STRUNET CONCRETE DESIGN AIDS

Size: px
Start display at page:

Download "STRUNET CONCRETE DESIGN AIDS"

Transcription

1 Itrodutio to Corete Colum Deig Flow Chrt he Colum Deig Setio i Struet oti two mi prt: Chrt to develop tregth itertio digrm for give etio, d red -mde Colum Itertio Digrm, for quik deig of give olum. Corete olum i oe of the mot itere tig memer i orete truturl deig pplitio. A truturl deig of orete olum i quite omplited proedure. Evlutio, however, of give olum etio d reiforemet i trightforwrd proe. hi i due to the ft tht pure xil ompreio i rrel the e i olum li. Some vlue of momet i lw there due to ed retrit, or idetl eetriit due to out of ligmet. ACI etlihed the miimum eetriit o orete olum, regrdle of the trut url li propoed for the olum, whih i defied the mximum xil ompreio lod tht olum e deiged for. Colum Deig Chrt i Bullet: Oe of the demdig pet i orete olum deig i to defie the otrollig poit o tregth itertio digrm. he olum tregth itertio digrm i urve plot of poit; where eh poit h two ordite. he firt ordite i edig momet tregth d the eod i the orrepodig xil fore. Both ordite re liked with eetriit. he hpe of the urve, or the tregth itertio digrm, e defied fidig the ordite of mjor eve poit. Eh poit h peifi requiremet, etlihed the ode, d thu evlutig the requiremet of thi poi t will reult of lultig the ordite. he poit d their repetive requiremet re follow: oit : ure ompreio. oit 2: Mximum ompreio lod permitted ode t zero eetriit. oit 3: Mximum momet tregth t the mximum xil ompreio permitted ode. oit 4: Compreio d momet t zero tri i the teio ide reiforemet. ot 5: Compreio d momet t 50% tri i the teio ide reiforemet. oit 6: Compreio d momet t led oditio. oit 7: ure teio. Struet.om: Corete Colum Deig V.0 - ge

2 Nottio for Corete Colum Deig Flow Chrt depth of equivlet retgulr tre lok, i. depth of equivlet retgulr tre lok t led oditio, i. A g gro re of olum, i 2. A re of reiforemet t teio ide, i 2. A re of reiforemet t ompre io ide, i 2. A t otl re of reiforemet i olum ro etio, i 2. olum width dimeio, i. dite from extreme ompreio fier to eutrl xi, i. dite from extreme ompreio fier to eutrl xi t led oditio, i. C ompreio fore i equivlet orete lok. C ompreio fore i teio-ide reiforemet, if. C ompreio fore i ompreio-ide reiforemet. d dite from extreme ompreio fier to etroid of tei oide reiforemet d dite from extreme ompreio fier to etroid of ompreio-ide reiforemet e eetriit, i. e eetriit t led oditio, i. E modulu of eltiit of reiforemet, pi. f peified ompreive tregth of orete, pi. f peified teile tregth of reiforemet, pi. f tre i teio-ide reiforemet t tri ε, ki. f tre i ompreio-ide reiforemet t tri ε', ki. h overll olum depth, i. M omil edig momet t led oditio. M omil edig momet t poit. o omil xil lod tregth t zero eetriit. omil xil fore t led oditio. lim limit of omil xil lod vlue t whih low or h igh xil ompreio e defied i orde with ACI omil xil lod tregth t poit. teio fore i teio-ide reiforemet. β? ftor defied ACI ε tri i teio-ide reiforemet t lulted tre f ε' tri i ompreio-ide reiforemet t lulted tre f ε ield tri of reiforemet. φ tregth redutio ftor Struet.om: Corete Colum Deig V.0 - ge 2

3 Mi oit of Colum Itertio Digrm 3 Axil Compreio, φ mx. xil omp. 2 4 ε ε 0.5ε 6 led omp. otrol teio otrol oitet φ pure teio Bedig Momet, φm 7 ireig φ oit : xil ompreio t zero momet. oit 2: mximum permiile xil ompreio t zero eetriit. oit 3: mximum momet tregth t mximum permiile xil ompreio. oit 4: xil ompreio d momet tregth t zero tri. oit 5: xil ompreio d momet tregth t 50% tri. oit 6: xil ompreio d momet tregth t led oditio. oit 7: momet tregth t zero xil fore. Struet.om: Corete Colum Deig V.0 - ge 3

4 oit : Axil Compreio t Zero Momet oit 2: Mximum ermiile Axil Compreio t Zero Eetriit Fidig oit A,A,f,f t g ACI ( ) 085. f A A + f A o g t t Fidig oit 2 Spirl? (mx) 080. ACI φ 070. o (mx) 085. ACI φ 075. o φ (mx) 056. o φ (mx) 064. o Struet.om: Corete Colum Deig V.0 - ge 4

5 ACI fidig φ Stregth Redutio Ftor Axil eio d Axil eio with Flexure Axil Compreio d Axil Compreio with Flexure φ f A g φ Spirl? φ f A g φ f A g > High Vlue of Axil Compreio ow Vlue of Axil Compreio Spirl φ 070. φ 075. Spirl? f 60 ki h d d 070. h Smmetri reif. Spirl? mi(0. 43 f Ag, ) mi(0. 33 f Ag, ) 02. φ φ φ φ 09. Struet.om: Corete Colum Deig V.0 - ge 5

6 ACI f 4000 pi oit 3: Mximum Momet Stregth t Mximum ermiile Compreio fidig dite f β ( β ) β 085. ( 085 ) C A' f. f ( d ) ε f ε E ( 085 ) C A f. f h d A' A d d' ε' ε tri tre C' C C ( d ) C A E 085. f C + C + C of poit 2 ( ) d f ( β) + A' ( f 085. f ) + A E 085. f Reult: β Compute: C, C' from ove Eq. ( ) ( ) ( ) M 05.C h + C 05.h d C 05.h d Struet.om: Corete Colum Deig V.0 - ge 6

7 oit 4: Axil Compreio d Momet t Zero Stri Fidig oit 4 ε 00. d β See Fidig β i poit 3 d ε A' d' ε' C' C f mi( ε E,f ) h d ( 085 ) C A f. f A 0.0 tri tre 0.0 C + C h h M C + C d e M φm & φ See fidig φ Struet.om: Corete Colum Deig V.0 - ge 7

8 Fidig oit 5 f ε E oit 5: Axil Compreio d Momet Stregth t 50% Stri d' ε 05. ε A' ε' C' C d ε h A ε 0.5ε tri tre β See Fidig β i poit 3 d ε f mi( ε E,f ) ( 085 ) C A f. f ( 05) A. f C + C h h h M C + C d + d e M φm & φ See fidig φ Struet.om: Corete Colum Deig V.0 - ge 8

9 Fidig oit 6 oit 6: Axil Compreio d Momet Stregth t Bled Coditio f ε ε E ε + β See Fidig β i poit 3 d ε A' d' ε' C' C f mi( ε E,f ) h A ( 085 ) C A f. f ε f /E tri tre f A C + C h h h M C C d d e M φm & φ See fidig φ Struet.om: Corete Colum Deig V.0 - ge 9

10 oit 7: Momet Stregth t Zero Axil Fore Fidig oit 7 A' d' ε' ~0.0 C f A h A Af 085. f ε >ε tri tre β See Fidig β i poit ε d > ε f A h h M C + d φ 09. See fidig φ φm Struet.om: Corete Colum Deig V.0 - ge 0

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

G. Monti 1 and S. Alessandri 2. Professor, Dept. of Structural Engineering and Geotechnics, Sapienza, University of Rome, Rome, Italy 2

G. Monti 1 and S. Alessandri 2. Professor, Dept. of Structural Engineering and Geotechnics, Sapienza, University of Rome, Rome, Italy 2 The 4 th World Coferee o Earthquake Egieerig Otober -7, 008, Beijig, Chia DESIGN EQUATIONS FOR EVALUATION OF STRENGTH AND DEFORMATION CAPACITY FOR UNSTRENGTHENED AND FRP STRENGTHENED RC RECTANGULAR COLUMNS

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley Module B.1 Siusoidl stedy-stte lysis (sigle-phse), review.2 Three-phse lysis Kirtley Chpter 2: AC Voltge, Curret d Power 2.1 Soures d Power 2.2 Resistors, Idutors, d Cpitors Chpter 4: Polyphse systems

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

The classification of a column as a short column or a slender column is made on the basis of its Slenderness Ratio, defined below.

The classification of a column as a short column or a slender column is made on the basis of its Slenderness Ratio, defined below. Capter 3 Sort Colum Desig By Noel. J. Everard 1 ad ose A. Issa 3.1 Itrodutio Te majority of reifored orete olums are subjeted to primary stresses aused by flexure, axial fore, ad sear. Seodary stresses

More information

STRUNET CONCRETE DESIGN AIDS

STRUNET CONCRETE DESIGN AIDS Introtion to Conrete Bem Deign Flow Chrt The onrete em eign low hrt re the ollowing jet: For retnglr em with given imenion: Anlzing the em etion to etere it moment trength n th eining the em etion to e

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Combined Flexure and Axial Load

Combined Flexure and Axial Load Cobied Flexure ad Axial Load Iteractio Diagra Partiall grouted bearig wall Bearig Wall: Sleder Wall Deig Procedure Stregth Serviceabilit Delectio Moet Magiicatio Exaple Pilater Bearig ad Cocetrated Load

More information

Shear Strength of Low-rise RC Walls with Grade 550 MPa Bars

Shear Strength of Low-rise RC Walls with Grade 550 MPa Bars 214 Iteratioal Coeree o Geologial ad Civil Egieerig IPCBEE vol.62 (214) (214) IACSIT Pre, Sigapore DOI: 1.7763/IPCBEE. 214. 62. 7 Sear Stregt o Lo-rie RC Wall it Grade 55 Bar Jag-Woo Baek 1, Hog-Gu Park

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

Viscosity Solutions with Asymptotic Behavior of Hessian Quotient Equations. Limei Dai +

Viscosity Solutions with Asymptotic Behavior of Hessian Quotient Equations. Limei Dai + Itertio oferee o ompter d Atomtio Egieerig IAE IPIT vo 44 IAIT Pre igpore OI: 776/IPIT44 ioit otio ith Amptoti ehvior of Hei Qotiet Eqtio Limei i hoo of Mthemti d Iformtio iee Weifg Uiverit Weifg 66 The

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

EE 330/330L Energy Systems (Spring 2012) Laboratory 1 Three-Phase Loads

EE 330/330L Energy Systems (Spring 2012) Laboratory 1 Three-Phase Loads ee330_spring2012_l_01_3phse_lods.do 1/5 EE 330/330L Energy Systems (Spring 2012) Lortory 1 ThreePhse Lods Introdution/Bkground In this lortory, you will mesure nd study the voltges, urrents, impednes,

More information

CEE 142L Reinforced Concrete Structures Laboratory

CEE 142L Reinforced Concrete Structures Laboratory CEE 14L Reinfored Conrete Struture Lbortory Slender Column Experiment CEE 14L Slender Column Experiment Spring The olumn experiment i deigned to exmine the influene of lenderne on the xil lod pity of the

More information

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution Chapter V ODE V.4 Power Series Solutio Otober, 8 385 V.4 Power Series Solutio Objetives: After the ompletio of this setio the studet - should reall the power series solutio of a liear ODE with variable

More information

On Fourth and Fifth Order Explicit Almost Runge Kutta Methods

On Fourth and Fifth Order Explicit Almost Runge Kutta Methods Itertiol Jourl of Sietifi d Iovtive Mthemtil Reerh (IJSIMR) Volume, Iue, Jur 6, PP 88-96 ISSN 7-7X (Prit) & ISSN 7- (Olie) www.rjourl.org O Fourth d Fifth Order Expliit Almot Ruge Kutt Method Adulrhm Ndu

More information

Homework 2 solutions

Homework 2 solutions Sectio 2.1: Ex 1,3,6,11; AP 1 Sectio 2.2: Ex 3,4,9,12,14 Homework 2 solutios 1. Determie i ech uctio hs uique ixed poit o the speciied itervl. gx = 1 x 2 /4 o [0,1]. g x = -x/2, so g is cotiuous d decresig

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

Application of an explicit dynamic method for discontinuous analysis by using rigid bodies spring model

Application of an explicit dynamic method for discontinuous analysis by using rigid bodies spring model Appliatio of a epliit dai ethod for diotiuou aali uig rigid odie prig odel *Tadao Yagi ad Norio Takeuhi, Graduate Shool of Egieerig ad Deig, Hoei Uiverit, Toko, Japa tadao.agi.9u@tu.hoei.a.jp takeuhi@hoei.a.jp

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

The program calculates the required thickness of doubler plates using the following algorithms. The shear force in the panel zone is given by: V p =

The program calculates the required thickness of doubler plates using the following algorithms. The shear force in the panel zone is given by: V p = COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 STEEL FRAME DESIGN AISC-ASD89 Tehial Note Oe aspet of the esig of a steel framig system is a evaluatio of the shear fores that exist i

More information

Reference Formulas. sin sin sin

Reference Formulas. sin sin sin RCH il Emitio Reeree 08b 0 0 0 Reeree ormuls B C si si si ( ) ˆ b b 4 Q i i i p r d ( ) ˆ os W l t d Q i i si t r d mg d 4 g 9.8m m b s dv d w m I I i d I I r ˆ d ˆ d V N kgm V d s w N psi lb N m i k,

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

S(x)along the bar (shear force diagram) by cutting the bar at x and imposing force_y equilibrium.

S(x)along the bar (shear force diagram) by cutting the bar at x and imposing force_y equilibrium. mmetric leder Bems i Bedig Lodig Coditios o ech ectio () pplied -Forces & z-omets The resultts t sectio re: the bedig momet () d z re sectio smmetr es the sher force () [ for sleder bems stresses d deformtio

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

BME 207 Introduction to Biomechanics Spring 2018

BME 207 Introduction to Biomechanics Spring 2018 April 6, 28 UNIVERSITY O RHODE ISAND Deprtment of Electricl, Computer nd Biomedicl Engineering BME 27 Introduction to Biomechnics Spring 28 Homework 8 Prolem 14.6 in the textook. In ddition to prts -e,

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method.

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method. SOLUTION OF SYSTEM OF LINEAR EQUATIONS Lecture 4: () Jcobi's method. method (geerl). (b) Guss Seidel method. Jcobi s Method: Crl Gustv Jcob Jcobi (804-85) gve idirect method for fidig the solutio of system

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang CS 33 Desig d Alysis of Algorithms -- Divide d Coquer Dr. Disy Tg Divide-Ad-Coquer Geerl ide: Divide problem ito subproblems of the sme id; solve subproblems usig the sme pproh, d ombie prtil solutios,

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

Vector Integration. Line integral: Let F ( x y,

Vector Integration. Line integral: Let F ( x y, Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion ble, eplin the flow of het in tr, nd put tellite in orbit.

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration www.boopr.om VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion

More information

Air Compressor Driving with Synchronous Motors at Optimal Parameters

Air Compressor Driving with Synchronous Motors at Optimal Parameters Iuliu Petri, Adri Vleti Petri AALELE UIVERSITĂłII EFTIMIE MURGU REŞIłA AUL XVII, R., 010, ISS 1453-7397 Air Compressor Drivig with Syhroous Motors t Optiml Prmeters I this pper method of optiml ompestio

More information

v max for a rectangle

v max for a rectangle RCH il Emitio Reeree 05 0 0 0 C Reeree ormls ( ) B Bos ˆ B C Q i i si si si 4 i ( ) ˆ os p r d Q i i si W l t d t i r 4 d d d d g 9.8 m s mg d ˆ dv w d m d ˆ d V m V d w N N kgm m s N k, 000 psi l i π

More information

v max for a rectangle

v max for a rectangle RCH il Emitio Reeree S06 0 0 0 C Reeree ormls si B Bos ( ) ˆ B C Q si si i i 4 i ( ) ˆ os p r d Q i i si W l t d t r 4 d d i d d g 9.8 m s mg d ˆ dv w d m d ˆ d V m V d w N N kgm m s N k, 000 psi l i π

More information

Software Verification

Software Verification Sotare Veriiation EXAMPLE NZS 3101-06 RC-BM-001 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veriy lab lexural deign in. The load level i adjuted or the ae orreponding

More information

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients Ge Mth Notes Vol 2 No Jury 20 pp 86-97 ISSN 229-784; Copyriht ICSRS Publitio 20 wwwi-srsor Avilble free olie t http://wwwemi Neihborhoods of Certi Clss of Alyti Futios of Complex Order with Netive Coeffiiets

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

1/16/2013. Overview. 05-Three Phase Analysis Text: Three Phase. Three-Phase Voltages. Benefits of Three-Phase Systems.

1/16/2013. Overview. 05-Three Phase Analysis Text: Three Phase. Three-Phase Voltages. Benefits of Three-Phase Systems. oltge () 1/16/21 Overview 5Three Phse Alysis Text: 2.4 2.7 ECEGR 451 Power Systems ThreePhse Soures Delt d Y Coetios ThreePhse Lods ThreePhse Power ThreePhse Alysis PerPhse Alysis Dr. Louie 2 ThreePhse

More information

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays. Sphericl refrctig urfce Here, the outgoig ry re o the oppoite ide of the urfce from the Icomig ry. The oject i t P. Icomig ry PB d PV form imge t P. All prxil ry from P which trike the phericl urfce will

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

MASSACHUSETTS INSTITUTE of TECHNOLOGY Department of Mechanical Engineering 2.71/ OPTICS - - Spring Term, 2014

MASSACHUSETTS INSTITUTE of TECHNOLOGY Department of Mechanical Engineering 2.71/ OPTICS - - Spring Term, 2014 .7/.70 Optic, Spri 04, Solutio for Quiz MASSACHUSETTS INSTITUTE of TECHNOLOGY Deprtmet of Mechicl Eieeri.7/.70 OPTICS - - Spri Term, 04 Solutio for Quiz Iued Wed. 03//04 Problem. The ive opticl ytem i

More information

2 Axially Loaded Numbers

2 Axially Loaded Numbers xially oaded Numers hanges in engths of xially oaded Memers rolem.-1 The T-shaped arm shown in the figure lies in a vertical plane and pivots aout a horizontal pin at. The arm has constant cross-sectional

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 for BST 695: Speial Topis i Statistial Theory Kui Zhag, Chapter 8 Hypothesis Testig Setio 8 Itrodutio Defiitio 8 A hypothesis is a statemet about a populatio parameter Defiitio 8 The two omplemetary

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

2 SKEE/SKEU v R(t) - Figure Q.1(a) Evaluate the transfer function of the network as

2 SKEE/SKEU v R(t) - Figure Q.1(a) Evaluate the transfer function of the network as SKEE/SKEU 073 PART A Q. ) A trfer futio i ued to deribe the reltiohi betwee the iut d outut igl of ytem. Figure Q.) how RC etwork ued to form filter futio. V it) R + v Rt) - C + v t) - Figure Q.) i) ii)

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Radix-2/4 Streamlined Real Factor FFT Algorithms

Radix-2/4 Streamlined Real Factor FFT Algorithms SHAIK QADEER et l: RADIX-/ STREAMLIED REAL FACTOR FFT ALGORITHMS Rdix-/ Stremlied Rel Ftor FFT Algorithms Shi Qdeer () Mohmmed Zfr Ali Kh () d Syed A. Sttr () () Deprtmet of Eletril d Eletrois egieerig

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Design of T and L Beams in Flexure

Design of T and L Beams in Flexure Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES CHAPTER NETWORK ADTTANCE AND PEDANCE ATRCES As we hve see i Chter tht ower system etwor c e coverted ito equivlet imedce digrm. This digrm forms the sis of ower flow (or lod flow) studies d short circuit

More information

Design Equations for FRP Strengthening of Columns

Design Equations for FRP Strengthening of Columns SP-30 60 Deig Equatio or FRP Stregtheig o Colu by G. Moti ad S. Aleadri Syopi: The paper preet a aalytial tudy o FRP tregtheed RC etio uder obied bedig ad axial load. A eat approah i ued that opare quite

More information

CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS

CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS HAPTER 7 SMMETRAL OMPOETS AD REPRESETATO OF FAULTED ETWORKS A uled three-phe yte e reolved ito three led yte i the iuoidl tedy tte. Thi ethod of reolvig uled yte ito three led phor yte h ee propoed y.

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

Lens Design II. Lecture 7: Chromatical correction II Herbert Gross. Winter term

Lens Design II. Lecture 7: Chromatical correction II Herbert Gross. Winter term Les Desig II Leture 7: Chromtil orretio II 05--0 Herbert Gross Witer term 05 www.ip.ui-e.de relimiry Shedule 0.0. Aberrtios d optimiztio Repetitio 7.0. Struturl modifitios Zero operds, les splittig, les

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

ELIMINATION OF FINITE EIGENVALUES OF STRONGLY SINGULAR SYSTEMS BY FEEDBACKS IN LINEAR SYSTEMS

ELIMINATION OF FINITE EIGENVALUES OF STRONGLY SINGULAR SYSTEMS BY FEEDBACKS IN LINEAR SYSTEMS 73 M>D Tadeuz azore Waraw Uiverity of Tehology, Faulty of Eletrial Egieerig Ititute of Cotrol ad Idutrial Eletroi EIMINATION OF FINITE EIENVAUES OF STONY SINUA SYSTEMS BY FEEDBACS IN INEA SYSTEMS Tadeuz

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1. Exerise Genertor polynomils of onvolutionl ode, given in binry form, re g, g j g. ) Sketh the enoding iruit. b) Sketh the stte digrm. ) Find the trnsfer funtion T. d) Wht is the minimum free distne of

More information

Introduction to Algorithms 6.046J/18.401J

Introduction to Algorithms 6.046J/18.401J Itrodutio to Algorithms.04J/8.40J The divide-d-oquer desig prdigm. Divide the problem (iste) ito subproblems.. Coquer the subproblems by solvig them reursively. 3. Combie subproblem solutios. Leture 3

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

SOLUTIONS TO ASSIGNMENT NO The given nonrecursive signal processing structure is shown as

SOLUTIONS TO ASSIGNMENT NO The given nonrecursive signal processing structure is shown as SOLUTIONS TO ASSIGNMENT NO.1 3. The given nonreursive signl proessing struture is shown s X 1 1 2 3 4 5 Y 1 2 3 4 5 X 2 There re two ritil pths, one from X 1 to Y nd the other from X 2 to Y. The itertion

More information

Lecture 8. Dirac and Weierstrass

Lecture 8. Dirac and Weierstrass Leture 8. Dira ad Weierstrass Audrey Terras May 5, 9 A New Kid of Produt of Futios You are familiar with the poitwise produt of futios de ed by f g(x) f(x) g(x): You just tae the produt of the real umbers

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

First assignment of MP-206

First assignment of MP-206 irt igmet of MP- er to quetio - 7- Norml tre log { : MP Priipl tree: I MP II MP III MP Priipl iretio: { I { II { III Iitill uppoe tht i tre tte eribe i the referee tem ' i the me tre tte but eribe i other

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

LESSON 11: TRANSFORMER NAME PLATE DATA AND CONNECTIONS

LESSON 11: TRANSFORMER NAME PLATE DATA AND CONNECTIONS ET 332 Motors, Geertors d Power Systems LESSON 11: TRNSFORMER NME PLTE DT ND ONNETIONS 1 LERNING OJETIVES fter this presettio you will e le to: Idetify trsformer polrity usig dot d ovetiol lelig. Expli

More information

= (, ) V λ (1) λ λ ( + + ) P = [ ( ), (1)] ( ) ( ) = ( ) ( ) ( 0 ) ( 0 ) = ( 0 ) ( 0 ) 0 ( 0 ) ( ( 0 )) ( ( 0 )) = ( ( 0 )) ( ( 0 )) ( + ( 0 )) ( + ( 0 )) = ( + ( 0 )) ( ( 0 )) P V V V V V P V P V V V

More information

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the 1. The 0.1 kg pticle h peed v = 10 m/ it pe the 30 poitio how. The coefficiet of kietic fictio betwee the pticle d the veticl ple tck i m k = 0.0. Detemie the mgitude of the totl foce exeted by the tck

More information

Repeated Root and Common Root

Repeated Root and Common Root Repeted Root d Commo Root 1 (Method 1) Let α, β, γ e the roots of p(x) x + x + 0 (1) The α + β + γ 0, αβ + βγ + γα, αβγ - () (α - β) (α + β) - αβ (α + β) [ (βγ + γα)] + [(α + β) + γ (α + β)] +γ (α + β)

More information

Formula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx

Formula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx Fill in the Blnks for the Big Topis in Chpter 5: The Definite Integrl Estimting n integrl using Riemnn sum:. The Left rule uses the left endpoint of eh suintervl.. The Right rule uses the right endpoint

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Design of T and L Beams in Flexure

Design of T and L Beams in Flexure Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed

More information