continuing Education Associated with Maintaining CPESC and CESSWI Certification Continuing Education Associated with Maintaining CPESC and CESSWI Certification Module 2: Stormwater Management Principles for Earth Disturbing Activities Sponsors: ODOTs Local Technical Assistance Program

More information

Reservoir Oscillations with Through Flow

Reservoir Oscillations with Through Flow American Journal of Environmental Sciences 3 (): 37-42, 27 ISSN 553-345X 27 Science Publications Reservoir Oscillations with Through Flow A. A. Khan 28 Lowry Hall, epartment of Civil Engineering, Clemson

More information

Effect of Static Magnetic Field Application on the Mass Transfer in Sequence Slab Continuous Casting Process

Effect of Static Magnetic Field Application on the Mass Transfer in Sequence Slab Continuous Casting Process , pp. 844 850 Effect of Static Magnetic Field Application on the Mass Transfer in Sequence Slab Continuous Casting Process Baokuan LI and Fumitaka TSUKIHASHI 1) Department of Thermal Engineering, The School

More information

Sewer, pressurization, differential pressure monitoring, fully dynamic hydraulic modeling, air displacement modeling.

Sewer, pressurization, differential pressure monitoring, fully dynamic hydraulic modeling, air displacement modeling. Using Dynamic Hydraulic Modeling to Understand Sewer Headspace Dynamics A Case Study of Metro Vancouver s Highbury Interceptor Yuko Suda, P.Eng. Kerr Wood Leidal Associates Ltd. 200-4185A Still Creek Drive

More information

Beaver Creek Corridor Design and Analysis. By: Alex Previte

Beaver Creek Corridor Design and Analysis. By: Alex Previte Beaver Creek Corridor Design and Analysis By: Alex Previte Overview Introduction Key concepts Model Development Design Accuracy Conclusion Refresh v = Beaver Creek Site = Wittenberg Introduction Low head

More information

Simulation of flow discharge on Danube River

Simulation of flow discharge on Danube River Annals of the University of Craiova, Mathematics and Computer Science Series Volume 41(1), 2014, Pages 129 137 ISSN: 1223-6934 Simulation of flow discharge on Danube River PETRE BĂZĂVAN ABSTRACT. River

More information