Lecture GxE interactions

Size: px
Start display at page:

Download "Lecture GxE interactions"

Transcription

1 Lecture GxE interactions Lynch and Walsh Ch 24 Reference Muir, W. M., Y. Nyquist and S. Xu Alternative partitioning of the genotype by environment interaction. Theor. and Appl. Gen. 84: Vince Matassa: Statistical methods for partitioning genotypeby-environment interactions: an empirical evaluation of Muir's method using a GenStat program (in handouts) L.C. Emebiri and D.B. Moody Quantitative characterization of malting barleys for consistency in grain protein concentration (in handouts) Lecture 16 1

2 An Early Study on Fitness of Drosophila In Natural Setting Wright et. al one of the first molecular genetics experiments Lecture 16 2

3 Andres Canyon Keen Pinon Flat Lecture 16 3

4 Lecture 16 4 Observed Numbers of Chromosome Arrangements () Andres Canyon Pinon Flat Keen Camp TOT CH/ TL AR/ TL AR/ CH ST/ TL ST/ CH ST/ AR TL/ TL CH/ CH AR/ AR ST/ ST Location

5 Andres Canyon Keen *** *** NS Pinon Flat Lecture 16 5

6 Statistical Definition GxE Interactions Effects are not additive: the whole is greater than the sum of the parts. Biological Definition One event impacts another in a chain of events: The environment up and down regulates genes, i.e. there is an interaction between the genotype and environment that produces the phenotype. Lecture 16 6

7 The Basic Model Y = G + i i E i G 2 Breed B Genotype Effect G 1 Breed A E 1 Hot E 2 Cold Environment Effect The response of a genotype to a change in an environmental factor is sometimes called a reaction norm Lecture 16 7

8 GxE May Cause Changes in Rankings Y = G + E + i i i GxE i Change in rank There is no universal best genotype A specific breed is bred to each environment G 2 Breed B G 1 Breed A E 1 Hot E 2 Cold Lecture 16 8

9 GxE May Cause Changes in Scale Y = G + E + i i i GxE i Change in Scale Breed B is more environmentally sensitive G 2 Breed B G 1 Breed A Breed A is Environmentally Insensitive E 1 Hot E 2 Cold Lecture 16 9

10 GxE May Cause Both Changes in Scale and Rank Y i = G i + E j + GxE ij + ε ( ij) k Change in Scale Breed B is more environmentally sensitive and Better Suited to Cold G 2 Breed B G 1 Breed A Breed A is Environmentally Insensitive and Better Suited to Hot E 1 Hot E 2 Cold Lecture 16 10

11 Detection and Interpretation of GxE Simple Analysis of Variance Genotypes (G) Environments (E) GxE Error Interpretation and determination of Nature is more difficult and important Determination of Interactions Due To Scale vs. Re-ranking is critical Lecture 16 11

12 Alternative Situations Where GxE Can Occur Impacts How to Analyze and Interpret Genotypes Environments Fixed Random Fixed Random Lecture 16 12

13 Genotypes Fixed Elite Lines White Leghorn vs Barred Rock Angus vs Zebu Lines with specific genes of large effects Naked Neck vs Normal Dwarf vs Normal ESR vs Normal Lecture 16 13

14 Naked Neck (courtesy A. Cahaner) Normal Lecture 16 14

15 Genotypes Random Individual Sires or Sire Lines Sampled From A Population of Sires Lecture 16 15

16 Environments Fixed Macro-environmental Differences Arctic vs Temperate vs Tropical Humid vs Dry Disease or pests vs not (ticks) Floors Cement Dirt Housing Floor pen Cages Lecture 16 16

17 Environments Random Herd Year Season Effects Not Controllable Outdoor housing usually Lecture 16 17

18 Importance of GxE in Alternative Situations Combinations of Genotypes (F vs.r) Environments (F vs. R) Lecture 16 18

19 Genotypes Fixed Environments Random Breed x Herd, Year, Season (H-Y-S) Interactions for a given trait Be aware that for this trait, it most likely is also susceptible to GxE for Fixed environments too Suggests Caution to a breeder Particularly if breeds re-ranking in different H-Y-S Important question might be which breed is most stable over environments because cannot control environment Lecture 16 19

20 Genotypes Random Environments Fixed Issue: Is there genetic variability for adaptability to specific environments Do you need to develop one breed or many Will broiler breeds developed for the North American market do well in South America? Different Altitude, Nutrition, Disease Answer depends on if a re-rankings of genotypes across environments occurs, not change in variance Lecture 16 20

21 Do a GxE experiment with Random Sire Lines If GxE due to changes in scale Unimportant If GxE due to change in Rank Critical Must select animals in specific environment for production in that environment Example Muir (1986) Sire line x (4 bird vs 1 bird) cage environment not significant Same Sires x (9 bird vs 1 bird) cage environment significant Implies that selection of birds in single bird cages will improve production in 4 bird cages but not 9 bird cages Lecture 16 21

22 Genotypes Random Environments Random Sire x Herd, Year, Season (H-Y-S) Interactions for a given trait Does the breeder need to measure performance over several random uncontrollable environments before a breeding decision can be made If GxE Significant and sire lines are re-ranking in different H-Y-S Be sure for that Offspring From a Sire are Measured Across a large number of different Herds, Year, and Seasons Be aware that for this trait, it most likely is also susceptible to GxE for Fixed environments too Suggests Caution to a breeder Lecture 16 22

23 Genotypes Fixed Environments Fixed Common Type of GxE experiment Do GxE Experiment Determine GxE due to Re-ranking Chose Specific Breed for Specific Environment Scale Unimportant Lecture 16 23

24 Summary GxE Interactions In Most Situations Need to determine if GxE is due to re-ranking of genotypes across environments Exception: if one wants a consistent producer across environments change in scale important Lecture 16 24

25 Analysis of Variance Lecture 16 25

26 Partitioning of GxE Method 1: Re-Ranking of Genotypes Important Determination of Heterogeneity of Variances G 1 G 1 G 1 G 2 G 4 G 2 G 4 G2 G 4 G 3 G 3 G 3 E 1 E 2 E n Standard Deviation of Genotypes in E 1 Z = V1( 1 G ) Standard Deviation of Genotypes in E 2 Z = V2( 2 G ) Standard Deviation of Genotypes in E n V (G) Lecture Z n = n

27 Sub-partitioning of GxE: Method 1 Fixed or Random Genotypes; Fixed Environments Issue: Re-ranking Degree of interaction due to scale correlation of same genotype across environments Lecture 16 27

28 Partitioning of GxE Method 2: Environmental Sensitivity Important Determination of Heterogeneity of Variances E 1 E 1 E 1 E 2 E 4 E 2 E 4 E2 E 4 E 3 E 3 E 3 G 1 G 2 G n Standard Deviation Among Environments For G 1 S 1 = V E) 1( Standard Deviation Among Environments For G 2 2 V E) Standard Deviation Among Environments For G n Sn = Vn (E S = 2( ) Lecture 16 28

29 Sub-partitioning of GxE: Method 2 Fixed Genotypes, Random Environments, Issue: Stability Differential Environmental Sensitivity Among Entries Differences in Correlations Among Pairs of Entries Lecture 16 29

30 Example Data Lecture 16 30

31 Program For Partitioning GxE data a1; input gen env y; cards; proc glm; classes gen env; model y=env gen env*gen/ss1; proc sort data=a1;by env; proc means noprint;by env;var y; output out=m1 mean=my css=sy; data m2;set m1; sy=sqrt(sy); proc means noprint data=m2;var sy; output css=scalee; proc print;run; proc sort data=a1; by gen; proc means noprint;by gen;var y; output out=m1 mean=my css=sy; data m2;set m1; sy=sqrt(sy); proc means noprint data=m2;var sy; output css=scaleg; proc print;run;quit; Lecture 16 31

32 Source of Variation Overall ANOV Degrees of Freedom Sums of Squares Environments (E) 4 0 Genotypes (G) 1 40 GxE 4 20 Lecture 16 32

33 Re-ranking does not occur in the first case but does in the second Both Genotypes were Equally response to the Environment Lecture 16 33

34 Lab Problem From the Following Barley Data, Each Group Chose 2 different genotypes. Partition the GxE interaction for the pair and interpret the results. Lecture 16 34

Estimating Breeding Values

Estimating Breeding Values Estimating Breeding Values Principle how is it estimated? Properties Accuracy Variance Prediction Error Selection Response select on EBV GENE422/522 Lecture 2 Observed Phen. Dev. Genetic Value Env. Effects

More information

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 2: how traits are passed from the parents

More information

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 3. The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 3. The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs INTRODUCTION TO ANIMAL BREEDING Lecture Nr 3 The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs Etienne Verrier INA Paris-Grignon, Animal Sciences Department

More information

Multiple random effects. Often there are several vectors of random effects. Covariance structure

Multiple random effects. Often there are several vectors of random effects. Covariance structure Models with multiple random effects: Repeated Measures and Maternal effects Bruce Walsh lecture notes SISG -Mixed Model Course version 8 June 01 Multiple random effects y = X! + Za + Wu + e y is a n x

More information

3. Properties of the relationship matrix

3. Properties of the relationship matrix 3. Properties of the relationship matrix 3.1 Partitioning of the relationship matrix The additive relationship matrix, A, can be written as the product of a lower triangular matrix, T, a diagonal matrix,

More information

Towards more uniform pig performance. Craig Lewis and Susanne Hermesch

Towards more uniform pig performance. Craig Lewis and Susanne Hermesch Towards more uniform pig performance Craig Lewis and Susanne Hermesch Variability: The issue... - Cost to industry $ - Stabilise the supply chain - Targeting the main traits that increase variability -

More information

TASK 6.3 Modelling and data analysis support

TASK 6.3 Modelling and data analysis support Wheat and barley Legacy for Breeding Improvement TASK 6.3 Modelling and data analysis support FP7 European Project Task 6.3: How can statistical models contribute to pre-breeding? Daniela Bustos-Korts

More information

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 2. Genetics of quantitative (multifactorial) traits What is known about such traits How they are modeled

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 2. Genetics of quantitative (multifactorial) traits What is known about such traits How they are modeled INTRODUCTION TO ANIMAL BREEDING Lecture Nr 2 Genetics of quantitative (multifactorial) traits What is known about such traits How they are modeled Etienne Verrier INA Paris-Grignon, Animal Sciences Department

More information

Lecture WS Evolutionary Genetics Part I 1

Lecture WS Evolutionary Genetics Part I 1 Quantitative genetics Quantitative genetics is the study of the inheritance of quantitative/continuous phenotypic traits, like human height and body size, grain colour in winter wheat or beak depth in

More information

Lecture 08: Standard methods. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013

Lecture 08: Standard methods. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013 Lecture 08: G x E: Genotype-byenvironment interactions: Standard methods Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013 1 G x E Introduction to G x E Basics of G x E G x E is a correlated

More information

Quantitative characters - exercises

Quantitative characters - exercises Quantitative characters - exercises 1. a) Calculate the genetic covariance between half sibs, expressed in the ij notation (Cockerham's notation), when up to loci are considered. b) Calculate the genetic

More information

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations Lecture 19 Long Term Selection: Topics Selection limits Avoidance of inbreeding New Mutations 1 Roberson (1960) Limits of Selection For a single gene selective advantage s, the chance of fixation is a

More information

G E INTERACTION USING JMP: AN OVERVIEW

G E INTERACTION USING JMP: AN OVERVIEW G E INTERACTION USING JMP: AN OVERVIEW Sukanta Dash I.A.S.R.I., Library Avenue, New Delhi-110012 sukanta@iasri.res.in 1. Introduction Genotype Environment interaction (G E) is a common phenomenon in agricultural

More information

Rebops. Your Rebop Traits Alternative forms. Procedure (work in pairs):

Rebops. Your Rebop Traits Alternative forms. Procedure (work in pairs): Rebops The power of sexual reproduction to create diversity can be demonstrated through the breeding of Rebops. You are going to explore genetics by creating Rebop babies. Rebops are creatures that have

More information

Models with multiple random effects: Repeated Measures and Maternal effects

Models with multiple random effects: Repeated Measures and Maternal effects Models with multiple random effects: Repeated Measures and Maternal effects 1 Often there are several vectors of random effects Repeatability models Multiple measures Common family effects Cleaning up

More information

Speciation factsheet. What is a species?

Speciation factsheet. What is a species? What is a species? A species is a group of interbreeding individuals that share a gene pool and are reproductively isolated from other species. It is impossible to determine whether two organisms are from

More information

Selection on Correlated Characters (notes only)

Selection on Correlated Characters (notes only) Selection on Correlated Characters (notes only) The breeder s equation is best suited for plant and animal breeding where specific traits can be selected. In natural populations selection is rarely directed

More information

Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus. Q8 (Biology) (4.6)

Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus. Q8 (Biology) (4.6) Q1 (4.6) What is variation? Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus Q3 (4.6) What are genes? Q4 (4.6) What sort of reproduction produces genetically

More information

Lecture 2: Linear and Mixed Models

Lecture 2: Linear and Mixed Models Lecture 2: Linear and Mixed Models Bruce Walsh lecture notes Introduction to Mixed Models SISG, Seattle 18 20 July 2018 1 Quick Review of the Major Points The general linear model can be written as y =

More information

natural selection: theory that organisms with traits that are well suited to their environment survive and reproduce more successfully

natural selection: theory that organisms with traits that are well suited to their environment survive and reproduce more successfully What do you know about evolution? Evolution is a population s change in inheritable traits over time. One of the most common examples of evolution is an ape walking and evolving into an animal that stands

More information

3. What are the advantages and disadvantages of selective breeding?

3. What are the advantages and disadvantages of selective breeding? UNIT VI - PLANT TECHNOLOGIES Lesson 1: Traditional Plant Breeding Competency/Objective: Describe traditional plant breeding processes. Study Questions References: 1. What is natural crossbreeding? 2. What

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 4.2: Biodiversity Notes Biodiversity is the variety of living organisms, over time the variety of life on Earth has become more extensive but now it is being threatened by

More information

I. GREGOR MENDEL - father of heredity

I. GREGOR MENDEL - father of heredity GENETICS: Mendel Background: Students know that Meiosis produces 4 haploid sex cells that are not identical, allowing for genetic variation. Essential Question: What are two characteristics about Mendel's

More information

Pedigree and genomic evaluation of pigs using a terminal cross model

Pedigree and genomic evaluation of pigs using a terminal cross model 66 th EAAP Annual Meeting Warsaw, Poland Pedigree and genomic evaluation of pigs using a terminal cross model Tusell, L., Gilbert, H., Riquet, J., Mercat, M.J., Legarra, A., Larzul, C. Project funded by:

More information

7.2: Natural Selection and Artificial Selection pg

7.2: Natural Selection and Artificial Selection pg 7.2: Natural Selection and Artificial Selection pg. 305-311 Key Terms: natural selection, selective pressure, fitness, artificial selection, biotechnology, and monoculture. Natural Selection is the process

More information

Quantitative Genetics I: Traits controlled my many loci. Quantitative Genetics: Traits controlled my many loci

Quantitative Genetics I: Traits controlled my many loci. Quantitative Genetics: Traits controlled my many loci Quantitative Genetics: Traits controlled my many loci So far in our discussions, we have focused on understanding how selection works on a small number of loci (1 or 2). However in many cases, evolutionary

More information

Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013

Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013 Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 013 1 Estimation of Var(A) and Breeding Values in General Pedigrees The classic

More information

Lecture 9. Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Synbreed course version 3 July 2013

Lecture 9. Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Synbreed course version 3 July 2013 Lecture 9 Short-Term Selection Response: Breeder s equation Bruce Walsh lecture notes Synbreed course version 3 July 2013 1 Response to Selection Selection can change the distribution of phenotypes, and

More information

AP Biology Essential Knowledge Cards BIG IDEA 1

AP Biology Essential Knowledge Cards BIG IDEA 1 AP Biology Essential Knowledge Cards BIG IDEA 1 Essential knowledge 1.A.1: Natural selection is a major mechanism of evolution. Essential knowledge 1.A.4: Biological evolution is supported by scientific

More information

Lecture 7 Correlated Characters

Lecture 7 Correlated Characters Lecture 7 Correlated Characters Bruce Walsh. Sept 2007. Summer Institute on Statistical Genetics, Liège Genetic and Environmental Correlations Many characters are positively or negatively correlated at

More information

1. What is genetics and who was Gregor Mendel? 2. How are traits passed from one generation to the next?

1. What is genetics and who was Gregor Mendel? 2. How are traits passed from one generation to the next? Chapter 11 Heredity The fruits, vegetables, and grains you eat are grown on farms all over the world. Tomato seeds produce tomatoes, which in turn produce more seeds to grow more tomatoes. Each new crop

More information

Lecture 6: Introduction to Quantitative genetics. Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011

Lecture 6: Introduction to Quantitative genetics. Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011 Lecture 6: Introduction to Quantitative genetics Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011 Quantitative Genetics The analysis of traits whose variation is determined by both a

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.7 Applications to Population Distributions 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.7. Applications to Population Distributions Note. In this section we break a population into states and

More information

Changing Planet: Changing Mosquito Genes

Changing Planet: Changing Mosquito Genes Changing Planet: Changing Mosquito Genes Name Background As the climate changes around the globe, organisms will need to adapt in order to survive. But what does it mean to adapt? When you put on a sweater

More information

name: Worksheets for Ch 14, 15, 16 Evolution

name: Worksheets for Ch 14, 15, 16 Evolution name: Worksheets for Ch 14, 15, 16 Evolution Classify the following scenarios as examples of either artificial or natural selection by placing the letter for each scenario into the appropriate box below.

More information

What is Natural Selection? Natural & Artificial Selection. Answer: Answer: What are Directional, Stabilizing, Disruptive Natural Selection?

What is Natural Selection? Natural & Artificial Selection. Answer: Answer: What are Directional, Stabilizing, Disruptive Natural Selection? What is Natural Selection? Natural & Artificial Selection Practice Quiz What are Directional, Stabilizing, Disruptive Natural Selection? When an environment selects for a trait in organisms. Who came up

More information

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE NORMAL DISTRIBUTIONS OF PHENOTYPES Mice Fruit Flies In:Introduction to Quantitative Genetics Falconer & Mackay 1996 CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE Mean and variance are two quantities

More information

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 4. The efficiency of selection The selection programmes

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 4. The efficiency of selection The selection programmes INTRODUCTION TO ANIMAL BREEDING Lecture Nr 4 The efficiency of selection The selection programmes Etienne Verrier INA Paris-Grignon, Animal Sciences Department Verrier@inapg.fr The genetic gain and its

More information

The concept of breeding value. Gene251/351 Lecture 5

The concept of breeding value. Gene251/351 Lecture 5 The concept of breeding value Gene251/351 Lecture 5 Key terms Estimated breeding value (EB) Heritability Contemporary groups Reading: No prescribed reading from Simm s book. Revision: Quantitative traits

More information

Mixed-Model Estimation of genetic variances. Bruce Walsh lecture notes Uppsala EQG 2012 course version 28 Jan 2012

Mixed-Model Estimation of genetic variances. Bruce Walsh lecture notes Uppsala EQG 2012 course version 28 Jan 2012 Mixed-Model Estimation of genetic variances Bruce Walsh lecture notes Uppsala EQG 01 course version 8 Jan 01 Estimation of Var(A) and Breeding Values in General Pedigrees The above designs (ANOVA, P-O

More information

Lecture 6: Selection on Multiple Traits

Lecture 6: Selection on Multiple Traits Lecture 6: Selection on Multiple Traits Bruce Walsh lecture notes Introduction to Quantitative Genetics SISG, Seattle 16 18 July 2018 1 Genetic vs. Phenotypic correlations Within an individual, trait values

More information

H = σ 2 G / σ 2 P heredity determined by genotype. degree of genetic determination. Nature vs. Nurture.

H = σ 2 G / σ 2 P heredity determined by genotype. degree of genetic determination. Nature vs. Nurture. HCS825 Lecture 5, Spring 2002 Heritability Last class we discussed heritability in the broad sense (H) and narrow sense heritability (h 2 ). Heritability is a term that refers to the degree to which a

More information

Model plants and their Role in genetic manipulation. Mitesh Shrestha

Model plants and their Role in genetic manipulation. Mitesh Shrestha Model plants and their Role in genetic manipulation Mitesh Shrestha Definition of Model Organism Specific species or organism Extensively studied in research laboratories Advance our understanding of Cellular

More information

c. M. Hernandez, J. Crossa, A. castillo

c. M. Hernandez, J. Crossa, A. castillo THE AREA UNDER THE FUNCTION: AN INDEX FOR SELECTING DESIRABLE GENOTYPES 8 9 c. M. Hernandez, J. Crossa, A. castillo 0 8 9 0 Universidad de Colima, Mexico. International Maize and Wheat Improvement Center

More information

Other Organisms (Part 3)

Other Organisms (Part 3) Name: Hour: Teacher: ROZEMA Biology Evolution Unit Addie Bacteria Other Organisms (Part 3) Let s Review What We Know So Far: Natural Selection is There are differences between the Junco birds that live

More information

Family resemblance can be striking!

Family resemblance can be striking! Family resemblance can be striking! 1 Chapter 14. Mendel & Genetics 2 Gregor Mendel! Modern genetics began in mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas

More information

15 Darwin's Theory of Natural Selection. Publication of The Origin of Species

15 Darwin's Theory of Natural Selection. Publication of The Origin of Species Publication of The Origin of Species -He continued observing the specimens he collected and thinking about natural selection, but kept it to himself for the next 20 YEARS! -In 1858, he received a manuscript

More information

A mixed model based QTL / AM analysis of interactions (G by G, G by E, G by treatment) for plant breeding

A mixed model based QTL / AM analysis of interactions (G by G, G by E, G by treatment) for plant breeding Professur Pflanzenzüchtung Professur Pflanzenzüchtung A mixed model based QTL / AM analysis of interactions (G by G, G by E, G by treatment) for plant breeding Jens Léon 4. November 2014, Oulu Workshop

More information

Evolution of Populations

Evolution of Populations Evolution of Populations Gene Pools 1. All of the genes in a population - Contains 2 or more alleles (forms of a gene) for each trait 2. Relative frequencies - # of times an allele occurs in a gene pool

More information

9/19/2016 CHAPTER 1: THE STUDY OF LIFE SECTION 1: INTRODUCTION TO THE SCIENCE OF LIFE BIOLOGY

9/19/2016 CHAPTER 1: THE STUDY OF LIFE SECTION 1: INTRODUCTION TO THE SCIENCE OF LIFE BIOLOGY CHAPTER 1: THE STUDY OF LIFE SECTION 1: INTRODUCTION TO BIOLOGY Ms. Diana THE SCIENCE OF LIFE Biology is the study of living things. In biology, you study the origins and history of life and once-living

More information

Ponce de Leon Middle School 8 th Grade Summer 2018 Instructional Packet

Ponce de Leon Middle School 8 th Grade Summer 2018 Instructional Packet Ponce de Leon Middle School 8 th Grade Summer 2018 Instructional Packet DIRECTIONS: 1. You are required to complete the Summer Instructional Packet. 2. Turn in your completed package to your Science teacher,

More information

Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes.

Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes. Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes. Enduring understanding 3.A: Heritable information provides for continuity of life. Essential

More information

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A Computer Simulations on Evolution BiologyLabs On-line Laboratory 1 for Section B Laboratory 2 for Section A The following was taken from http://www.biologylabsonline.com/protected/evolutionlab/ Introduction

More information

Chapter 5 Evolution of Biodiversity

Chapter 5 Evolution of Biodiversity Chapter 5 Evolution of Biodiversity Earth is home to a tremendous diversity of species diversity- the variety of ecosystems within a given region. diversity- the variety of species in a given ecosystem.

More information

Lecture 3. Introduction on Quantitative Genetics: I. Fisher s Variance Decomposition

Lecture 3. Introduction on Quantitative Genetics: I. Fisher s Variance Decomposition Lecture 3 Introduction on Quantitative Genetics: I Fisher s Variance Decomposition Bruce Walsh. Aug 004. Royal Veterinary and Agricultural University, Denmark Contribution of a Locus to the Phenotypic

More information

Lecture 4. Basic Designs for Estimation of Genetic Parameters

Lecture 4. Basic Designs for Estimation of Genetic Parameters Lecture 4 Basic Designs for Estimation of Genetic Parameters Bruce Walsh. Aug 003. Nordic Summer Course Heritability The reason for our focus, indeed obsession, on the heritability is that it determines

More information

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population The Evolution of Populations What is Evolution? A change over time in the genetic composition of a population Human evolution The gene pool Is the total aggregate of genes for a particular trait in a population

More information

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 Lecture 3: Linear Models Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector of observed

More information

Evolution of phenotypic traits

Evolution of phenotypic traits Quantitative genetics Evolution of phenotypic traits Very few phenotypic traits are controlled by one locus, as in our previous discussion of genetics and evolution Quantitative genetics considers characters

More information

Darwin s Theory of Evolution

Darwin s Theory of Evolution EVOLUTION Darwin s Theory of Evolution n Evolution, or change over time, is the process by which modern organisms have descended from ancient organisms. n A scientific theory is a well-supported testable

More information

1.) The traits that help an organism survive in a particular environment are selected in natural selection. Natural Selection

1.) The traits that help an organism survive in a particular environment are selected in natural selection. Natural Selection 1.) The traits that help an organism survive in a particular environment are selected in natural selection Natural Selection Natural Selection and Species Fitness 2.) Overtime, natural selection results

More information

Evidence: Table 1: Group Forkbird Population Data 1-Tined Forkbirds 2-Tined Forkbirds 4-Tined Forkbirds Initial

Evidence: Table 1: Group Forkbird Population Data 1-Tined Forkbirds 2-Tined Forkbirds 4-Tined Forkbirds Initial Activity #96 Battling Beaks Challenge Question: Initial Thoughts: Prediction: Evidence: Table 1: Group Forkbird Population Data 1-Tined Forkbirds 2-Tined Forkbirds 4-Tined Forkbirds Initial 1 2 3 4 5 6

More information

Objectives. Announcements. Comparison of mitosis and meiosis

Objectives. Announcements. Comparison of mitosis and meiosis Announcements Colloquium sessions for which you can get credit posted on web site: Feb 20, 27 Mar 6, 13, 20 Apr 17, 24 May 15. Review study CD that came with text for lab this week (especially mitosis

More information

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall Biology 1 of 41 Do Now: Why do the colors of moths change over time? Write a detailed explanation on the scrap paper provided. 2 of 41 Why do the colors of moths change over time? 3 of 41 4 of 41 Evolution

More information

Untitled Document. A. antibiotics B. cell structure C. DNA structure D. sterile procedures

Untitled Document. A. antibiotics B. cell structure C. DNA structure D. sterile procedures Name: Date: 1. The discovery of which of the following has most directly led to advances in the identification of suspects in criminal investigations and in the identification of genetic diseases? A. antibiotics

More information

Title: WS CH 18.1 (see p ) Unit: Heredity (7.4.1) 18.1 Reading Outline p Sexual Reproduction and Meiosis

Title: WS CH 18.1 (see p ) Unit: Heredity (7.4.1) 18.1 Reading Outline p Sexual Reproduction and Meiosis Title: WS CH 18.1 (see p.612-625) Unit: Heredity (7.4.1) 18.1 Reading Outline p. 612-625 NPD A. What is sexual reproduction? (p615) 1. _ produces an offspring when genetic materials from two different

More information

Additive Genetic Effect of Dam-sire, Dam, Common Maternal and Environmental Effect on Clutch Traits of Two Nigerian Local Chickens Populations

Additive Genetic Effect of Dam-sire, Dam, Common Maternal and Environmental Effect on Clutch Traits of Two Nigerian Local Chickens Populations Available online at www.worldscientificnews.com WSN 32 (2016) 1-12 EISSN 2392-2192 Additive Genetic Effect of Dam-sire, Dam, Common Maternal and Environmental Effect on Clutch Traits of Two Nigerian Local

More information

Hairy s Inheritance: Investigating Variation, Selection, and Evolution with Wisconsin Fast Plants

Hairy s Inheritance: Investigating Variation, Selection, and Evolution with Wisconsin Fast Plants Introduction Hairy s Inheritance: Investigating Variation, Selection, and Evolution with Wisconsin Fast Plants Daniel Lauffer Wisconsin Fast Plants Program University of Wisconsin - Madison Since the dawn

More information

1. they are influenced by many genetic loci. 2. they exhibit variation due to both genetic and environmental effects.

1. they are influenced by many genetic loci. 2. they exhibit variation due to both genetic and environmental effects. October 23, 2009 Bioe 109 Fall 2009 Lecture 13 Selection on quantitative traits Selection on quantitative traits - From Darwin's time onward, it has been widely recognized that natural populations harbor

More information

OKCPS-7th Grade Oklahoma Academic Standards and PASS (2011) Correlation

OKCPS-7th Grade Oklahoma Academic Standards and PASS (2011) Correlation This tool serves to help us analyze the gaps in our curriculum as we move to the new standards. The 8th grade OCCT ideal percentage of items aids in the vertical alignment to inform pacing that allows

More information

4/26/18. Domesticated plants vs. their wild relatives. Lettuce leaf size/shape, fewer secondary compounds

4/26/18. Domesticated plants vs. their wild relatives. Lettuce leaf size/shape, fewer secondary compounds The final exam: Tuesday, May 8 at 4:05-6:05pm in Ruttan Hall B35. 75 multiple choice questions for 150 points 50 questions from Lecture 20 27 25 questions directly from the first two exams. Key for exam

More information

You are encouraged to answer/comment on other people s questions. Domestication conversion of plants or animals to domestic uses

You are encouraged to answer/comment on other people s questions. Domestication conversion of plants or animals to domestic uses The final exam: Tuesday, May 8 at 4:05-6:05pm in Ruttan Hall B35. 75 multiple choice questions for 150 points 50 questions from Lecture 20 27 25 questions directly from the first two exams. Key for exam

More information

Housekeeping, 14 January 2009 LAB BEGINS TODAY

Housekeeping, 14 January 2009 LAB BEGINS TODAY Lecture 1, 14 Jan 2009 Chapter 1 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Syllabus 2. Vertebrate Physiology Integration Structure/Function

More information

Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Uppsala EQG course version 31 Jan 2012

Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Uppsala EQG course version 31 Jan 2012 Short-Term Selection Response: Breeder s equation Bruce Walsh lecture notes Uppsala EQG course version 31 Jan 2012 Response to Selection Selection can change the distribution of phenotypes, and we typically

More information

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 32: Infinite-dimensional/Functionvalued Traits: Covariance Functions and Random Regressions Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 Longitudinal traits Many classic quantitative

More information

NATURAL SELECTION FOR WITHIN-GENERATION VARIANCE IN OFFSPRING NUMBER JOHN H. GILLESPIE. Manuscript received September 17, 1973 ABSTRACT

NATURAL SELECTION FOR WITHIN-GENERATION VARIANCE IN OFFSPRING NUMBER JOHN H. GILLESPIE. Manuscript received September 17, 1973 ABSTRACT NATURAL SELECTION FOR WITHIN-GENERATION VARIANCE IN OFFSPRING NUMBER JOHN H. GILLESPIE Department of Biology, University of Penmyluania, Philadelphia, Pennsyluania 19174 Manuscript received September 17,

More information

DEVELOPMENT OF TILAPIA FOR SALINE WATERS IN THE PHILIPPINES

DEVELOPMENT OF TILAPIA FOR SALINE WATERS IN THE PHILIPPINES DEVELOPMENT OF TILAPIA FOR SALINE WATERS IN THE PHILIPPINES M. M. Tayamen,, T. A. Abella, R. A. Reyes, Ma. J. C. Danting, A. M. Mendoza, E. B. Marquez, A. C. Salguet, M. M. Apaga,, and R. C. Gonzales COLLABORATORS

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics We ve all heard of it, but What is genetics? Genetics: the study of gene structure and action and the patterns of inheritance of traits from parent to offspring. Ancient ideas

More information

BIOLOGY 1 WORKSHEET III (SELECTED ANSWERS)

BIOLOGY 1 WORKSHEET III (SELECTED ANSWERS) BIOLOGY 1 WORKSHEET III (SELECTED ANSWERS) 1. What is a karyotype? You did this in lab! 2. What are homologous chromosomes? How many pairs of homologous chromosomes are found in humans? Chromosomes that

More information

Roadmap. Sexual Selection. Evolution of Multi-Gene Families Gene Duplication Divergence Concerted Evolution Survey of Gene Families

Roadmap. Sexual Selection. Evolution of Multi-Gene Families Gene Duplication Divergence Concerted Evolution Survey of Gene Families 1 Roadmap Sexual Selection Evolution of Multi-Gene Families Gene Duplication Divergence Concerted Evolution Survey of Gene Families 2 One minute responses Q: How do aphids start producing males in the

More information

Laboratory III Quantitative Genetics

Laboratory III Quantitative Genetics Laboratory III Quantitative Genetics Genetics Biology 303 Spring 2007 Dr. Wadsworth Introduction Mendel's experimental approach depended on the fact that he chose phenotypes that varied in simple and discrete

More information

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name:

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name: Biology 6. Inheritance, Variation and Evolution Revisiting Booklet Name: Reproduction Name the process by which body cells divide:... What kind of cells are produced this way? Name the process by which

More information

HEREDITY AND VARIATION

HEREDITY AND VARIATION HEREDITY AND VARIATION OVERVIEW Students often do not understand the critical role of variation to evolutionary processes. In fact, variation is the only fundamental requirement for evolution to occur.

More information

Chapter Eleven: Heredity

Chapter Eleven: Heredity Genetics Chapter Eleven: Heredity 11.1 Traits 11.2 Predicting Heredity 11.3 Other Patterns of Inheritance Investigation 11A Observing Human Traits How much do traits vary in your classroom? 11.1 Traits

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information

Peddie Summer Day School

Peddie Summer Day School Peddie Summer Day School Course Syllabus: BIOLOGY Teacher: Mr. Jeff Tuliszewski Text: Biology by Miller and Levine, Prentice Hall, 2010 edition ISBN 9780133669510 Guided Reading Workbook for Biology ISBN

More information

heritable diversity feb ! gene 8840 biol 8990

heritable diversity feb ! gene 8840 biol 8990 heritable diversity feb 25 2015! gene 8840 biol 8990 D. Gordon E. Robertson - photo from Wikipedia HERITABILITY DEPENDS ON CONTEXT heritability: how well does parent predict offspring phenotype? how much

More information

Section 2: Evolution. The Organization of Life Section 2

Section 2: Evolution. The Organization of Life Section 2 Section 2: Evolution Preview Classroom Catalyst Objectives Evolution by Natural Selection Nature Selects Coevolution Evolution by Artificial Selection Section 2: Evolution Preview Evolution of Resistance

More information

Document category: There is no restriction on the circulation of this document

Document category: There is no restriction on the circulation of this document GA2-06 Agenda Item 2 Issued: 16 January 2018 CIMMYT Position on gene editing: An example to support the development of a common position on gene editing Purpose This document provides CIMMYT s Position

More information

Regents Biology REVIEW 6: EVOLUTION. 1. Define evolution:

Regents Biology REVIEW 6: EVOLUTION. 1. Define evolution: Period Date REVIEW 6: EVOLUTION 1. Define evolution: 2. Modern Theory of Evolution: a. Charles Darwin: Was not the first to think of evolution, but he did figure out how it works (mostly). However, Darwin

More information

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele 3U Evolution Notes What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele Let s look back to what we know: From genetics we can say that a gene is

More information

SELECTION IN REFERENCE TO BIOLOGICAL GROUPS. Dr. Bruce Griffing Dept. of Zoology and Entomology Ohio State University Columbus, Ohio

SELECTION IN REFERENCE TO BIOLOGICAL GROUPS. Dr. Bruce Griffing Dept. of Zoology and Entomology Ohio State University Columbus, Ohio l - 15 - SELECTION IN REFERENCE TO BIOLOGICAL GROUPS Dr. Bruce Griffing Dept. of Zoology and Entomology Ohio State University Columbus, Ohio - 16 - SELECTION IN REFERENCE TO BIOLOGICAL GROUPS This paper

More information

I22. EARLE W. KLOSTERMAN Ohio A g r i c u l t u r a l Research and Development Center Wooster, Ohio

I22. EARLE W. KLOSTERMAN Ohio A g r i c u l t u r a l Research and Development Center Wooster, Ohio I22 BODY SIZE AND PRODUCTION EFFICIENCY* EARLE W. KLOSTERMAN Ohio A g r i c u l t u r a l Research and Development Center Wooster, Ohio Beef c a t t l e s e l e c t i o n and performance t e s t i n g

More information

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly). Name: REVIEW 6: EVOLUTION 1. Define evolution: 2. Modern Theory of Evolution: a. Charles Darwin: Was not the first to think of evolution, but he did figure out how it works (mostly). However, Darwin didn

More information

Science Unit Learning Summary

Science Unit Learning Summary Learning Summary Inheritance, variation and evolution Content Sexual and asexual reproduction. Meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed. In

More information

Ch 11.Introduction to Genetics.Biology.Landis

Ch 11.Introduction to Genetics.Biology.Landis Nom Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions were. Introduction (page 263)

More information

Plant Propagation PLS 3221/5222

Plant Propagation PLS 3221/5222 Plant Propagation PLS 3221/5222 Dr. Sandra Wilson Dr. Mack Thetford Chapter 2 Introduction to the Biology of Plant Propagation -A review- 1 The Plant Breeder and the Plant Propagator Plant Breeder, The

More information

Maternal Genetic Models

Maternal Genetic Models Maternal Genetic Models In mammalian species of livestock such as beef cattle sheep or swine the female provides an environment for its offspring to survive and grow in terms of protection and nourishment

More information

What is Evolution? Evolution Unit Vocabulary. Answer: Evidence of Evolution. What is a Gene Pool? Change over time.

What is Evolution? Evolution Unit Vocabulary. Answer: Evidence of Evolution. What is a Gene Pool? Change over time. What is Evolution? Evolution Unit Vocabulary Practice Quiz Change over time. Evidence of Evolution The gradual development of something, especially from simple to more complex. Can be big or very small

More information

Combining Ability and Heterosis in Rice (Oryza sativa L.) Cultivars

Combining Ability and Heterosis in Rice (Oryza sativa L.) Cultivars J. Agr. Sci. Tech. (2010) Vol. 12: 223-231 Combining Ability and Heterosis in Rice (Oryza sativa L.) Cultivars M. Rahimi 1, B. Rabiei 1*, H. Samizadeh 1, and A. Kafi Ghasemi 1 ABSTRACT Quantitative valuations

More information