Differential Equations: Homework 8

Size: px
Start display at page:

Download "Differential Equations: Homework 8"

Transcription

1 Differential Equations: Homework 8 Alvin Lin January 08 - May 08

2 Section.6 Exercise Find a general solution to the differential equation using the method of variation of parameters. y + y = tan(t) r + = 0 r = 0 ± i α = 0 β = y h = c cos(t) + c sin(t) y = cos(t) y = sin(t) y p = v y + v y W [y, y ] = cos(t) sin(t) sin(t) cos(t) = cos (t) + sin (t) = tan(t) sin(t) v = dt = cos (t) dt cos(t) = sec(t) cos(t) dt = ( ) ln sec(t) + tan(t) sin(t) tan(t) cos(t) v = dt = cos(t) ln sec(t) + tan(t) cos(t) sin(t) cos(t) cos(t) sin(t) y p = ln sec(t) + tan(t) cos(t) y = c cos(t) + c sin(t)

3 Exercise Find a general solution to the differential equation using the method of variation of parameters. Exercise y + y = sec(t) r + = 0 r = 0 ± i α = 0 β = y h = c cos(t) + c sin(t) y = cos(t) y = sin(t) y p = v y + v y W [y, y ] = cos(t) sin(t) sin(t) cos(t) = cos (t) + sin (t) = sec(t) sin(t) v = dt = ln sec(t) sec(t) cos(t) v = dt = t y p = ln sec(t) cos(t) + t sin(t) y = c cos(t) + c sin(t) ln sec(t) cos(t) + t sin(t) Find a general solution for the differential equation using the method of variation of parameters. y + y + y = e t r + r + = (r + ) = 0 r = y h = c e t + c te t y = e t y = te t y p = v y + v y W [y, y ] = e t te t e t te t + e t = e t e t v = te dt = t t e t v = dt = t e t y p = t e t + t e t y = c e t + c te t + t e t 3

4 Exercise 5 Find a general solution for the differential equation using the method of variation of parameters. y (θ) + 6y(θ) = sec(θ) r + 6 = 0 r = 0 ± i α = 0 β = y h = c cos(θ) + c sin(θ) y = cos(θ) y = sin(θ) y p = v y + v y W [y, y ] = cos(θ) sin(θ) sin(θ) cos(θ) = cos (θ) + sin (θ) = sec(θ) sin(θ) ln sec θ v = dθ = 6 sec(θ) cos(θ) v = dθ = θ ln sec θ cos(θ) y p = + θ sin(θ) 6 y = c cos(θ) + c sin(θ) + θ sin(θ) ln sec θ cos(θ) 6 Exercise 7 Find a general solution to the differential equation using the method of variation of parameters. y + t + y = e t ln(t) r + t + = (r + ) = 0 r = y h = c e t + c te t y = e t y = te t y p = v y + v y W [y, y ] = e t te t e t te t + e t = e t e t ln(t)te t v = dt = t ln(t) dt = t e t t ln(t) e t ln(t)e t v = dt = ln(t) dt = t ln(t) t e t y p = t e t = t ln(t)e t t ln(t)e t 3t e t y = c e t + c te t + t ln(t)e t + t ln(t)e t t e t 3t e t

5 Exercise Find a general solution to the differential equation..9 Exercise y + y = tan(t) + e 3t r + = 0 r = 0 ± i α = 0 β = y h = c cos(t) + c sin(t) y = cos(t) y = sin(t) y p = v y + v y W [y, y ] = cos(t) sin(t) sin(t) cos(t) = cos (t) + sin (t) = v = (tan(t) + e 3t ) sin(t) dt = tan(t) sin(t) e 3t sin(t) + sin(t) dt = sin(t) ln sec(t) + tan(t) e3t (cos(t) 3 sin(t)) cos(t) 0 v = (tan(t) + e 3t ) cos(t) dt = sin(t) + e 3t sin(t) cos(t) = cos(t) + e3t (sin(t) + 3 cos(t)) 0 y p = e3t ln sec(t) + tan(t) cos(t) 0 sin(t) y = c cos(t) + c sin(t) + e3t ln sec(t) + tan(t) cos(t) 0 A -kg mass is attached to a spring with stiffness k = 50 N. The mass is displaced m to the left of the m equilibrium point and given a velocity of m to the left. Neglecting damping, find the equation of motion sec of the mass along with the amplitude, period, and frequency. How long after release does the mass pass through the equilibrium position? y + 50y = 0 y(0) = y (0) = r + 50 = 0 r = 0 ± 5i α = 0 β = 5 y(t) = c cos(5t) + c sin(5t) y (t) = 5c sin(5t) + 5c cos(5t) y(0) = = c y (0) = = 5c c = 5 y(t) = cos(5t) 5 sin(5t) 5

6 ( ) A = + ( ) = 5 00 T = π ω = π 5 f = ω π = 5 ( π ) ( ) φ = tan c 5 = tan c ( ( )) 5 y(t) = 0 sin 5t + tan = 0 ( ( )) 5 sin 5t + tan = 0 ( ) 5 5t + tan = π t = π tan ( 5 ) 5 Exercise 3 The motion of a mass-spring system with damping is governed by y (t) + by (t) + 6y(t) = 0 y(0) = y (0) = 0 Find the equation of motion and sketch its graph for b = 0, 6, 8, 0. b = 0 y (t) + 6y(t) = 0 r + 6 = 0 r = 0 ± i α = 0 β = y(t) = c cos(t) + c sin(t) y (t) = c sin(t) + c cos(t) y(0) = = c y (0) = 0 = c c = 0 y(t) = cos(t) 6

7 b = 6 y (t) + 6y (t) + 6y(t) = 0 r + 6r + 6 = 0 r = 6 ± 36 ()(6) = 3 ± 7i α = 3 β = 7 y(t) = e 3t (c cos( 7t) + c sin( 7t)) y (t) = e 3t ( 7c sin( 7t) + 7c cos( 7t)) + 3e 3t (c cos( 7t) + c sin( 7t)) y(0) = = c y (0) = 0 = 7c 3c c = 3 7 y(t) = e 3t (cos( 7t) sin( 7t)) b = 8 y (t) + 8y (t) + 6y(t) = 0 r + 8r + 6 = (r + ) = 0 r = y(t) = c e t + c te t y (t) = c e t c te t + c e t y(0) = = c y (0) = 0 = c + c c = y(t) = e t + te t b = 0 y (t) + 0y (t) + 6y(t) = 0 r + 0r + 6 = (r + 8)(r + ) = 0 r = 8 r = y(t) = c e 8t + c e t y (t) = 8c e 8t c e t y(0) = = c + c y (0) = 0 = 8c c c = 3 c = 3 y(t) = 3 e 8t + 3 e t 7

8 Exercise 7 A kg mass is attached to a spring with stiffness 6 N N sec. The damping constant for the system is. If 8 m m the mass is moved 3 m m to the left of equilibrium and given an initial leftward velocity of, determine sec the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. 8 y + y + 6y = 0 y(0) = 3 8 r + r + 6 = 0 r + 6r + 8 = 0 y (0) = r = 6 ± 6 ()(8) = 8 ± 8i α = 8 β = 8 y(t) = e 8t (c cos(8t) + c sin(8t)) y (t) = e 8t ( 8c sin(8t) + 8c cos(8t)) 8e 8t (c cos(8t) + c sin(8t)) y(0) = 3 = c y (0) = = 8c 8c c = y(t) = e 8t ( 3 cos(8t) sin(8t)) = 3e 8t cos(8t) e 8t sin(8t) 5 A = c + c = 6 e 6t = 5 e 8t k 6 ω = m = 0.5 T = π β = π 8 = π f = β π = π If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech 8

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

Section 4.3 version November 3, 2011 at 23:18 Exercises 2. The equation to be solved is

Section 4.3 version November 3, 2011 at 23:18 Exercises 2. The equation to be solved is Section 4.3 version November 3, 011 at 3:18 Exercises. The equation to be solved is y (t)+y (t)+6y(t) = 0. The characteristic equation is λ +λ+6 = 0. The solutions are λ 1 = and λ = 3. Therefore, y 1 (t)

More information

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator. University of Toronto Faculty of Applied Science and Engineering Solutions to Final Examination, June 216 Duration: 2 and 1/2 hrs First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT187H1F - Calculus

More information

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator. University of Toronto Faculty of Applied Science and Engineering Solutions to Final Examination, June 017 Duration: and 1/ hrs First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT187H1F - Calculus

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 3 Tuesday, 11 April Multiple Choice Answers EXAMPLE A B C D E.

MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 3 Tuesday, 11 April Multiple Choice Answers EXAMPLE A B C D E. MA 110 Algebra and Trigonometry for Calculus Spring 017 Exam 3 Tuesday, 11 April 017 Multiple Choice Answers EXAMPLE A B C D E Question Name: Section: Last digits of student ID #: This exam has twelve

More information

Solutions for homework 5

Solutions for homework 5 1 Section 4.3 Solutions for homework 5 17. The following equation has repeated, real, characteristic roots. Find the general solution. y 4y + 4y = 0. The characteristic equation is λ 4λ + 4 = 0 which has

More information

Homework #5 Solutions

Homework #5 Solutions Homework #5 Solutions Math 123: Mathematical Modeling, Spring 2019 Instructor: Dr. Doreen De Leon 1. Exercise 7.2.5. Stefan-Boltzmann s Law of Radiation states that the temperature change dt/ of a body

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

Differential Equations: Homework 3

Differential Equations: Homework 3 Diffrntial Equations: Homwork 3 Alvin Lin January 08 - May 08 Sction.3 Ercis Dtrmin whthr th givn quation is sparabl, linar, nithr, or both. Not sparabl and linar. d + sin() y = 0 Ercis 3 Dtrmin whthr

More information

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2.

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2. MATH 8 Test -SOLUTIONS Spring 4. Evaluate the integrals. a. (9 pts) e / Solution: Using integration y parts, let u = du = and dv = e / v = e /. Then e / = e / e / e / = e / + e / = e / 4e / + c MATH 8

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

3.4 Application-Spring Mass Systems (Unforced and frictionless systems)

3.4 Application-Spring Mass Systems (Unforced and frictionless systems) 3.4. APPLICATION-SPRING MASS SYSTEMS (UNFORCED AND FRICTIONLESS SYSTEMS)73 3.4 Application-Spring Mass Systems (Unforced and frictionless systems) Second order differential equations arise naturally when

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

Fundamental Trigonometric Identities

Fundamental Trigonometric Identities Fundamental Trigonometric Identities MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and write the fundamental trigonometric

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

ODE Math 3331 (Summer 2014) June 16, 2014

ODE Math 3331 (Summer 2014) June 16, 2014 Page 1 of 12 Please go to the next page... Sample Midterm 1 ODE Math 3331 (Summer 2014) June 16, 2014 50 points 1. Find the solution of the following initial-value problem 1. Solution (S.O.V) dt = ty2,

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Math156 Review for Exam 4

Math156 Review for Exam 4 Math56 Review for Eam 4. What will be covered in this eam: Representing functions as power series, Taylor and Maclaurin series, calculus with parametric curves, calculus with polar coordinates.. Eam Rules:

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES SECTION 9. PARAMETRIC CURVES 9. PARAMETRIC CURVES A Click here for answers. S Click here for solutions. 5 (a) Sketch the curve b using the parametric equations to plot points. Indicate with an arrow the

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

5 Trigonometric Functions

5 Trigonometric Functions 5 Trigonometric Functions 5.1 The Unit Circle Definition 5.1 The unit circle is the circle of radius 1 centered at the origin in the xyplane: x + y = 1 Example: The point P Terminal Points (, 6 ) is on

More information

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS Differential Equations and Linear Algebra Exercises Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS CHAPTER 1 Linear second order ODEs Exercises 1.1. (*) 1 The following differential

More information

Equations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

Fall 2016 Math 2B Suggested Homework Problems Solutions

Fall 2016 Math 2B Suggested Homework Problems Solutions Fall 016 Math B Suggested Homework Problems Solutions Antiderivatives Exercise : For all x ], + [, the most general antiderivative of f is given by : ( x ( x F(x = + x + C = 1 x x + x + C. Exercise 4 :

More information

Graded and supplementary homework, Math 2584, Section 4, Fall 2017

Graded and supplementary homework, Math 2584, Section 4, Fall 2017 Graded and supplementary homework, Math 2584, Section 4, Fall 2017 (AB 1) (a) Is y = cos(2x) a solution to the differential equation d2 y + 4y = 0? dx2 (b) Is y = e 2x a solution to the differential equation

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections 8., 8., 8.5 Fall 16 Problem 8..19 Evaluate using methods similar to those that apply to integral tan m xsec n x. cot x SOLUTION. Using the reduction formula for cot

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2012 2013 MECHANICS AND MODELLING MTH-1C32 Time allowed: 2 Hours Attempt QUESTIONS 1 AND 2 and THREE other questions. Notes are

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

Calculus 152 Take Home Test 2 (50 points)

Calculus 152 Take Home Test 2 (50 points) Calculus 5 Take Home Test (5 points) Due Tuesday th November. The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics

More information

Pre-Calculus Exam 2009 University of Houston Math Contest. Name: School: There is no penalty for guessing.

Pre-Calculus Exam 2009 University of Houston Math Contest. Name: School: There is no penalty for guessing. Pre-Calculus Exam 009 University of Houston Math Contest Name: School: Please read the questions carefully and give a clear indication of your answer on each question. There is no penalty for guessing.

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Math K (24564) - Lectures 02

Math K (24564) - Lectures 02 Math 39100 K (24564) - Lectures 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Second Order Linear Equations, B & D Chapter 4 Second Order Linear Homogeneous

More information

2nd-Order Linear Equations

2nd-Order Linear Equations 4 2nd-Order Linear Equations 4.1 Linear Independence of Functions In linear algebra the notion of linear independence arises frequently in the context of vector spaces. If V is a vector space over the

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

MATH 152, Fall 2017 COMMON EXAM II - VERSION A

MATH 152, Fall 2017 COMMON EXAM II - VERSION A MATH 15, Fall 17 COMMON EXAM II - VERSION A LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited.. TURN OFF cell phones

More information

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes Applications of Trigonometry to Waves 4.5 Introduction Waves and vibrations occur in many contexts. The water waves on the sea and the vibrations of a stringed musical instrument are just two everyday

More information

Springs: Part I Modeling the Action The Mass/Spring System

Springs: Part I Modeling the Action The Mass/Spring System 17 Springs: Part I Second-order differential equations arise in a number of applications We saw one involving a falling object at the beginning of this text (the falling frozen duck example in section

More information

Fall Exam 4: 8&11-11/14/13 - Write all responses on separate paper. Show your work for credit.

Fall Exam 4: 8&11-11/14/13 - Write all responses on separate paper. Show your work for credit. Math Fall - Exam : 8& - // - Write all responses on separate paper. Show your work for credit. Name (Print):. Convert the rectangular equation to polar coordinates and solve for r. (a) x + (y ) = 6 Solution:

More information

Solutions to the Homework Replaces Section 3.7, 3.8

Solutions to the Homework Replaces Section 3.7, 3.8 Solutions to the Homework Replaces Section 3.7, 3.8. Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is 2π L/g SOLUTION: With no damping, mu + ku = 0 has

More information

Unit 5 PreCalculus Review

Unit 5 PreCalculus Review Class: Date: Unit 5 PreCalculus Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the terminal point P (x, y) on the unit circle determined by

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209 PRELIM 2 REVIEW QUESTIONS Math 9 Section 25/29 () Calculate the following integrals. (a) (b) x 2 dx SOLUTION: This is just the area under a semicircle of radius, so π/2. sin 2 (x) cos (x) dx SOLUTION:

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

[ f x x 2 2 x, 4.1. Click here for answers. Click here for solutions. MAXIMUM AND MINIMUM VALUES

[ f x x 2 2 x, 4.1. Click here for answers. Click here for solutions. MAXIMUM AND MINIMUM VALUES SECTION. MAXIMUM AND MINIMUM VALUES. MAXIMUM AND MINIMUM VALUES A Click here for answers. S Click here for solutions. Sketch the graph of a function f that is continuous on [0, 3] and has the given properties..

More information

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS ACS MATHEMATICS GRADE 0 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS DO AS MANY OF THESE AS POSSIBLE BEFORE THE START OF YOUR FIRST YEAR IB HIGHER LEVEL MATH CLASS NEXT SEPTEMBER Write as a single

More information

Math 51, Homework-2. Section numbers are from the course textbook.

Math 51, Homework-2. Section numbers are from the course textbook. SSEA Summer 2017 Math 51, Homework-2 Section numbers are from the course textbook. 1. Write the parametric equation of the plane that contains the following point and line: 1 1 1 3 2, 4 2 + t 3 0 t R.

More information

( )dt F. ( ) = y 2 sin y. ( ) = t 2 sint dt. ( ) = 1+ 2x. ( ) = 1+ 2t dt. ( ) = cos t 2. ( ) = cos x 2 ( ) ( ) = arctan 1 x 1 x 2 = 1 x 2 arctan 1 x

( )dt F. ( ) = y 2 sin y. ( ) = t 2 sint dt. ( ) = 1+ 2x. ( ) = 1+ 2t dt. ( ) = cos t 2. ( ) = cos x 2 ( ) ( ) = arctan 1 x 1 x 2 = 1 x 2 arctan 1 x Section. The Fndamental Theorem of Calcls Part Soltions. g y g y y ( ) t sint dt ( ) y sin y. g g ( ) + t dt ( ) +. F ( )dt ( ) cos t F ( )dt F ( ) cos t ( ) ( ) cos. h ( ) arctant dt ( ) arctan arctan

More information

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate AP Calculus BC Review Chapter (Parametric Equations and Polar Coordinates) Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure?

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? In relationship to a circle, if I go half way around the edge

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

( 3 ) = (r) cos (390 ) =

( 3 ) = (r) cos (390 ) = MATH 7A Test 4 SAMPLE This test is in two parts. On part one, you may not use a calculator; on part two, a (non-graphing) calculator is necessary. When you complete part one, you turn it in and get part

More information

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as MAS113 CALCULUS II SPRING 008, QUIZ 5 SOLUTIONS Quiz 5a Solutions (1) Solve the differential equation y = x 1 + y. (1 + y )y = x = (1 + y ) = x = 3y + y 3 = x 3 + c. () Solve the differential equation

More information

EXAM 2 MARCH 17, 2004

EXAM 2 MARCH 17, 2004 8.034 EXAM MARCH 7, 004 Name: Problem : /30 Problem : /0 Problem 3: /5 Problem 4: /5 Total: /00 Instructions: Please write your name at the top of every page of the exam. The exam is closed book, closed

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information

Mathematics Extension 2

Mathematics Extension 2 0 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

ADDITONAL MATHEMATICS

ADDITONAL MATHEMATICS ADDITONAL MATHEMATICS 00 0 CLASSIFIED TRIGONOMETRY Compiled & Edited B Dr. Eltaeb Abdul Rhman www.drtaeb.tk First Edition 0 5 Show that cosθ + + cosθ = cosec θ. [3] 0606//M/J/ 5 (i) 6 5 4 3 0 3 4 45 90

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

PreCalculus First Semester Exam Review

PreCalculus First Semester Exam Review PreCalculus First Semester Eam Review Name You may turn in this eam review for % bonus on your eam if all work is shown (correctly) and answers are correct. Please show work NEATLY and bo in or circle

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 2 ADVANCED DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 2 ADVANCED DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL ADVANCED DIFFERENTIATION CONTENTS Function of a Function Differentiation of a Sum Differentiation of a Proct Differentiation of a Quotient Turning Points

More information

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x Name: Instructions: The exam will have eight problems. Make sure that your reasoning and your final answers are clear. Include labels and units when appropriate. No notes, books, or calculators are permitted

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

*n23494b0220* C3 past-paper questions on trigonometry. 1. (a) Given that sin 2 θ + cos 2 θ 1, show that 1 + tan 2 θ sec 2 θ. (2)

*n23494b0220* C3 past-paper questions on trigonometry. 1. (a) Given that sin 2 θ + cos 2 θ 1, show that 1 + tan 2 θ sec 2 θ. (2) C3 past-paper questions on trigonometry physicsandmathstutor.com June 005 1. (a) Given that sin θ + cos θ 1, show that 1 + tan θ sec θ. (b) Solve, for 0 θ < 360, the equation tan θ + secθ = 1, giving your

More information

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly PH1140 D09 Homework 3 Solution 1. [30] Y&F 13.48. a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly T = π L =.84 s. g b) For the displacement θ max = 30 = 0.54 rad we use

More information

Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3)

Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3) Odd Answers: Chapter Eight Contemporary Calculus PROBLEM ANSWERS Chapter Eight Section 8.. lim { A 0 } lim { ( A ) ( 00 ) } lim { 00 A } 00.. lim {. arctan() A } lim {. arctan(a). arctan() } ( π ). arctan()

More information

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t.

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t. . Solve the initial value problem which factors into Jim Lambers MAT 85 Spring Semester 06-7 Practice Exam Solution y + 4y + 3y = 0, y(0) =, y (0) =. λ + 4λ + 3 = 0, (λ + )(λ + 3) = 0. Therefore, the roots

More information

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I MTH Test Spring 209 Name Calculus I Justify all answers by showing your work or by proviing a coherent eplanation. Please circle your answers.. 4 z z + 6 z 3 ez 2 = 4 z + 2 2 z2 2ez Rewrite as 4 z + 6

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

MATH 251 Examination I October 9, 2014 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 9, 2014 FORM A. Name: Student Number: Section: MATH 251 Examination I October 9, 2014 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

17 Logarithmic Properties, Solving Exponential & Logarithmic

17 Logarithmic Properties, Solving Exponential & Logarithmic Logarithmic Properties, Solving Eponential & Logarithmic Equations & Models Concepts: Properties of Logarithms Simplifying Logarithmic Epressions Proving the Quotient Rule for Logarithms Using the Change

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP Mark Schemes from old P, P5, P6 and FP, FP, FP papers (back to June 00) Please note that the following pages contain mark schemes for questions from past papers. The standard of the mark schemes is

More information

C3 papers June 2007 to 2008

C3 papers June 2007 to 2008 physicsandmathstutor.com June 007 C3 papers June 007 to 008 1. Find the exact solutions to the equations (a) ln x + ln 3 = ln 6, (b) e x + 3e x = 4. *N6109A04* physicsandmathstutor.com June 007 x + 3 9+

More information

I IV II III 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) COMPLEMENTARY angles add to90 SUPPLEMENTARY angles add to 180

I IV II III 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) COMPLEMENTARY angles add to90 SUPPLEMENTARY angles add to 180 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) TRIGONOMETRY: the study of the relationship between the angles and sides of a triangle from the Greek word for triangle ( trigonon) (trigonon ) and measure ( metria)

More information

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t.

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t. Calculus IV - HW 3 Due 7/13 Section 3.1 1. Give the general solution to the following differential equations: a y 25y = 0 Solution: The characteristic equation is r 2 25 = r 5r + 5. It follows that the

More information

1.11 Some Higher-Order Differential Equations

1.11 Some Higher-Order Differential Equations page 99. Some Higher-Order Differential Equations 99. Some Higher-Order Differential Equations So far we have developed analytical techniques only for solving special types of firstorder differential equations.

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

MATH 251 Examination I October 5, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 5, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I October 5, 2017 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit

More information