STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY


 Imogene Kennedy
 3 years ago
 Views:
Transcription
1 STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1
2 SIGNIFICANCE OF CONDUITS In considering the convenience and necessities in every day life, it is truly amazing to note the role played by conduits in transporting fluid. For example, the water in our homes is normally conveyed through pressure pipelines, from the distribution system, so that it will be available when and where we want it. Moreover, virtually all of this water leaves our homes as dilute wastes through sewers, another type of conduits. Oil is often transferred from their source by pressure pipelines to refineries while gas is conveyed by pipelines into a distribution network for supply. Thus, it can be seen that the fluid flow in conduits is of immense practical significance in civil/environmental engineering. 2
3 PIPE FLOW SYSTEM A pipe is a closed conduit, generally of circular crosssection, used to carry water or any other fluid. When the pipe is running full, the flow is under pressure. But if the pipe is not running full (as in case of sewer pipes, culverts etc), the flow is not under pressure. In such case the atmospheric pressure exists inside the pipe. We will discuss the flow of pipes under pressure only. 3
4 HYDRAULIC RADIUS Hydraulic Radius = R h = A/P Where, A is crosssectional Area P is the Wetted Perimeter (length of boundary in contact with water) 4
5 HYDRAULIC RADIUS For Pipe Flow: A R 2 & P 2R R h 2 R 2R R 2 D 4 5
6 HEAD (REF: Energy head topic) 2 2 p1 V p V z h 2 2 L z g g g g In above equation each term has the dimensions of length. Thus p/g, called the pressure head, represents the energy per unit weight stored in the fluid by virtue of the pressure under which the fluid exists. Z called the elevation head or potential head, represents the potential energy per pound of fluid; V 2/ 2g, called the velocity head, represents the kinetic energy per pound of fluid. We call the sum of these three terms the total head, usually denoted by H, so that H 2 p V z g 2g 6
7 GRAPHICAL REPRESENTATION OF PRESSURE HEAD AND VELOCITY HEAD If pressure head of liquid flowing in a pipe be plotted as vertical ordinates on the centre line of the pipe, then the line joining the tops of such ordinates is known as Hydraulic Grade Line (HGL). If the sum of pressure heads and velocity heads of a liquid flowing in a pipe be plotted as vertical ordinates on the center line of the pipe then the line joining the tops of such ordinates is known as Energy Grade Line (EGL) or Total Energy Line (TEL). In other words EGL lies over the HGL by an amount equal to the velocity heads as shown in the figure. 7
8 GRAPHICAL REPRESENTATION OF PRESSURE HEAD AND VELOCITY HEAD 8
9 LOSS OF HEAD IN PIPES When the water is flowing in a pipe, it experiences some resistance to its motion, whose effect is to reduce the velocity and ultimately the available head of water. Though there are many type of losses, yet the major loss is due to frictional resistance of the pipe only. The frictional resistance depends upon the roughness of the inside surface of pipe. It has been experimentally found that more the roughness of inside surface of pipe, greater will be the resistance. This friction is known as fluid friction and the resistance is known as frictional resistance. 9
10 LOSSES Fluids have losses due to friction in the pipe and minor losses associated with tees, elbow, valves etc. Bernoulli s Equation becomes, Where, h f friction head loss. h m minor head loss h f h m g V z p g V z p g g 10
11 1. FRICTIONAL LOSSES IN PIPE FLOW In fluid flow, the friction head loss can be calculated by considering the pressure losses along the pipelines. In a horizontal pipe of diameter D carrying a steady flow there will be a pressure drop in a length L of the pipe. Equating the frictional resistance to the difference in pressure forces, and manipulating resulted into the following expression: This equation is known as DarcyWeisbach (DW) equation, in which f is the friction factor. It should be noted that f is dimensionless, and the value is not constant. 11
12 1. FRICTIONAL LOSSES IN PIPE FLOW 12
13 REYNOLDS NUMBER The transition from laminar to turbulent flow depends on the geometry, surface roughness, flow velocity, surface temperature, and type of fluid, among other things. After exhaustive experiments in the 1880s, Osborne Reynolds discovered that the flow regime depends mainly on the ratio of inertial forces to viscous forces in the fluid. This ratio is called the Reynolds number and is expressed for internal flow in a circular pipe as Where, V is flow velocity (m/s), d is diameter in this case, in m). 13
14 2. MINOR LOSSES In addition to head loss due to friction, there are always other head losses due to pipe expansions and contractions, bends, valves, and other pipe fittings. These losses are usually known as minor losses (h m ). In case of a long pipeline, the minor losses maybe negligible compared to the friction losses, however, in the case of short pipelines, their contribution may be significant. These are: Losses due to pipe fittings Sudden Enlargement Sudden Contraction Bends etc. 14
15 DARCYWEISBACH (DW) EQUATION 15
16 PROBLEM NO.01 16
17 PROBLEM NO.02 17
18 PROBLEM NO.03 18
19 PROBLEM NO.04 19
20 HAZENWILLIAMS EQUATION 20
21 HAZENWILLIAMS FORMULA For calculating energy loss to friction the special case of the flow of water (Newtonian fluid) in pipeline systems. Limited to the flow of water in pipe larger than 2.0 in and smaller than 6.0 ft in diameter. Velocity of flow should not exceed 10.0 ft/s Developed for water at
22 v = Average velocity of flow (ft/s) C h = HazenWilliams coefficient (dimensionless) R = Hydraulic radius of flow conduit (ft) s v C R s h 0.54 = Ratio of h L /L: energy loss/length of conduit (ft/ft) 22
23 v ChR s v = Average velocity of flow (m/s) C h = HazenWilliams coefficient (dimensionless) R = Hydraulic radius of flow conduit (m) s = Ratio of h L /L: energy loss/length of conduit (m/m) 23
24 24
25 PROBLEM NO.05 For what velocity of flow of water in a new, clean, 6in diameter pipe with an energy loss of 6.1 m of head occur over a length of m? Compute the volume flow rate at that velocity, using the design value of Ch for NEW cast iron pipe. SOLUTION: Then, S= h L /L = (6.1 m)/(304.8 m)= 0.02 R= D/4 = (0.154 m)/4 = m C h = 130 = 0.85C h R 0.63 s 0.54 = 0.85(130)(0.0385) 0.63 (0.02) 0.54 = m/s Q = A = (0.019 m m/s) = m 3 /s 25
26 OTHER FORMS OF THE HAZENWILLIAMS FORMULA 26
27 PIPE FLOW ANALYSIS 27
28 PIPES IN SERIES When two or more pipes of different diameters or roughness are connected in such a way that the fluid follows a single flow path throughout the system, the system represents a series pipeline. In a series pipeline the total energy loss is the sum of the individual minor losses and all pipe friction losses. Discharge = Q = Q 1 = Q 2 = Q 3 =  Head losses = h L = h L1 +h L2 +h L
29 PIPES IN PARALLEL A combination of two or more pipes connected between two points so that the discharge divides at the first junction and rejoins at the next is known as pipes in parallel. Here the head loss between the two junctions is the same for all pipes. Discharge = Q = Q 1 + Q 2 + Q Head losses = h L = h L1 =h L2 =h L3 =
30 PIPE NETWORKS In municipal distribution systems, pipes are frequently interconnected so that the flow to a given outlet may come by several different paths, as in Fig. 30
31 PIPE NETWORKS As a result, we often cannot tell by inspection which way the flow travels, as in pipe BE. Nevertheless, the flow in any network, however complicated, must satisfy the basic relations of continuity and energy as follows: 1. The flow into any junction must equal the flow out of it. 2. The flow in each pipe must satisfy the pipefriction laws for flow in a single pipe. 3. The algebraic sum of the head losses around any closed loop must be zero. 31
32 PIPE NETWORK ANALYSIS Pipe network analysis involves the determination of the pipe flow rates and pressure heads at the outflows points of the network. The flow rate and pressure heads must satisfy the continuity and energy equations. The earliest systematic method of network analysis (HardyCross Method) is known as the head balance or closed loop method. This method is applicable to system in which pipes form closed loops. The outflows from the system are generally assumed to occur at the nodes junction. For a given pipe system with known outflows, the HardyCross method is an iterative procedure based on initially iterated flows in the pipes. At each junction these flows must satisfy the continuity criterion, i.e. the algebraic sum of the flow rates in the pipe meeting at a junction, together with any external flows is zero. 32
33 PROCEDURE: Step1: By careful inspection assume the most reasonable distribution of flows that satisfies condition 1. Step2: Write condition 2 for each pipe in the form: h where K and n are constants for each pipe. L KQ n 33
34 PROCEDURE: Step3: To investigate condition 3, compute the algebraic sum of the head losses around each elementary loop, h L =.KQ n. Consider losses from clockwise flows as positive, counterclockwise negative. Only by good luck will these add up to zero on the first trial. Step4: Adjust the flow in each loop by a correction Q to balance the head in that loop and give KQ n = 0. The heart of this method lies in the following determination of Q. For any pipe, we may write Q = Q 0 + Q 34
35 PROCEDURE: where Q is the correct discharge and Q o is the assumed discharge. Then, for each pipe, h L KQ n n n1 K( Q0 Q) K( Q0 Q...) If Q is small compared with Q o, we may neglect the terms of the binomial series after the second one, so that h L KQ n 0 QKnQ For a loop, h L = KQ n = 0, so because Q is the same for all pipes in that loop, n1 0 n n1 KQ0 Q KnQ0 0 35
36 PROCEDURE: As we must sum the corrections of head loss in all pipes arithmetically (treating all terms as positive), we may solve this equation for Q, Q n KQ 0 KQ Q n1 0 n1 0 since, h L /Q = KQ nl. We emphasize again that we must sum the numerator of algebraically, with due account of each sign, while we must sum the denominator arithmetically. Note that the in the numerator gives this quantity the same sign as the n1 head loss. Q Q 0 0 n hl h L / Q 0 36
37 PROCEDURE: The negative sign in Eq. indicates that when there is an excess of head loss around a loop in the clockwise direction, we must subtract the Q from clockwise Q o values and add it to counterclockwise ones. The reverse is true if there is a deficiency of head loss around a loop in the clockwise direction. Step5: After we have given each loop a first correction, the losses will still not balance, because of the interaction of one loop upon another (pipes which are common to two loops receive two independent corrections, one for each loop). So we repeat the procedure, arriving at a second correction, and so on, until the corrections become negligible. 37
38 PROCEDURE: As values of K appear in both the numerator and denominator of the first form, we can use values proportional to the actual K to find the distribution. The second form is more convenient for use with pipefriction diagrams for water pipes. An attractive feature of this approximation method is, that errors in computation have the same effect as errors in judgment and the process eventually corrects them. 38
39 PROBLEM NO.06 If the flow into and out of a twoloop pipe system are as shown in Fig., determine the flow in each pipe using only a basic scientific calculator. The K values for each pipe were calculated from the pipe and minor loss characteristics and from an assumed value of f, and n = 2, 39
40 SOLUTION: As a first step, assume a flow in each pipe such that continuity holds at all junctions. Take clockwise flows as positive. Calculate Q for each loop, make corrections to the assumed Qs, and repeat several times until the Qs are quite small. 40
41 41
42 PROBLEM NO.07 Find the magnitude and direction of the flow in network lines ab and bc (Fig. P8.117) after making two sets of corrections. The numbers on the figure are the K values of each line; take n = 2.0. Start by assuming initial flows as follows: 9 cfs in lines ab and cd, 6 cfs in lines ac and bd, and 3 cfs in line bc. 42
43 43
44 44
45 45
46 46
Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationReview of pipe flow: Friction & Minor Losses
ENVE 204 Lecture 1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationPressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.
Design Manual Chapter  Stormwater D  Storm Sewer Design D Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationHydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1
Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationChapter 10 Flow in Conduits
Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear
More informationFLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE
11 ACPPA TECHNICAL SERIES FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE This paper presents formulas to assist in hydraulic design of concrete pressure pipe. There are many formulas to calculate
More information1Reynold s Experiment
Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationChapter 3 Water Flow in Pipes
The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics  ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution
More informationViscous Flow in Ducts
Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate
More informationFACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
More informationHydraulics Prof Dr Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati
Hydraulics Prof Dr Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No # 08 Pipe Flow Lecture No # 04 Pipe Network Analysis Friends, today we will be starting
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)
ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and noncircular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey
More informationFluid Mechanics II 3 credit hour. Fluid flow through pipesminor losses
COURSE NUMBER: ME 323 Fluid Mechanics II 3 credit hour Fluid flow through pipesminor losses Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Losses in Noncircular
More informationFluids Engineering. Pipeline Systems 2. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET
COURSE NUMBER: ME 423 Fluids Engineering Pipeline Systems 2 Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 SERIES PIPE FLOW WITH PUMP(S) 2 3 4 Colebrook
More informationAn overview of the Hydraulics of Water Distribution Networks
An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationOPEN CHANNEL FLOW. Onedimensional  neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. Onedimensional Flow
OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationEngineers Edge, LLC PDH & Professional Training
510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 2666915 fax (678) 6431758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC Pipe FlowFriction Factor
More informationFLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10
Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of
More informationAnalysis Methods for Water Distribution Systems3 rd Class )طرق تحليل أنظمة توزيع المياه( Dr. Sataa A. AlBayati (1011)
تسم هللا الزحمه الزحيم Analysis Methods for Water Distribution Systems3 rd Class )طرق تحليل أنظمة توزيع المياه( Dr. Sataa A. AlBayati (1011) Methods of analysis are: )المقاطغ( Sectioning.1 )االوثىب
More informationPIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number.
PIPING SYSTEMS In this chapter we will review some of the basic concepts associated with piping systems. Topics that will be considered in this chapter are  Pipe and tubing standards  Effective and hydraulic
More informationFLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines.
FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationBasic Hydraulics. Rabi H. Mohtar ABE 325
Basic Hydraulics Rabi H. Mohtar ABE 35 The river continues on its way to the sea, broken the wheel of the mill or not. Khalil Gibran The forces on moving body of fluid mass are:. Inertial due to mass (ρ
More informationChapter (6) Energy Equation and Its Applications
Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation
More informationHydraulic (Piezometric) Grade Lines (HGL) and
Hydraulic (Piezometric) Grade Lines (HGL) and Energy Grade Lines (EGL) When the energy equation is written between two points it is expresses as in the form of: Each term has a name and all terms have
More informationWhen water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).
PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:
More informationAnalysis of Complex Pipe Networks with Multiple Loops and Inlets and Outlets
Analysis of Complex Pipe Networks with Multiple Loops and Inlets and Outlets The techniques described previously for analysis of pipe flow are satisfactory if the pipe system is simple, consisting of one
More informationEXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS
MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:
More informationLOSSES DUE TO PIPE FITTINGS
LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall
More informationHydraulic Design Of Polyethylene Pipes
Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,
More informationChapter 7 The Energy Equation
Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationUNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow
UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons
More informationLecture Note for Open Channel Hydraulics
Chapter one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand
More informationMajor and Minor Losses
Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationClosed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.
OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric
More informationF L U I D S Y S T E M D Y N A M I C S
F L U I D S Y S T E M D Y N A M I C S T he proper design, construction, operation, and maintenance of fluid systems requires understanding of the principles which govern them. These principles include
More informationRate of Flow Quantity of fluid passing through any section (area) per unit time
Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section
More informationINSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS
INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS VT2010 Pipe Flow: General Information: Attendance at the laboratory experiment is required for completion of the course. The experiments will be
More informationOpen Channel Flow I  The Manning Equation and Uniform Flow COURSE CONTENT
Open Channel Flow I  The Manning Equation and Uniform Flow Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Flow of a liquid may take place either as open channel flow or pressure flow. Pressure
More informationChapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh
Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More informationClosed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.
OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric
More informationSENTHIL SELIYAN ELANGO ID: UB3016SC17508 AIU HYDRAULICS (FLUID DYNAMICS)
SENTHIL SELIYAN ELANGO ID: UB3016SC17508 AIU HYDRAULICS (FLUID DYNAMICS) ATLANTIC INTERNATIONAL UNIVERSITY INTRODUCTION Real fluids The flow of real fluids exhibits viscous effect, which are they tend
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More informationExperiment To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.
SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s
More informationFluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  42 Flows with a Free Surface Part II Good morning. I welcome you to this session
More informationProperties and Definitions Useful constants, properties, and conversions
Properties and Definitions Useful constants, properties, and conversions gc = 32.2 ft/sec 2 [lbmft/lbfsec 2 ] ρwater = 1.96 slugs/ft 3 γwater = 62.4 lb/ft 3 1 ft 3 /sec = 449 gpm 1 mgd = 1.547 ft 3 /sec
More informationHEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1
HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the
More informationNPTEL Quiz Hydraulics
Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationCIE4491 Lecture. Hydraulic design
CIE4491 Lecture. Hydraulic design Marieclaire ten Veldhuis 199013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and
More informationUNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW
UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More information4 Pipelines and Pipe Network Hydraulics I
4 Pipelines and Pipe Network Hydraulics I The hydraulics of pipelines and pipe networks presented herein is limited to turbulent flow of water in closed conduits (pipes) flowing full. Closed conduits flowing
More informationChapter 7 FLOW THROUGH PIPES
Chapter 7 FLOW THROUGH PIPES 71 Friction Losses of Head in Pipes 72 Secondary Losses of Head in Pipes 73 Flow through Pipe Systems 48 71 Friction Losses of Head in Pipes: There are many types of losses
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationREE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology
REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes
More informationWATER DISTRIBUTION NETWORKS
WATER DISTRIBUTION NETWORKS CE 370 1 Components of Water Supply System 2 1 Water Distribution System Water distribution systems are designed to adequately satisfy the water requirements for a combinations
More informationNew Website: M P E il Add. Mr. Peterson s Address:
Brad Peterson, P.E. New Website: http://njut009fall.weebly.com M P E il Add Mr. Peterson s Email Address: bradpeterson@engineer.com If 6 m 3 of oil weighs 47 kn calculate its If 6 m 3 of oil weighs 47
More informationThe effect of geometric parameters on the head loss factor in headers
Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract
More informationObjectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation
Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved
More informationCIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University
CIVE 401  HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems with
More informationFor example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:
Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationBasic Fluid Mechanics
Basic Fluid Mechanics Chapter 5: Application of Bernoulli Equation 4/16/2018 C5: Application of Bernoulli Equation 1 5.1 Introduction In this chapter we will show that the equation of motion of a particle
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationCalculation of Pipe Friction Loss
Doc.No. 6122F3T071 rev.2 Calculation of Pipe Friction Loss Engineering Management Group Development Planning Department Standard Pump Business Division EBARA corporation October 16th, 2013 1 / 33 2 /
More informationExperiment (4): Flow measurement
Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time
More informationAtmospheric pressure. 9 ft. 6 ft
Name CEE 4 Final Exam, Aut 00; Answer all questions; 145 points total. Some information that might be helpful is provided below. A Moody diagram is printed on the last page. For water at 0 o C (68 o F):
More information(British) (SI) British Metric L T [V] = L T. [a] = 2 [F] = F = 2 T
Hydraulics ecture # CWR 40 age () ecture # Outline: Review of terminology in fluid mechanics: Energy or work Hydraulic head Bernoulli s aw, Conductivity (examle) ransient & turbulent Friction head loss
More informationEXPERIMENT NO: F5. Losses in Piping Systems
SJSU ME115  THERMAL ENGINEERING LAB EXPERIMENT NO: F5 Losses in Piping Systems Objective One of the most common problems in fluid mechanics is the estimation of pressure loss. It is the objective of this
More informationPressure and Flow Characteristics
Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to
More informationMYcsvtu Notes HEAT TRANSFER BY CONVECTION
www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in
More informationThe Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz
Solid State Phenomena Vol. 113 (2006) pp 603608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics
More informationCVE 372 HYDROMECHANICS EXERCISE PROBLEMS
VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take
More informationOpen Channel Hydraulics I  Uniform Flow
PDHonline Course H138 (2 PDH) Open Channel Hydraulics I  Uniform Flow Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax:
More informationPIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +
The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationChapter 3 Bernoulli Equation
1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around
More informationHEADLOSS ESTIMATION. Mekanika Fluida 1 HST
HEADLOSS ESTIMATION Mekanika Fluida HST Friction Factor : Major losses Laminar low HagenPoiseuille Turbulent (Smoot, Transition, Roug) Colebrook Formula Moody diagram SwameeJain 3 Laminar Flow Friction
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More information