ENGI 3424 Mid Term Test Solutions Page 1 of 9

Size: px
Start display at page:

Download "ENGI 3424 Mid Term Test Solutions Page 1 of 9"

Transcription

1 ENGI 344 Mid Term Test 07 0 Solutions Page of 9. The displacement st of the free end of a mass spring sstem beond the equilibrium position is governed b the ordinar differential equation d s ds 3t 6 5s 3e dt dt s 0 s 0 0 together with the initial conditions (a) B an valid method, find the complete solution to this initial value problem. [0] (b) Is the sstem under-damped, criticall damped or over-damped? [] (a) Chapter method: A.E.: j 3 4 j 3t C.F.: s e Acos 4t Bsin 4t C P.S. (method of undetermined coefficients): 3t r 3e which is not a constant multiple of either part of the C.F. 3t 3t s e cos 4 t, s e sin 4t Therefore tr Substitute in 3 t 3 t 3 t s c e s 3c e s 9c e P P P s 6s 5s 3e P P P 3t 3 t 3 t 3 t ce ce 3e c s P 3t e G.S.: 3t st e Acos 4t Bsin 4t I.C.: 3t 3t st 3e A cos 4t B sin 4t e 4A sin 4t 4B cos 4t 0 3t st e 3A 4B cos 4t 3B 4A sin 4t 6 s 0 0 A 0 0 A s B B 0 C.S.: 3t cos 4 s t e t Alternative methods follow on the net page. (b) 3 4j, a comple conjugate pair the sstem is under-damped

2 ENGI 344 Mid Term Test 07 0 Solutions Page of 9 (a) Alternate solutions: P.S. (b the method of variation of parameters): 3t 3t 3t s e cos 4 t, s e sin 4 t, r 3e W 6t s s 3t 3t e cos 4t e sin 4t s 3t 3 s e t t e t t t 3cos 4 4sin 4 3sin 4 4cos 4 e 3cos 4t sin 4t 4cos 4t 3cos 4t sin 4t r s 4sin 4t 4 e 6 0 s 3t 3t 6t W s r e sin 4t 3e 3e sin 4t 6t W 3e sin 4t u 8sin 4t u cos 4t W 6t 4e s 0 3t 3t 6t W sr e cos 4t 3e 3e cos 4t s r 6t W 3e cos 4t W 6t 4e v 8cos 4t v sin 4t 3t 3t 3t s u s v s cos 4t e cos 4t sin 4t e sin 4t e P t Chapter 3 method (Laplace transforms): Y u L s t then the initial value problem becomes Let 3 u Y 0u 0 6uY 0 5Y u 3 3 u 6u 5Y u 3 3 a bu 3 4c Y u 3 u 3 6 u 3 u a u 3 4 b u 3 4c u 3 u 3: 3 a a u : 0 b 0 b u 0 : c c 0 u 3 3t 3t L s t L e e cos 4t u 3 u 3 4 3t cos 4 s t e t

3 ENGI 344 Mid Term Test 07 0 Solutions Page 3 of 9 (a) Use the RK4 (Runge-Kutta) method with a single step (h = 0.5) to estimate the [9] value of at =.5 to three decimal places, given that and that is the solution of the ordinar differential equation d Note: the RK4 algorithm for,, f o o d includes k f, n, n n, 3 n n k f h, h k 4 n n 3 n k f h h k k f h h k h n n k k k3 k4 6 (b) Confirm our answer to question (a) b solving the initial value problem [9], d eactl. (a) k f, k f k 3 0.5, f 0.5, k4 f 0.5, Note that premature roundoff of intermediate values can cause errors in the final answer.

4 ENGI 344 Mid Term Test 07 0 Solutions Page 4 of 9 (b) d d or 0 [but the ODE is linear, so there is no singular solution] d ln C e e e [and 0 is part of this general solution, when A 0 ] A e / / / / e e and / e.5 / e e The error in the RK4 estimate is less than 0.%! / C / C / /C / Common error: ln C e e C Alternate solution to part (b): The ODE is linear: 0 d d P, R 0 h P d d h e R d 0d 0 h h / / e e R d C e 0 C C e C e C e / / / / e e and / e.5 / e e

5 ENGI 344 Mid Term Test 07 0 Solutions Page 5 of 9 3. B an valid method, find the general solution of the ordinar differential equation [] d and find the complete solution given the additional information 0 0 This ODE is not linear. Use the method of separation of variables: d d d (provided 0 and ) Note that 0 and are both solutions to the ODE and therefore ma be part of the general solution. For the complete solution, 0 is consistent with the initial condition but is not. a b B the cover-up rule, a 0 0 and b d ln ln C d [Note that ln ] C C ln C e e e Setting A 0 leads to 0, so that 0 is part of this general solution, but no finite value of A leads to, so that is a singular solution. Therefore the general solution is Complete solution: A A 0 A or. Also is inconsistent with 0 onl 0 0

6 ENGI 344 Mid Term Test 07 0 Solutions Page 6 of 9 3. (continued) Alternative solution: d d d (provided 0 and ) a b B the cover-up rule, a 0 0 and b d ln ln C C C ln C e e e B e B e B e B e Setting B 0 leads to, so that is part of this general solution, but no finite value of B leads to 0, so that 0 is a singular solution. Therefore the general solution is Be or 0 This alternate solution is equivalent to the previous solution upon assigning Complete solution: B, which has no finite solution for B. However is consistent with A. B 0 Note: This ODE is a Bernoulli ODE (beond the scope of this course). A change of variables will transform this ODE into a linear form.

7 ENGI 344 Mid Term Test 07 0 Solutions Page 7 of 9 3. (continued) Additional Notes: Graphs of some members of the famil of solutions or Graphs of some members of the famil of solutions Be or 0

8 ENGI 344 Mid Term Test 07 0 Solutions Page 8 of 9 4. A set of equipotentials in the plane has the equation 9 A where A is an real number. (a) Find the equation of the set of lines of force associated with these equipotentials [9] (that is, find the orthogonal trajectories). BONUS QUESTION (b) Sketch on one diagram an two equipotentials and an two lines of force. [+4] (a) For the equipotentials, 9 A 8 0 d d 9 The orthogonal trajectories (lines of force) must therefore be the general solution of 9 d d d ln 9 ln C ln ln B ln B Therefore the lines of force are B 9 Common error: 9 3! (the onl eception is when and/or is zero)

9 ENGI 344 Mid Term Test 07 0 Solutions Page 9 of 9 4 (b) The equation a b [or 0, b if b a]. represents an ellipse, centre the origin, vertices at a,0 9 A A A /9 A A /3 A These are ellipses, with aes intercepts at A,0 and 0, 3 n The lines of force are simple curves of the tpe when n is odd. Additional notes: Ever line of force intersects ever equipotential at right angles. 9 Even the degenerate line of force 0 0 intersects ever ellipse at right angles. The onl eception is A 0, which is a point at the origin. Back to the inde of solutions

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

( 7, 3) means x = 7 and y = 3. ( 7, 3) works in both equations so. Section 5 1: Solving a System of Linear Equations by Graphing

( 7, 3) means x = 7 and y = 3. ( 7, 3) works in both equations so. Section 5 1: Solving a System of Linear Equations by Graphing Section 5 : Solving a Sstem of Linear Equations b Graphing What is a sstem of Linear Equations? A sstem of linear equations is a list of two or more linear equations that each represents the graph of a

More information

SPS Mathematical Methods

SPS Mathematical Methods SPS 2281 - Mathematical Methods Assignment No. 2 Deadline: 11th March 2015, before 4:45 p.m. INSTRUCTIONS: Answer the following questions. Check our answer for odd number questions at the back of the tetbook.

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 0537_cop6.qd 0/8/08 :6 PM Page 3 6 Additional Topics in Differential Equations In Chapter 6, ou studied differential equations. In this chapter, ou will learn additional techniques for solving differential

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

Pure Further Mathematics 2. Revision Notes

Pure Further Mathematics 2. Revision Notes Pure Further Mathematics Revision Notes October 016 FP OCT 016 SDB Further Pure 1 Inequalities... 3 Algebraic solutions... 3 Graphical solutions... 4 Series Method of Differences... 5 3 Comple Numbers...

More information

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud Basics Concepts and Ideas First Order Differential Equations Dr. Omar R. Daoud Differential Equations Man Phsical laws and relations appear mathematicall in the form of Differentia Equations The are one

More information

Review for Exam #3 MATH 3200

Review for Exam #3 MATH 3200 Review for Exam #3 MATH 3 Lodwick/Kawai You will have hrs. to complete Exam #3. There will be one full problem from Laplace Transform with the unit step function. There will be linear algebra, but hopefull,

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 6 Additional Topics in Differential Equations 6. Eact First-Order Equations 6. Second-Order Homogeneous Linear Equations 6.3 Second-Order Nonhomogeneous Linear Equations 6.4 Series Solutions of Differential

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

Intermediate Math Circles Wednesday November Inequalities and Linear Optimization

Intermediate Math Circles Wednesday November Inequalities and Linear Optimization WWW.CEMC.UWATERLOO.CA The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Intermediate Math Circles Wednesda November 21 2012 Inequalities and Linear Optimization Review: Our goal is to solve sstems

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

ENGI 3424 Engineering Mathematics Problem Set 1 Solutions (Sections 1.1 and 1.2)

ENGI 3424 Engineering Mathematics Problem Set 1 Solutions (Sections 1.1 and 1.2) ENGI 344 Engineering Matheatics Proble Set 1 Solutions (Sections 1.1 and 1.) 1. Find the general solution of the ordinary differential equation y 0 This ODE is not linear (due to the product y ). However,

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Section B. Ordinary Differential Equations & its Applications Maths II

Section B. Ordinary Differential Equations & its Applications Maths II Section B Ordinar Differential Equations & its Applications Maths II Basic Concepts and Ideas: A differential equation (D.E.) is an equation involving an unknown function (or dependent variable) of one

More information

Problem set 6 Math 207A, Fall 2011 Solutions. 1. A two-dimensional gradient system has the form

Problem set 6 Math 207A, Fall 2011 Solutions. 1. A two-dimensional gradient system has the form Problem set 6 Math 207A, Fall 2011 s 1 A two-dimensional gradient sstem has the form x t = W (x,, x t = W (x, where W (x, is a given function (a If W is a quadratic function W (x, = 1 2 ax2 + bx + 1 2

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

INTRODUCTION TO DIFFERENTIAL EQUATIONS

INTRODUCTION TO DIFFERENTIAL EQUATIONS INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminolog. Initial-Value Problems.3 Differential Equations as Mathematical Models CHAPTER IN REVIEW The words differential and equations certainl

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Section. Logarithmic Functions and Their Graphs 7. LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Ariel Skelle/Corbis What ou should learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Not for reproduction

Not for reproduction ROTATION OF AES For a discussion of conic sections, see Review of Conic Sections In precalculus or calculus ou ma have studied conic sections with equations of the form A C D E F Here we show that the

More information

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations ENGI 344 - Second Order Linear ODEs age -01. Second Order Linear Ordinary Differential Equations The general second order linear ordinary differential equation is of the form d y dy x Q x y Rx dx dx Of

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Solve the following differential equations. ME 9 Mechanical Engineering Analysis Eam # Practice Problems Solutions. e u 5sin() with u(=)= We may rearrange this equation to e u 5sin() and note that it is

More information

Chapter Eleven. Chapter Eleven

Chapter Eleven. Chapter Eleven Chapter Eleven Chapter Eleven CHAPTER ELEVEN Hughes Hallett et al c 005, John Wile & Sons ConcepTests and Answers and Comments for Section. For Problems, which of the following functions satisf the given

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

n n. ( t) ( ) = = Ay ( ) a y

n n. ( t) ( ) = = Ay ( ) a y Sstems of ODE Example of sstem with ODE: = a+ a = a + a In general for a sstem of n ODE = a + a + + a n = a + a + + a n = a + a + + a n n n nn n n n Differentiation of matrix: ( t) ( t) t t = = t t ( t)

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

S. Ghorai 1. Lecture IV Linear equations, Bernoulli equations, Orthogonal trajectories, Oblique trajectories. (p(x)y r(x))dx + dy = 0.

S. Ghorai 1. Lecture IV Linear equations, Bernoulli equations, Orthogonal trajectories, Oblique trajectories. (p(x)y r(x))dx + dy = 0. S. Ghorai 1 Lecture IV Linear equations, Bernoulli equations, Orthogonal trajectories, Oblique trajectories 1 Linear equations A first order linear equations is of the form This can be written as Here

More information

Brief Notes on Differential Equations

Brief Notes on Differential Equations Brief Notes on Differential Equations (A) Searable First-Order Differential Equations Solve the following differential equations b searation of variables: (a) (b) Solution ( 1 ) (a) The ODE becomes d and

More information

ENGI 2422 First Order ODEs - Separable Page 3-01

ENGI 2422 First Order ODEs - Separable Page 3-01 ENGI 4 First Order ODEs - Separable Page 3-0 3. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with

More information

Introduction to Differential Equations

Introduction to Differential Equations Math0 Lecture # Introduction to Differential Equations Basic definitions Definition : (What is a DE?) A differential equation (DE) is an equation that involves some of the derivatives (or differentials)

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Name Date Chapter Polnomial and Rational Functions Section.1 Quadratic Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Important Vocabular Define

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polnomial and Rational Functions 3.1 Quadratic Functions and Models 3.2 Polnomial Functions and Their Graphs 3.3 Dividing Polnomials 3.4 Real Zeros of Polnomials 3.5 Comple Zeros and the Fundamental

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

7.7 LOTKA-VOLTERRA M ODELS

7.7 LOTKA-VOLTERRA M ODELS 77 LOTKA-VOLTERRA M ODELS sstems, such as the undamped pendulum, enabled us to draw the phase plane for this sstem and view it globall In that case we were able to understand the motions for all initial

More information

1. First-order ODE s

1. First-order ODE s 18.03 EXERCISES 1. First-order ODE s 1A. Introduction; Separation of Variables 1A-1. Verif that each of the following ODE s has the indicated solutions (c i,a are constants): a) 2 + = 0, = c 1 e x +c 2

More information

Chapter 11. Systems of Equations Solving Systems of Linear Equations by Graphing

Chapter 11. Systems of Equations Solving Systems of Linear Equations by Graphing Chapter 11 Sstems of Equations 11.1 Solving Sstems of Linear Equations b Graphing Learning Objectives: A. Decide whether an ordered pair is a solution of a sstem of linear equations. B. Solve a sstem of

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t) Math 380 Practice Final Solutions This is longer than the actual exam, which will be 8 to 0 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,

More information

µ Differential Equations MAΘ National Convention 2017 For all questions, answer choice E) NOTA means that none of the above answers is correct.

µ Differential Equations MAΘ National Convention 2017 For all questions, answer choice E) NOTA means that none of the above answers is correct. µ Differential Equations MAΘ National Convention 07 For all questions, answer choice E) NOTA means that none of the above answers is correct.. C) Since f (, ) = +, (0) = and h =. Use Euler s method, we

More information

x c x c This suggests the following definition.

x c x c This suggests the following definition. 110 Chapter 1 / Limits and Continuit 1.5 CONTINUITY A thrown baseball cannot vanish at some point and reappear someplace else to continue its motion. Thus, we perceive the path of the ball as an unbroken

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

Introduction to Differential Equations

Introduction to Differential Equations Introduction to Differential Equations. Definitions and Terminolog.2 Initial-Value Problems.3 Differential Equations as Mathematical Models Chapter in Review The words differential and equations certainl

More information

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

More information

Q.2 A, B and C are points in the xy plane such that A(1, 2) ; B (5, 6) and AC = 3BC. Then. (C) 1 1 or

Q.2 A, B and C are points in the xy plane such that A(1, 2) ; B (5, 6) and AC = 3BC. Then. (C) 1 1 or STRAIGHT LINE [STRAIGHT OBJECTIVE TYPE] Q. A variable rectangle PQRS has its sides parallel to fied directions. Q and S lie respectivel on the lines = a, = a and P lies on the ais. Then the locus of R

More information

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these.

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these. MATRICES UNIT STRUCTURE.0 Objectives. Introduction. Definitions. Illustrative eamples.4 Rank of matri.5 Canonical form or Normal form.6 Normal form PAQ.7 Let Us Sum Up.8 Unit End Eercise.0 OBJECTIVES In

More information

Math098 Practice Final Test

Math098 Practice Final Test Math098 Practice Final Test Find an equation of the line that contains the points listed in the table. 1) 0-6 1-2 -4 3-3 4-2 Find an equation of the line. 2) 10-10 - 10 - -10 Solve. 3) 2 = 3 + 4 Find the

More information

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP Mark Schemes from old P, P5, P6 and FP, FP, FP papers (back to June 00) Please note that the following pages contain mark schemes for questions from past papers. The standard of the mark schemes is

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

Chapter 6: Systems of Equations and Inequalities

Chapter 6: Systems of Equations and Inequalities Chapter 6: Sstems of Equations and Inequalities 6-1: Solving Sstems b Graphing Objectives: Identif solutions of sstems of linear equation in two variables. Solve sstems of linear equation in two variables

More information

Instructions for Section 2

Instructions for Section 2 200 MATHMETH(CAS) EXAM 2 0 SECTION 2 Instructions for Section 2 Answer all questions in the spaces provided. In all questions where a numerical answer is required an eact value must be given unless otherwise

More information

Chapter 2: Solution of First order ODE

Chapter 2: Solution of First order ODE 0 Chapter : Solution of irst order ODE Se. Separable Equations The differential equation of the form that is is alled separable if f = h g; In order to solve it perform the following steps: Rewrite the

More information

Ordinary Differential Equations

Ordinary Differential Equations 58229_CH0_00_03.indd Page 6/6/6 2:48 PM F-007 /202/JB0027/work/indd & Bartlett Learning LLC, an Ascend Learning Compan.. PART Ordinar Differential Equations. Introduction to Differential Equations 2. First-Order

More information

Lecture 2: Separable Ordinary Differential Equations

Lecture 2: Separable Ordinary Differential Equations Lecture : Separable Ordinar Differential Equations Dr. Michael Doughert Januar 8, 00 Some Terminolog: ODE s, PDE s, IVP s The differential equations we have looked at so far are called ordinar differential

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #5 Completion Date: Frida Februar 5, 8 Department of Mathematical and Statistical Sciences Universit of Alberta Question. [Sec.., #

More information

Mathematics Qualifying Exam Study Material

Mathematics Qualifying Exam Study Material Mathematics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering mathematics topics. These topics are listed below for clarification. Not all instructors

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) 60 Best JEE Main and Advanced Level Problems (IIT-JEE). Prepared by IITians.

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) 60 Best JEE Main and Advanced Level Problems (IIT-JEE). Prepared by IITians. www. Class XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) ALP ADVANCED LEVEL PROBLEMS Straight Lines 60 Best JEE Main and Advanced Level Problems (IIT-JEE). Prepared b IITians.

More information

FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name

FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name 1) Find the SUM of the solutions of the equation. 82 + 0 = 16 Use the quadratic formula to solve the equation. (All solutions are real numbers.)

More information

Differential Equations: Homework 8

Differential Equations: Homework 8 Differential Equations: Homework 8 Alvin Lin January 08 - May 08 Section.6 Exercise Find a general solution to the differential equation using the method of variation of parameters. y + y = tan(t) r +

More information

CHAPTER 3 Graphs and Functions

CHAPTER 3 Graphs and Functions CHAPTER Graphs and Functions Section. The Rectangular Coordinate Sstem............ Section. Graphs of Equations..................... 7 Section. Slope and Graphs of Linear Equations........... 7 Section.

More information

9 11 Solve the initial-value problem Evaluate the integral. 1. y sin 3 x cos 2 x dx. calculation. 1 + i i23

9 11 Solve the initial-value problem Evaluate the integral. 1. y sin 3 x cos 2 x dx. calculation. 1 + i i23 Mock Exam 1 5 8 Solve the differential equation. 7. d dt te t s1 Mock Exam 9 11 Solve the initial-value problem. 9. x ln x, 1 3 6 Match the differential equation with its direction field (labeled I IV).

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems Edecel GCE A Level Maths Further Maths 3 Coordinate Sstems Edited b: K V Kumaran kumarmaths.weebl.com 1 kumarmaths.weebl.com kumarmaths.weebl.com 3 kumarmaths.weebl.com 4 kumarmaths.weebl.com 5 1. An ellipse

More information

Ordinary Differential Equations of First Order

Ordinary Differential Equations of First Order CHAPTER 1 Ordinar Differential Equations of First Order 1.1 INTRODUCTION Differential equations pla an indispensable role in science technolog because man phsical laws relations can be described mathematicall

More information

Week #7 Maxima and Minima, Concavity, Applications Section 4.2

Week #7 Maxima and Minima, Concavity, Applications Section 4.2 Week #7 Maima and Minima, Concavit, Applications Section 4.2 From Calculus, Single Variable b Hughes-Hallett, Gleason, McCallum et. al. Copright 2005 b John Wile & Sons, Inc. This material is used b permission

More information

Final Exam Review. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Final Exam Review. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Eam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function.

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

First Order Linear Ordinary Differential Equations

First Order Linear Ordinary Differential Equations First Order Linear Ordinary Differential Equations The most general first order linear ODE is an equation of the form p t dy dt q t y t f t. 1 Herepqarecalledcoefficients f is referred to as the forcing

More information

4.3 Exercises. local maximum or minimum. The second derivative is. e 1 x 2x 1. f x x 2 e 1 x 1 x 2 e 1 x 2x x 4

4.3 Exercises. local maximum or minimum. The second derivative is. e 1 x 2x 1. f x x 2 e 1 x 1 x 2 e 1 x 2x x 4 SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH 297 local maimum or minimum. The second derivative is f 2 e 2 e 2 4 e 2 4 Since e and 4, we have f when and when 2 f. So the curve is concave downward

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

Initial Value Problems for. Ordinary Differential Equations

Initial Value Problems for. Ordinary Differential Equations Initial Value Problems for Ordinar Differential Equations INTRODUCTION Equations which are composed of an unnown function and its derivatives are called differential equations. It becomes an initial value

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

NST1A: Mathematics II (Course A) End of Course Summary, Lent 2011

NST1A: Mathematics II (Course A) End of Course Summary, Lent 2011 General notes Proofs NT1A: Mathematics II (Course A) End of Course ummar, Lent 011 tuart Dalziel (011) s.dalziel@damtp.cam.ac.uk This course is not about proofs, but rather about using different techniques.

More information

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π.

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π. F Further IAL Pure PAPERS: Mathematics FP 04-6 AND SPECIMEN Candidates sitting FP may also require those formulae listed under Further Pure Mathematics FP and Core Mathematics C C4. Area of a sector A

More information

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions 1 Math 301 UNIT 5: Polnomial Functions NOTES Section 5.1 and 5.: Characteristics of Graphs and Equations of Polnomials Functions What is a polnomial function? Polnomial Function: - A function that contains

More information

N coupled oscillators

N coupled oscillators Waves 1 1 Waves 1 1. N coupled oscillators towards the continuous limit. Stretched string and the wave equation 3. The d Alembert solution 4. Sinusoidal waves, wave characteristics and notation T 1 T N

More information

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP Mark Schemes from old P, P5, P6 and FP, FP, FP papers (back to June 00) Please note that the following pages contain mark schemes for questions from past papers. The standard of the mark schemes is

More information

Sec 4 Maths SET D PAPER 2

Sec 4 Maths SET D PAPER 2 S4MA Set D Paper Sec 4 Maths Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e Answer all questions. Write your answers and working on the separate Answer Paper provided.

More information

Mth Quadratic functions and quadratic equations

Mth Quadratic functions and quadratic equations Mth 0 - Quadratic functions and quadratic equations Name Find the product. 1) 8a3(2a3 + 2 + 12a) 2) ( + 4)( + 6) 3) (3p - 1)(9p2 + 3p + 1) 4) (32 + 4-4)(2-3 + 3) ) (4a - 7)2 Factor completel. 6) 92-4 7)

More information

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a:

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a: SECTION.5 CONTINUITY 9.5 CONTINUITY We noticed in Section.3 that the it of a function as approaches a can often be found simpl b calculating the value of the function at a. Functions with this propert

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

Ordinary Differential Equations n

Ordinary Differential Equations n Numerical Analsis MTH63 Ordinar Differential Equations Introduction Talor Series Euler Method Runge-Kutta Method Predictor Corrector Method Introduction Man problems in science and engineering when formulated

More information

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator. University of Toronto Faculty of Applied Science and Engineering Solutions to Final Examination, June 017 Duration: and 1/ hrs First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT187H1F - Calculus

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

A Mathematical Trivium

A Mathematical Trivium A Mathematical Trivium V.I. Arnold 1991 1. Sketch the graph of the derivative and the graph of the integral of a function given by a freehand graph. 2. Find the limit lim x 0 sin tan x tan sin x arcsin

More information

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2 78 Chapter Sstems of Linear Equations Section. Concepts. Solutions to Sstems of Linear Equations. Dependent and Inconsistent Sstems of Linear Equations. Solving Sstems of Linear Equations b Graphing Solving

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , C1 Order and Degree of a Differential Equation : Order : Order is the highest differential appearing in a differential equation. MDE 1 DIFFERENTIAL EQUATION Degree : It is determined b the degree of the

More information

Get Solution of These Packages & Learn by Video Tutorials on SHORT REVISION

Get Solution of These Packages & Learn by Video Tutorials on   SHORT REVISION FREE Download Stu Pacage from website: www.teoclasses.com & www.mathsbsuhag.com Get Solution of These Pacages & Learn b Video Tutorials on www.mathsbsuhag.com SHORT REVISION DIFFERENTIAL EQUATIONS OF FIRST

More information

MAT 127: Calculus C, Fall 2010 Solutions to Midterm I

MAT 127: Calculus C, Fall 2010 Solutions to Midterm I MAT 7: Calculus C, Fall 00 Solutions to Midterm I Problem (0pts) Consider the four differential equations for = (): (a) = ( + ) (b) = ( + ) (c) = e + (d) = e. Each of the four diagrams below shows a solution

More information

I. Degrees and Radians minutes equal 1 degree seconds equal 1 minute. 3. Also, 3600 seconds equal 1 degree. 3.

I. Degrees and Radians minutes equal 1 degree seconds equal 1 minute. 3. Also, 3600 seconds equal 1 degree. 3. 0//0 I. Degrees and Radians A. A degree is a unit of angular measure equal to /80 th of a straight angle. B. A degree is broken up into minutes and seconds (in the DMS degree minute second sstem) as follows:.

More information