Information Theory for Dispersion-Free Fiber Channels with Distributed Amplification

Size: px
Start display at page:

Download "Information Theory for Dispersion-Free Fiber Channels with Distributed Amplification"

Transcription

1 Information Theory for Dispersion-Free Fiber Channels with Distributed Amplification Gerhard Kramer Department of Electrical and Computer Engineering Technical University of Munich CLEO-PR, OECC & PGC Singapore August 3, 2017

2 1) Fiber Models 2) Per-Sample Model 3) Filter-and-Sample Model 4) Capacity Bounds 5) Conclusions Outline Detailed derivations: arxiv: , May

3 Generalized nonlinear Schrödinger equation (NLSE)* with distributed and band-limited optical amplifier (OA) noise (see next slide): Dispersion-free model: 1) Fiber Models u z = α 2 u i 2 β 2 2 u T 2 + iγ u 2 u + n u z = α 2 u + iγ u 2 u + n Advantages: closed-form solution for the input-output relations; get insight into non-linearities that seem difficult to obtain otherwise *Ch. 2 in G.P. Agrawal, Nonlinear Fiber Optics, 3rd ed., 2001

4 Details on OA Noise Model Consider Raman amplification with power spectral-distance density (PSDD) of N A [W/Hz/m] and bandwidth B [Hz] Noise power distance density (PDD) K=N A B [W/m] is proportional to B The spatiotemporal autocorrelation function: B E N z,t ( ) N ( z ʹ, tʹ) * ( ( )) = K δ ( z zʹ )sinc B t tʹ f Accumulated noise at time t is K ½ times a spatial Wiener process W l ( z,t) = lim l z 1 l i=1 l N i ( t) where the N i (.), i=1,2,..., are i.i.d., complex, circularly-symmetric, bandlimited Gaussian noise processes with mean 0 and autocorrelation function ρ(t-t ) = E[N i (t)n i (t ) * ] = sinc(b(t-t )) 4

5 Ideal Distributed Amplification Suppose distributed optical amplification (OA) eliminates loss: Solution (that is statistically-equivalent* for one fixed time t): u( z,t) = u(0,t) + K w( z,t) exp jγ z u(0,t) + K w( z ʹ,t) 2 d z ʹ Consider the quadratic term in the exponential that has three terms: - a self-phase modulation (SPM) term: u(0,t) 2 - a noise term: K w(z,t) 2 u z = iγ u 2 u + n - a signal-noise mixed term: 2 K ½ Re{u 0 (t) w(z,t) * } ( ) 0 Large u 0 (t) thus causes large and random phase variations, which causes uncontrolled spectral broadening * This is subtle; for more detail, see Mecozzi,

6 2) Per-Sample Model n Previous work has focused on a per-sample model*: the receiver is assumed to be able to sample the field at any time t: ( ) 0 u( z,t) = u(0,t) + K w( z,t) exp jγ z u(0,t) + K w( z ʹ,t) 2 d z ʹ n Advantage: immediate capacity lower bound of C 1 2 log( SNR) 1 log(2) bits/symbol 2 by using amplitude modulation and instantaneous direct detection n Criticisms: n n n Spectral broadening: C is too optimistic Receiver has bandwidth: C is too optimistic Receiver ignores noise correlations: C is pessimistic! * Mecozzi, 1994; Turitsyn et al., 2001; Yousefi-Kschischang,

7 A Modeling Problem: Large Capacity Consider a rectangular pulse g(t) of length T s and a small time-offset T. Transmit the information symbol x via u(0,t) = x g( t T 2) 2x g( t 3T 2) 0 x T 2T -x T s +T/2 t Notes: - Launch energy T s x 2 - Bandwidth ~ 1/T s (and not 1/T) For small T, we have W(z,0) W(z,T) W(z,2T) and can compute x as precisely as desired using y k = u(z,kt) 2 for k=0,1,2 7

8 The samples are (with as much precision as required with small T) y 0 = K ( w 2 2 R + w ) I y 1 = ( x + Kw ) 2 2 R + Kw I y 2 = ( x + Kw ) 2 2 R + Kw I We can form: x 2 = y + y y 0 The capacity is thus unbounded for any launch power. Explanation: the noise is bandlimited.* And we will have the same issue with dispersion. Models thus need, e.g., thermal noise at the receiver or in the channel; they also need projection receivers, e.g., bandlimited receivers * A. D. Wyner, BSTJ, Mar

9 3) Filter-and-Sample Model n n n Starting point: the receiver filters u(z,t) and adds receiver noise modeled as filtered white noise Study (1) band-limited and (2) time-resolution limited receivers Analytics seem difficult. Approach: - Compute autocorrelation function for jointly Wiener noise statistics (main analytic result; but noise statistics need more research); - Use this function to bound the power spectral density (PSD) - and the power inside a fixed frequency band or time interval; - use these power bounds to lower bound spectral broadening - and the capacity and spectral efficiency. Warning: upper bounds are loose, but valid for any launch signal Further insights: (1) model is unrealistic* beyond some launch power; (2) making model realistic leads to a nonlinear Shannon limit due to signal-noise mixing, as predicted in Essiambre et al. (2010) * NLSE with dispersion also has this problem 9

10 Conditional Autocorrelation Function Let A(t,t )=E[U(z,t)U(z,t) * U 0 (.)=u 0 (.)] where u 0 (t)=u(0,t) is the launch signal Result* assuming jointly Wiener noise statistics; u 0 = u 0 (t), u 0 =u 0 (t ) A(t,t') = T R Kρ + S R u 0 + j where S R =Re(S), S I =Im(S), T R =Re(T), T I =Im(T) and S I 1 ρ 2 S 2 exp jγt R u 2 0 u 0ʹ 2 exp γ ( u 0 ρu 0ʹ ) S u R 0ʹ + j S I 1 ρ 2 u 0ʹ ρu 0 ( ) T I u 2 1 ρ u 0ʹ 2 2ρR u 0 u 0ʹ ( ) * S = sech( 2cz), T = tanh( 2cz), c = jγ(k / 2) 1 ρ 2 Note: 1 st exp. describes SPM; 2 nd exp. describes signal-noise mixing; large u 0 (.) makes 2 nd term small, i.e., there is spectral broadening * * Generalizes the approach and results of Mecozzi, JLT

11 Example 1: Isolated Rectangular Pulse Consider an isolated rectangular pulse of height P ½ and width T s =10 ps Plots: 10 log 10 A(t,0) and 10 log 10 A(t, 5.1 ps)... note log 10 scaling 10 log 10 A(t,t') P=10 mw, t'=0 P=10 mw, t'=5.1 ps P=100 mw, t'=0 P=100 mw, t'=5.1 ps P=200 mw, t'=0 P=200 mw, t'=5.1 ps P=400 mw, t'=0 P=400 mw, t'=5.1 ps t [ps] Fiber Parameters - Kerr coefficient: 1.27 (W-km) -1 - Fiber length: 2000 km - Temperature: 300 K - PSDD N A : x W/Hz - Bandwidth B: 500 GHz Notes - At low power A(t,0) is the pulse and A(t,5.1 ps) is Kρz - For P = 10 mw (or 10 dbm), there is already a bulge at t=0: spectral broadening starts - Large power: A(t,0) develops a sinc pulse shape in log scale: strong spectral broadening 11

12 Example 2: PAM with Ring Modulation Consider PAM with rectangular pulses (T s =10 ps) and ring modulation Plots: PSDs for large launch power; observe 100 GHz rect. PSD for ɣ= P=10 mw, =0 P=10 mw P=50 mw P=100 mw P=500 mw P=1 W f [GHz] 12

13 Power Bound Using A(t,t ), and several bounding steps, the average received power of a bandlimited receiver (bandwidth W) satisfies P r (W ) c 1 + 8W B f ( P + P o) where c 1 and P o are constants and P is the average launch power. For constants δ and κ, the function f(.) is non-decreasing and concave for P P o : f P ( ) = Kz + P +δ Note: erf(y) 1 for large y ( ) 2 For large P, the avg. receive power thus scales at most as P ½ ; the power loss is due to spectral broadening π 2 erf κp 8 ( ) κp 8 13

14 A Modeling Problem: Spectral Broadening Using the above power bound: the (99% in-band power) propagating signal bandwidth W scales at least as P ½ But the model is accurate only if B W Conclusion: model loses practical relevance beyond some P Same conclusion will be true for NLSE Nevertheless: we study capacity bounds for large P by scaling B as P ½ 14

15 4) Capacity Bounds 15

16 Capacity Bounds with Fixed B Same fiber parameters as above, Tx & Rx bandwidth is W=B=500 GHz Rate [bits/s/hz] Upper bound Upper bound 2 Lower bound bound P [dbm] Notes - Threshold for B W is 20 Watts... loose! - Upper bound normal. by W and is loose at small P due to band-limited noise and lack of tools - Upper bound 2 assumes simulation accurate inside band W - Spectral efficiency η normal. by propagating signal bandwidth and is small beyond threshold: nonlinear Shannon limit - Lower bound from Essiambre et al.,

17 Capacity Bounds with B ~ P ½ Same fiber parameters as above, Tx & Rx bandwidth is W=500 GHz Rate [bits/s/hz] Upper bound Upper bound 2 Lower bound bound Notes - Capacity maximum at a finite P: a non-linear Shannon limit for both capacity and spectral efficiency - Capacity scaling is at best C P -¼ for large P: Explanation: noise has power proportional to B - Spectral efficiency scaling is also worse than before P [dbm] 17

18 5) Conclusions 1) Per-sample model is unrealistic at any launch power 2) Autocorrelation function derived for jointly Wiener noise statistics 3) Propagating signal bandwidth grows at least* as P ½ with launch power P; filter-and-sample models are thus unrealistic* at large P 4) Non-linear Shannon limit established* for both capacity and spectral efficiency of models where B W is required 5) We still need: better understanding of noise statistics due to amplification better capacity bounds and understanding at high SNR analysis for frequency-dependent noise, loss, dispersion, and non-linearity * This insight should carry over to fiber models with dispersion 18

19 Extra Slides 19

20 Discussion Definition 1: A channel* is said to have a non-linear Shannon limit if its capacity (or spectral efficiency) is bounded as a function of P Criticism: definition is interesting for abstract models only, since every practical channel* has a non-linear Shannon limit. Definition 2: maximal capacity (or spectral efficiency) is at finite P (for abstract models) and below a maximum P (for practical models) The latter type of limit (Definition 2) was established if: (1) Tx & Rx bandwidths are fixed, and (2) B W is required Note: one can redefine W to permit flash power-waste signaling, which can flatten capacity and spectral efficiency curves Criticisms: this may require transmitter bandwidth; returns us to Definition 1; a peak power constraint returns us to Definition 2 * What is a channel? J.L. Kelly: the part of a communication system one is unable or unwilling to change 20

Autocorrelation Function for Dispersion-Free Fiber Channels with Distributed Amplification

Autocorrelation Function for Dispersion-Free Fiber Channels with Distributed Amplification Autocorrelation Function for Dispersion-Free Fiber Channels with Distributed Amplification Gerhard Kramer arxiv:75.454v cs.it Jan 8 Abstract Optical fiber signals with high power exhibit spectral broadening

More information

Capacity Bounds for Power- and Band-Limited Wireless Infrared Channels Corrupted by Gaussian Noise

Capacity Bounds for Power- and Band-Limited Wireless Infrared Channels Corrupted by Gaussian Noise 40th Annual Allerton Conference on Communications, Control, and Computing, U.Illinois at Urbana-Champaign, Oct. 2-4, 2002, Allerton House, Monticello, USA. Capacity Bounds for Power- and Band-Limited Wireless

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Staircase Codes. Error-correction for High-Speed Fiber-Optic Channels

Staircase Codes. Error-correction for High-Speed Fiber-Optic Channels Staircase Codes Error-correction for High-Speed Fiber-Optic Channels Frank R. Kschischang Dept. of Electrical & Computer Engineering University of Toronto Talk at Delft University of Technology, Delft,

More information

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Nonlinear Fiber Optics and its Applications in Optical Signal Processing 1/44 Nonlinear Fiber Optics and its Applications in Optical Signal Processing Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction

More information

Multiuser Capacity Analysis of WDM in Nonlinear Fiber Optics

Multiuser Capacity Analysis of WDM in Nonlinear Fiber Optics Multiuser Capacity Analysis of WDM in Nonlinear Fiber Optics Mohammad H. Taghavi N., George C. Papen, and Paul H. Siegel Dept. of ECE, UCSD, La Jolla, CA 92093 Email: {mtaghavi, gpapen, psiegel}@ucsd.edu

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Optical Solitons. Lisa Larrimore Physics 116

Optical Solitons. Lisa Larrimore Physics 116 Lisa Larrimore Physics 116 Optical Solitons An optical soliton is a pulse that travels without distortion due to dispersion or other effects. They are a nonlinear phenomenon caused by self-phase modulation

More information

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP Nonlinear effects in optical fibers - v1 Miguel A. Muriel UPM-ETSIT-MUIT-CFOP Miguel A. Muriel-015/10-1 Nonlinear effects in optical fibers 1) Introduction ) Causes 3) Parameters 4) Fundamental processes

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

Upper and Lower Bounds on the Capacity of Wireless Optical Intensity Channels Corrupted by Gaussian Noise

Upper and Lower Bounds on the Capacity of Wireless Optical Intensity Channels Corrupted by Gaussian Noise S BIENNIAL SYPOSIU ON COUNICAIONS, QUEEN S UNIVERSIY, KINGSON, ON, CANADA, JUNE 5,. Upper and Lower Bounds on the Capacity of Wireless Optical Intensity Channels Corrupted by Gaussian Noise Steve Hranilovic

More information

Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015 Review Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015 Chapter 7: Third-order nonlinear effects (continued) 7.6 Raman and Brillouin scattering 7.6.1 Focusing 7.6.2 Strong conversion 7.6.3

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems 990 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 4, APRIL 2003 Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems Ekaterina Poutrina, Student Member, IEEE, Student Member,

More information

Nonlinear Optics (WiSe 2017/18) Lecture 12: November 28, 2017

Nonlinear Optics (WiSe 2017/18) Lecture 12: November 28, 2017 7.6 Raman and Brillouin scattering 7.6.1 Focusing Nonlinear Optics (WiSe 2017/18) Lecture 12: November 28, 2017 7.6.2 Strong conversion 7.6.3 Stimulated Brillouin scattering (SBS) 8 Optical solitons 8.1

More information

arxiv: v1 [cs.it] 1 Oct 2018

arxiv: v1 [cs.it] 1 Oct 2018 The loglog growth of channel capacity for nondispersive nonlinear optical fiber channel in intermediate power range. Extension of the model. A. V. Reznichenko, 1,, A. I. Chernykh, 3,, S. V. Smirnov,, and

More information

Nonlinear Optics (WiSe 2018/19) Lecture 7: November 30, 2018

Nonlinear Optics (WiSe 2018/19) Lecture 7: November 30, 2018 Nonlinear Optics (WiSe 2018/19) Lecture 7: November 30, 2018 7 Third-order nonlinear effects (continued) 7.6 Raman and Brillouin scattering 7.6.1 Focusing 7.6.2 Strong conversion 7.6.3 Stimulated Brillouin

More information

Interference Focusing for Mitigating Cross-Phase Modulation in a Simplified Optical Fiber Model

Interference Focusing for Mitigating Cross-Phase Modulation in a Simplified Optical Fiber Model Interference Focusing for Mitigating Cross-Phase Modulation in a Simplified Optical Fiber Model Hassan Ghozlan Department of Electrical Engineering University of Southern California Los Angeles, CA 90089

More information

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath International Letters of Chemistry, Physics and Astronomy Submitted: 6-- ISSN: 99-3843, Vol. 64, pp 59-7 Accepted: 6--5 doi:.85/www.scipress.com/ilcpa.64.59 Online: 6--5 6 SciPress Ltd., Switzerland Simulation

More information

arxiv: v2 [cs.it] 21 Sep 2017

arxiv: v2 [cs.it] 21 Sep 2017 Signaling on the Continuous Spectrum of Nonlinear Optical Fiber IMAN TAVAKKOLNIA * AND MAJID SAFARI Institute for Digital Communications, School of Engineering, University of Edinburgh, EH9 3JL, Edinburgh,

More information

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES Department of Electrical Engineering Indian Institute of Technology, Madras 1st February 2007 Outline Introduction. Approaches to electronic mitigation - ADC

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

Nonlinear Photonics with Optical Waveguides

Nonlinear Photonics with Optical Waveguides 1/44 Nonlinear Photonics with Optical Waveguides Govind P. Agrawal The Institute of Optics University of Rochester Rochester, New York, USA c 2015 G. P. Agrawal Outline Introduction Planar and Cylindrical

More information

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold)

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Asymptotic Capacity Bounds for Magnetic Recording Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Outline Problem Statement Signal and Noise Models for Magnetic Recording Capacity

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

PROCEEDINGS OF SPIE. Optimal input signal distribution and capacity for nondispersive nonlinear optical fiber channel at large signal to noise ratio

PROCEEDINGS OF SPIE. Optimal input signal distribution and capacity for nondispersive nonlinear optical fiber channel at large signal to noise ratio PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Optimal input signal distribution and capacity for nondispersive nonlinear ical fiber channel at large signal to noise ratio I.

More information

Lecture 2. Capacity of the Gaussian channel

Lecture 2. Capacity of the Gaussian channel Spring, 207 5237S, Wireless Communications II 2. Lecture 2 Capacity of the Gaussian channel Review on basic concepts in inf. theory ( Cover&Thomas: Elements of Inf. Theory, Tse&Viswanath: Appendix B) AWGN

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Modulation & Coding for the Gaussian Channel

Modulation & Coding for the Gaussian Channel Modulation & Coding for the Gaussian Channel Trivandrum School on Communication, Coding & Networking January 27 30, 2017 Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October Soliton Soliton Molecules Molecules and and Optical Optical Rogue Rogue Waves Waves Benasque, October 2014 Fedor Mitschke Universität Rostock, Institut für Physik fedor.mitschke@uni-rostock.de Part II

More information

Channel Capacity And Modeling Of Optical Fiber Communications

Channel Capacity And Modeling Of Optical Fiber Communications Channel Capacity And Modeling Of Optical Fiber Communications Salam Elahmadi, Mandyam D. Srinath, Dinesh Rajan Department of Electrical Engineering, Southern Methodist University, Dallas, TX 75275 Richard

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE.401: Introductory

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. Digital Modulation and Coding Tutorial-1 1. Consider the signal set shown below in Fig.1 a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. b) What is the minimum Euclidean

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

EE303: Communication Systems

EE303: Communication Systems EE303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE303: Introductory Concepts

More information

Modeling Propagation in Optical Fiber using Split- Step Wavelet in Linear Media

Modeling Propagation in Optical Fiber using Split- Step Wavelet in Linear Media International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 3, Number 3 (2010), pp. 119--124 International Research Publication House http://www.irphouse.com Modeling Propagation

More information

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich Mode locking by forcing

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

Supplementary Figure 1: Scheme of the RFT. (a) At first, we separate two quadratures of the field (denoted by and ); (b) then, each quadrature

Supplementary Figure 1: Scheme of the RFT. (a) At first, we separate two quadratures of the field (denoted by and ); (b) then, each quadrature Supplementary Figure 1: Scheme of the RFT. (a At first, we separate two quadratures of the field (denoted by and ; (b then, each quadrature undergoes a nonlinear transformation, which results in the sine

More information

IN a long-haul soliton communication system, lumped amplifiers

IN a long-haul soliton communication system, lumped amplifiers JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 4, APRIL 1998 515 Effect of Soliton Interaction on Timing Jitter in Communication Systems Armando Nolasco Pinto, Student Member, OSA, Govind P. Agrawal, Fellow,

More information

Raman Amplification for Telecom Optical Networks. Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux

Raman Amplification for Telecom Optical Networks. Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux Raman Amplification for Telecom Optical Networks Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux Training day www.brighter.eu project Cork, June 20th 2008 Outline of the

More information

Ranging detection algorithm for indoor UWB channels

Ranging detection algorithm for indoor UWB channels Ranging detection algorithm for indoor UWB channels Choi Look LAW and Chi XU Positioning and Wireless Technology Centre Nanyang Technological University 1. Measurement Campaign Objectives Obtain a database

More information

IEEE TRANSACTIONS ON INFORMATION THEORY 1. Information Transmission using the Nonlinear Fourier Transform, Part III: Spectrum Modulation

IEEE TRANSACTIONS ON INFORMATION THEORY 1. Information Transmission using the Nonlinear Fourier Transform, Part III: Spectrum Modulation IEEE TRANSACTIONS ON INFORMATION THEORY 1 Information Transmission using the Nonlinear Fourier Transform, Part III: Spectrum Modulation Mansoor I. Yousefi and Frank R. Kschischang, Fellow, IEEE Abstract

More information

Chapter 5. Transmission System Engineering. Design the physical layer Allocate power margin for each impairment Make trade-off

Chapter 5. Transmission System Engineering. Design the physical layer Allocate power margin for each impairment Make trade-off Chapter 5 Transmission System Engineering Design the physical layer Allocate power margin for each impairment Make trade-off 1 5.1 System Model Only digital systems are considered Using NRZ codes BER is

More information

Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media

Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media MM Research Preprints 342 349 MMRC AMSS Academia Sinica Beijing No. 22 December 2003 Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Optical Fiber Signal Degradation

Optical Fiber Signal Degradation Optical Fiber Signal Degradation Effects Pulse Spreading Dispersion (Distortion) Causes the optical pulses to broaden as they travel along a fiber Overlap between neighboring pulses creates errors Resulting

More information

The Evolution and perturbation of Solitons in Dispersive- Nonlinear Optical Fiber

The Evolution and perturbation of Solitons in Dispersive- Nonlinear Optical Fiber IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue 3, Ver. IV (May - Jun. 14), PP 119-16 The Evolution and perturbation of Solitons in

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs P. L. Kelley Optical Society of America Washington, DC and T. K. Gustafson EECS University of California Berkeley,

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

NONLINEARITY in optical fibers limits the achievable

NONLINEARITY in optical fibers limits the achievable 5056 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 35, NO. 23, DECEMBER 1, 2017 Nonlinear Compensation in Optical Communications Systems With Normal Dispersion Fibers Using the Nonlinear Fourier Transform Ivan

More information

The PPM Poisson Channel: Finite-Length Bounds and Code Design

The PPM Poisson Channel: Finite-Length Bounds and Code Design August 21, 2014 The PPM Poisson Channel: Finite-Length Bounds and Code Design Flavio Zabini DEI - University of Bologna and Institute for Communications and Navigation German Aerospace Center (DLR) Balazs

More information

Fiber-Optic Parametric Amplifiers for Lightwave Systems

Fiber-Optic Parametric Amplifiers for Lightwave Systems Fiber-Optic Parametric Amplifiers for Lightwave Systems F. Yaman, Q. Lin, and Govind P. Agrawal Institute of Optics, University of Rochester, Rochester, NY 14627 May 21, 2005 Abstract Fiber-optic parametric

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers General pulse propagation equation Optical pulse propagation just as any other optical

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

More information

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5.

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Channel capacity Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Exercices Exercise session 11 : Channel capacity 1 1. Source entropy Given X a memoryless

More information

III. Spherical Waves and Radiation

III. Spherical Waves and Radiation III. Spherical Waves and Radiation Antennas radiate spherical waves into free space Receiving antennas, reciprocity, path gain and path loss Noise as a limit to reception Ray model for antennas above a

More information

R. L. Sharma*and Dr. Ranjit Singh*

R. L. Sharma*and Dr. Ranjit Singh* e t International Journal on Emerging echnologies (): 141-145(011) ISSN No (Print) : 0975-8364 ISSN No (Online) : 49-355 Solitons, its Evolution and Applications in High Speed Optical Communication R L

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Solitons in optical fibers. by: Khanh Kieu

Solitons in optical fibers. by: Khanh Kieu Solitons in optical fibers by: Khanh Kieu Project 9: Observation of soliton PD (or autocorrelator) ML laser splitter Er-doped Fiber spool 980nm pump PD (or autocorrelator) P 0 is the free parameter What

More information

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser X. Wu, D. Y. Tang*, H. Zhang and L. M. Zhao School of Electrical and Electronic Engineering, Nanyang Technological University,

More information

Lecture 18: Gaussian Channel

Lecture 18: Gaussian Channel Lecture 18: Gaussian Channel Gaussian channel Gaussian channel capacity Dr. Yao Xie, ECE587, Information Theory, Duke University Mona Lisa in AWGN Mona Lisa Noisy Mona Lisa 100 100 200 200 300 300 400

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 10: Information Theory Textbook: Chapter 12 Communication Systems Engineering: Ch 6.1, Ch 9.1~ 9. 92 2009/2010 Meixia Tao @

More information

ABRIDGING INTERACTION RESULT IN TEMPORAL SPREAD- ING

ABRIDGING INTERACTION RESULT IN TEMPORAL SPREAD- ING 1 INTERNATIONAL JOURNAL OF ADVANCE RESEARCH, IJOAR.ORG ISSN 232-9186 International Journal of Advance Research, IJOAR.org Volume 1, Issue 2, MAY 213, Online: ISSN 232-9186 ABRIDGING INTERACTION RESULT

More information

Capacity and Capacity-Achieving Input Distribution of the Energy Detector

Capacity and Capacity-Achieving Input Distribution of the Energy Detector Capacity and Capacity-Achieving Input Distribution of the Energy Detector Erik Leitinger, Bernhard C. Geiger, and Klaus Witrisal Signal Processing and Speech Communication Laboratory, Graz University of

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Sample Problems for the 9th Quiz

Sample Problems for the 9th Quiz Sample Problems for the 9th Quiz. Draw the line coded signal waveform of the below line code for 0000. (a Unipolar nonreturn-to-zero (NRZ signaling (b Polar nonreturn-to-zero (NRZ signaling (c Unipolar

More information

Index Terms Nonlinear Schrodinger Equation (NLSE), soliton coupling, all optical switching, split step Fourier method (SSFM).

Index Terms Nonlinear Schrodinger Equation (NLSE), soliton coupling, all optical switching, split step Fourier method (SSFM). International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-015 149 Split-Step Fourier Method in Modeling Dual Core Nonlinear Fiber Coupler James Raja.S. Department of ECE Karunya

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

10. OPTICAL COHERENCE TOMOGRAPHY

10. OPTICAL COHERENCE TOMOGRAPHY 1. OPTICAL COHERENCE TOMOGRAPHY Optical coherence tomography (OCT) is a label-free (intrinsic contrast) technique that enables 3D imaging of tissues. The principle of its operation relies on low-coherence

More information

DWDM transmission optimization in nonlinear optical fibres with a fast split-step wavelet collocation method

DWDM transmission optimization in nonlinear optical fibres with a fast split-step wavelet collocation method DWDM transmission optimization in nonlinear optical fibres with a fast split-step wavelet collocation method T. Kremp a and W. Freude b a Institut für Geometrie und Praktische Mathematik, RWTH Aachen University

More information

Optimal dispersion precompensation by pulse chirping

Optimal dispersion precompensation by pulse chirping Optimal dispersion precompensation by pulse chirping Ira Jacobs and John K. Shaw For the procedure of dispersion precompensation in fibers by prechirping, we found that there is a maximum distance over

More information

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection ustafa Cenk Gursoy Department of Electrical Engineering University of Nebraska-Lincoln, Lincoln, NE 68588 Email: gursoy@engr.unl.edu

More information

Impact of Nonlinearities on Fiber Optic Communications

Impact of Nonlinearities on Fiber Optic Communications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Review Impact of Nonlinearities on Fiber Optic Communications Mário Ferreira

More information

Using Noncoherent Modulation for Training

Using Noncoherent Modulation for Training EE8510 Project Using Noncoherent Modulation for Training Yingqun Yu May 5, 2005 0-0 Noncoherent Channel Model X = ρt M ΦH + W Rayleigh flat block-fading, T: channel coherence interval Marzetta & Hochwald

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 [Most of the material for this lecture has been taken from the Wireless Communications & Networks book by Stallings (2 nd edition).] Effective

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

8 PAM BER/SER Monte Carlo Simulation

8 PAM BER/SER Monte Carlo Simulation xercise.1 8 PAM BR/SR Monte Carlo Simulation - Simulate a 8 level PAM communication system and calculate bit and symbol error ratios (BR/SR). - Plot the calculated and simulated SR and BR curves. - Plot

More information

Quantum Imaging Technologies: Quantum Laser Radar

Quantum Imaging Technologies: Quantum Laser Radar MURI 2005 Quantum Imaging: New Methods and Applications Year 3 Review / 17 November 2008 / UMBC, Baltimore, MD Quantum Imaging Technologies: Quantum Laser Radar Prem Kumar and Geraldo Barbosa EECS Department,

More information

Blind phase/frequency synchronization with low-precision ADC: a Bayesian approach

Blind phase/frequency synchronization with low-precision ADC: a Bayesian approach Blind phase/frequency synchronization with low-precision ADC: a Bayesian approach Aseem Wadhwa, Upamanyu Madhow Department of ECE, UCSB 1/26 Modern Communication Receiver Architecture Analog Digital TX

More information

Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems

Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems 632 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 3, MAY/JUNE 2002 Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems Jayanthi Santhanam and Govind P.

More information

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity pulses. The pulse structure is shown for the scheme in Fig. 1a (point B) versus the round- trip number. The zero time

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Proc. Biennial Symp. Commun. (Kingston, Ont.), pp. 3-35, June 99 A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Nader Sheikholeslami Peter Kabal Department of Electrical Engineering

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Optical Communication Systems (OPT428)

Optical Communication Systems (OPT428) 1/549 Optical Communication Systems (OPT428) Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Chapter 7: Dispersion Management Dispersion Problem and

More information

Bound-soliton fiber laser

Bound-soliton fiber laser PHYSICAL REVIEW A, 66, 033806 2002 Bound-soliton fiber laser D. Y. Tang, B. Zhao, D. Y. Shen, and C. Lu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore W. S.

More information