Simulation of low pressure water hammer

Size: px
Start display at page:

Download "Simulation of low pressure water hammer"

Transcription

1 IOP Conference Series: arth and nvironmental Science Simulation of low pressure water hammer To cite this article: D Himr and V Haán 2010 IOP Conf. Ser.: arth nviron. Sci View the article online for updates and enhancements. Related content - Investigation of transient cavitating flow in viscoelastic pipes A Keramat, A S Tijsseling and A Ahmadi - Coincidental match of numerical simulation and physics B Pierre and J S Gudmundsson - Impulse pumping modelling and simulation B Pierre and J S Gudmundsson This content was downloaded from IP address on 08/01/2018 at 06:30

2 Simulation of low pressure water hammer 1. Introduction D Himr 1 and V Haán 1 1 Victor Kaplan Department of Fluid ngineering, Brno University of Technology Technická 2896/2, Brno, , Czech Repulic -mail: yhimrd00@stud.fme.vutr.cz Astract. Numerical solution of water hammer is presented in this paper. The contriution is focused on water hammer in the area of low pressure, which is completely different than high pressure case. Little volume of air and influence of the pipe are assumed in water, which cause sound speed change due to pressure alterations. Computation is compared with experimental measurement. Water hammer is caused y fast velocity change in the flowing fluid. Its magnitude depends on the properties of fluid, pipe and of course on the velocity change [5]. Volume of gas in the fluid is also very important, ecause it has influence on the sound speed and form of the pressure pulsations may e quite different for different static pressure [7], [8], [9]. Pulsations have lower frequency when the pressure is low enough. Cavitation can appear during the water hammer, if the pressure is lower than vapour pressure. It requires using program for computation of two-phase flow. Water hammer is very important phenomenon and it is necessary to simulate it computationally. This task is quite difficult and requires sophisticated software. There are different ways of solution, for example [4] and [6]. 2. Mathematical theory 2.1 Physical model There are two fundamental equations, which descrie fluid flow. First of them is momentum equation, which can e used in following shape: Q + t S ρ p + x 2 λ Q Q = S D S g p (1) The other one is continuity equation: p + t k S Q x = k m (2) Fig. 1 Voigt (Kelvin) model of solid ody It is possile to write them as one dimensional along the axis of the pipe, ecause velocity is dominant just in one direction. Right side of eq. (2) descries expansion and contraction of the pipe wall due to pressure c 2010 Ltd 1

3 pulsations. If pipe were assumed as ideally rigid, m would equal zero. Wall of the pipe can e descried as Voigt (Kelvin) model of solid ody. Its scheme is in Fig. 1.Behaviour of thin pipe wall is descried y eq. (3). Assumption that fluid keeps contact with the wall during deformation is considered. m is memory function and descries history of pressure pulsations. ( t τ) t D dp m = + ( ) exp τ dτ p 0 exp t (3) Δ dt Δt At time t k, this function can e computed as series expressed y eq (4) through the whole history of computation, where time t k equals k multiplied y time step. m tk p D = Δ + t0 exp k i= 0 p tk i t k p Δt + tk i 1 exp ( i + 1) Δt exp ( i + 2) Δt (4) Variale k in eq. (2) is an elasticity modulus of system liquid-pipe. Mathematic expression is elow. 1 k 1 D Δt 1 2 = + e ρ c Δ (5) First term in the rackets depends on properties of the fluid; second term depends on properties and geometry of the pipe. Modulus of elasticity is computed from sound speed, which is aout 1500m/s in the water (see equations of IAPWS-IF97 [1]) and is almost independent on the pressure. This speed is reduced y pipe properties (diameter, thickness of the wall, elasticity modulus and damping) on the value aout 1200m/s for steel or 300m/s for plastic, ut it is always independent on the pressure. There are many cases, which can e solved with constant sound speed and they are accurate enough. However, when a volume of gas is contained within the fluid, it causes noticeale decrease of sound speed, if the pressure is low. This phenomenon is descried in paper [2]. ven quite low volume of gas causes strong dependency of sound speed on the pressure. An example is presented in Fig. 2. Fig. 2 Sound speed dependence on the pressure [2] 2

4 2.2 Numerical model The equations (1) and (2) constitute a hyperolic prolem and cannot e solved y analytical mathematics, ecause the solution is not known. However, numerical mathematics provides some tools. For example: method of characteristics, Lax-Friedrichs method, Lax-Wendroff method, Beam-Warming method etc. Some of them are applicale to hyperolic equations of fluid flow, some of them not. See ook [3] for more informations. Lax-Wendroff method was chosen, ecause it enales computing with variale sound speed without any prolems. This method is ased on the Taylor s series expansion and uses three points from previous time step for computation of the current one. The numerical scheme is displayed in Fig. (3). 3. xperiment Fig. 3 Lax-Wendroff numerical scheme The computational model was verified on experimental test rig. It consists from upper tank and lower tank, which are connected y a pipe with a valve, see Fig. 4. Upper tank has overflow, which guarantees constant head. Fig. 4 xperimental device Tale 1 xperimental device in numers Value Unit Distance of valve from upper tank m Distance of arometer from upper tank m Height of upper level from valve 3.6 m Head 7.7 m Pipe diameter mm Pipe wall thickness 2.5 mm Temperature 19 C Water density kg/m 3 Steady velocity m/s Closing time (measured y optical sensor) s 3

5 At first, valve was open and then, after stailization of flow rate, was shut. Water hammer was induced and corresponding pressure record is in the next graph. Start of shutting is at time 0.5s. Record of asolute pressure is in fig. 5. A small cavitation region is apparent at time aout 1s, ut this is cavitation in vicinity of the valve, not in the place of pressure measurement. Pressure pulsations are highest at the end of the pipe and decrease toward the upper tank whereas a mean value is the same (for the same geodetic height). It causes that cut-off of pressure wave due to the cavitation is apparent at higher pressure than 2kPa in the middle of the pipe (in the place without cavitation), see Fig.5. Uncertainties of measurement are ±0.0036m/s (velocity) and ±2550Pa (pressure). 4. Computation Fig. 5 Record of pressure Prolem is solved at 22 points uniformly spread along the pipe length. Inlet condition is constant pressure that corresponds to height of upper level, outlet condition is resistance. Value of resistance is defined y relative opening of the valve, which is continuously changed, and y orifice coefficient, see following tale. Tale 2 Orifice coefficient Relative opening [-] Orifice coefficient [m 3 /h] Fig. 6 Computational model Damping was tuned in the computational simulation to fit the experimental results. Other parameters are presented in tales 1 and 2. Figure 7 presents computation with constant sound speed, which has value 1200m/s, and without influence of the pipe elasticity. First peak of the pressure is the same as measured one, ut regions of negative pressure appear. Frequency of oscillation is high and it may e concluded that this result is meaningless. If static part of 4

6 pressure were high (for example 5MPa), result would agree far etter with measurement, ecause sound speed would only little vary with pressure. This is apparent from Fig. 2. Tale 3 Set up of computational model Value Unit Length m Inlet pressure Pa Outlet pressure Pa lasticity modulus of pipe 2.42e10 Pa Damping e9 Pa s Mass ratio air/water e-7 - Viscosity 1e-6 m 2 /s Pipe wall roughness 1.5 mm Sound speed in the water 1475 m/s Computational time step 7.3e-4 s Fig. 7 Computation with constant sound speed and rigid pipe Fig. 8 Computation with variale sound speed and rigid pipe 5

7 Fig. 9 Computation with variale sound speed and influence of the pipe elasticity Fig. 10 Computation with variale sound speed and influence of the pipe elasticity-detail Computation with variale sound speed, ut without influence of pipe deformation, agrees with measurement etter. There is no region of negative pressure and first two waves match well enough with experimental results. Damping is noticealy lower than in reality. It corresponds with water hammer in the rigid pipe. Last computation is plotted in Fig. 9. It is the case with variale sound speed and with influence of pipe elasticity. Results of computation correspond with measurement quite well. Frequency of pulsations is the same and after 1.9 second is a it lower than the measured frequency. Time of stailization on a new value is the same. Significantly improved results are caused y taking damping into consideration. Pressure waves are narrow on the top and wide in the lower part. Theory shape corresponds with changes of sound speed in interval etween 950m/s and 150m/s. These changes are shown in Fig. 11. Fluctuation of sound speed depends on the pressure. This dependence is displayed in fig. 12 and 13. Influence of the pipe elasticity is considered. 6

8 Fig. 11 Sound speed fluctuations during computation Fig. 12 Pressure-sound speed dependence Fig. 13 Pressure-sound speed dependence, logarithmic scale 7

9 5. Conclusion Computation of water hammer is descried in the contriution. Comparison of three models proves that change of sound speed and influence of the pipe elasticity should e taken into account. Only then the results correspond with experiment well. Changes of sound speed cause lower frequency of pressure oscillations and do not permit negative pressure during computation. This model can e used also for solution of water hammer with cavitation without using state equation. Computation is not very time consuming and results are accurate enough. Acknowledgments Projects of Ministry of ducation MSM and Grant Agency of Czech Repulic GA 101/09/1716 are gratefully acknowledged for support of this research work. Nomenclature Damping [Pa s] t Time [s] c Sound speed in fluid [m/s] x Length coordinate [m] D Pipe diameter [m] Δ Wall thickness [m] lasticity modulus of pipe [Pa] Δt Time step [s] g p Gravity acceleration in the pipe direction Δx Length step [m] [m/s 2 ] k lasticity modulus of system [Pa] ε Relative deformation [-] m Memory function [s -1 ] λ Friction factor [-] L Pipe length [m] σ Stress [Pa] p Pressure [Pa] ρ Fluid density [kg/m 3 ] Q Flow rate [m 3 /s] τ Time [s] S Cross-section of pipe [m 2 ] References [1] International Association for the Properties of Water and Steam (IAPWS) online 2008 Thermodynamic Derivatives from IAPWS Formulations (last revision Septemer 26, cit , Revised Advisory Note No.3. [2] Himr D, Haán V and Pochylý F 2009 Sound Speed in the Mixture Water-Air ngin. Mechanics [3] Randal J L 2007 Finite Volume Methods for Hyperolic Prolems (New York, US, Camridge University Press) [4] Adamowski A and Lewandowski M 2008 Improved numerical modeling of hydraulic transients in pipelines column separation 3 rd IAHR WG on Cavit. and Dyn. Prol. in Hydr. Machin. and Syst. (Brno, Czech Repulic) [5] Wylie, B Streeter V L and Suo L 1993 Fluid Transients in Systems (Prentice Hall) [6] Kaliatka A, Ušpuras and Vaišnoras M 2004 Justification of RLAP5 Code for Modeling Water Hammer Phenomenon y mploying the Umsicht Test Facility Data nergetika (3) 1-6 [7] Burrows R and Qiu D Q 1995 ffect of Air Pockets on Pipeline Surge Pressure J. of Water Maritime and nergy (Proc. of Institution of Civil ngineers) (112) [8] Martin C S 1976 ntrapped Air in Pipelines Proc. of 2 nd Int.l Conf. on Pressure Surges, BHRA F2-15-F2-28 [9] Izquierdo J, Fuertes V S, Carera, Iglesias P L and Garcia-Serra J 2008 Pipeline Startup with ntrapped Air J. of Hydr. Research

Evaluation of pump characteristic from measurement of fast deceleration

Evaluation of pump characteristic from measurement of fast deceleration EPJ Web of Conferences 92, 02022 (2015) DOI: 10.1051/ epjconf/ 20159202022 C Owned by the authors, published by EDP Sciences, 2015 Evaluation of pump characteristic from measurement of fast deceleration

More information

Application of the Shannon-Kotelnik theorem on the vortex structures identification

Application of the Shannon-Kotelnik theorem on the vortex structures identification IOP Conference Series: Earth and Environmental Science OPEN ACCESS Application of the Shannon-Kotelnik theorem on the vortex structures identification To cite this article: F Pochylý et al 2014 IOP Conf.

More information

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take

More information

Transient Phenomena in Liquid/Gas Flow in Pipelines

Transient Phenomena in Liquid/Gas Flow in Pipelines Proceedings of the International Conference on Heat Transfer and Fluid Flow Prague, Czech Republic, August 11-12, 214 Paper No. 71 Transient Phenomena in Liquid/Gas Flow in Pipelines Zohra Ouchiha, S.

More information

FURTHER INVESTIGATION OF PARAMETERS AFFECTING WATER HAMMER WAVE ATTENUATION, SHAPE AND TIMING PART 2: CASE STUDIES

FURTHER INVESTIGATION OF PARAMETERS AFFECTING WATER HAMMER WAVE ATTENUATION, SHAPE AND TIMING PART 2: CASE STUDIES FURTHER INVESTIGATION OF PARAMETERS AFFECTING WATER HAMMER WAVE ATTENUATION, SHAPE AND TIMING PART 2: CASE STUDIES by Anton Bergant 1, Arris Tijsseling 2, John Vítkovský 3, Dídia Covas 4, Angus Simpson

More information

International Journal of Civil Engineering and Geo-Environment. Investigation of Parameters Affecting Discrete Vapour Cavity Model

International Journal of Civil Engineering and Geo-Environment. Investigation of Parameters Affecting Discrete Vapour Cavity Model International Journal of Civil Engineering & Geo-Environment 5 (2014) International Journal of Civil Engineering and Geo-Environment Journal home page: http://ijceg.ump.edu.my ISSN:21802742 Investigation

More information

Analysis of flow characteristics of a cam rotor pump

Analysis of flow characteristics of a cam rotor pump IOP Conference Series: Materials Science and Engineering OPEN ACCESS Analysis of flow characteristics of a cam rotor pump To cite this article: Y Y Liu et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 032023

More information

HYDRAULIC TRANSIENTS IN PUMPING SYSTEMS WITH HORIZONTAL PIPES

HYDRAULIC TRANSIENTS IN PUMPING SYSTEMS WITH HORIZONTAL PIPES 3 rd IAHR Europe Congress, Book of Proceedings, 2014, Porto -Portugal. ISBN xxx-xxxx-xx-x HYDRAULIC TRANSIENTS IN PUMPING SYSTEMS WITH HORIZONTAL PIPES JOÃO DELGADO (1), DÍDIA I.C. COVAS (2) & ANTÓNIO

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

IMPROVED METHOD FOR SIMULATING FRICTIONAL LOSSES IN LAMINAR TRANSIENT LIQUID PIPE FLOW KAMIL URBANOWICZ, ZBIGNIEW ZARZYCKI

IMPROVED METHOD FOR SIMULATING FRICTIONAL LOSSES IN LAMINAR TRANSIENT LIQUID PIPE FLOW KAMIL URBANOWICZ, ZBIGNIEW ZARZYCKI TASK QUARTERLY 14 No 3, 175 188 IMPROVED METHOD FOR SIMULATING FRICTIONAL LOSSES IN LAMINAR TRANSIENT LIQUID PIPE FLOW KAMIL URBANOWICZ, ZBIGNIEW ZARZYCKI AND SYLWESTER KUDŹMA Faculty of Mechanical Engineering

More information

Surge Analysis Using Transient Pressure Theory

Surge Analysis Using Transient Pressure Theory IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 3-334X, Volume 11, Issue 1 Ver. II (Jan. 14), PP 1-17 Surge Analysis Using Transient Pressure Theory S.S.Valunjkar Government

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

Binary-coded and real-coded genetic algorithm in pipeline flow optimization

Binary-coded and real-coded genetic algorithm in pipeline flow optimization Mathematical Communications 41999), 35-42 35 Binary-coded and real-coded genetic algorithm in pipeline flow optimization Senka Vuković and Luka Sopta Abstract. The mathematical model for the liquid-gas

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Comparison of MOC and Lax FDE for simulating transients in Pipe Flows

Comparison of MOC and Lax FDE for simulating transients in Pipe Flows International Research Journal of Engineering and Technology (IRJET) e-issn: 395-0056 Volume: 04 Issue: 03 Mar -07 www.irjet.net p-issn: 395-007 Comparison of MOC and Lax FDE for simulating transients

More information

How to avoid pressure oscillations in district heating systems

How to avoid pressure oscillations in district heating systems Article How to avoid pressure oscillations in district heating systems Herman Boysen, Jan Eric Thorsen www.danfoss.com Herman Boysen, Danfoss Heating Segment Application Centre, Denmark Jan Eric Thorsen,

More information

Slurry Pipeline System: Simulation and Validation

Slurry Pipeline System: Simulation and Validation Slurry Pipeline System: Simulation and Validation Dr. George Shou ABSTRACT Multiple simulation techniques were used to simulate the operation of the Antamina pipeline system. For the storage tanks, the

More information

Chapter 5 Control Volume Approach and Continuity Equation

Chapter 5 Control Volume Approach and Continuity Equation Chapter 5 Control Volume Approach and Continuity Equation Lagrangian and Eulerian Approach To evaluate the pressure and velocities at arbitrary locations in a flow field. The flow into a sudden contraction,

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Numerical calculation for cavitation flow of inducer

Numerical calculation for cavitation flow of inducer IOP Conference Series: Materials Science and Engineering OPEN ACCESS Numerical calculation for cavitation flow of inducer To cite this article: C Ning et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 72 032025

More information

GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS

GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS ARTURO S. LEON Dept. of Civil and Envir. Engng., Univ. of Illinois at Urbana-Champaign, 2519 Hydrosystems Lab., MC-250. 205 North Mathews Av., Urbana,

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at offdesign

Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at offdesign IOP Conference Series: Earth and Environmental Science Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at offdesign conditions To cite this article: B J Zhao et

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

UNSTABLE OPERATION OF FRANCIS PUMP-TURBINE AT RUNAWAY: RIGID AND ELASTIC WATER COLUMN OSCILLATION MODES

UNSTABLE OPERATION OF FRANCIS PUMP-TURBINE AT RUNAWAY: RIGID AND ELASTIC WATER COLUMN OSCILLATION MODES IAHR OCTOBER 7-31, FOZ DO IGUASSU RESERVED TO IAHR UNSTABLE OPERATION OF FRANCIS PUMP-TURBINE AT RUNAWAY: RIGID AND ELASTIC WATER COLUMN OSCILLATION MODES C. Nicolet Power Vision Engineering Sàrl CH-104

More information

Investigation of transient cavitating flow in viscoelastic pipes

Investigation of transient cavitating flow in viscoelastic pipes IOP Conference Series: Earth and Environmental Science Investigation of transient cavitating flow in viscoelastic pipes To cite this article: A Keramat et al 1 IOP Conf. Ser.: Earth Environ. Sci. 1 181

More information

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1 Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity

More information

LOSSES DUE TO PIPE FITTINGS

LOSSES DUE TO PIPE FITTINGS LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall

More information

The Fluid Flow in the T-Junction. The Comparison of the Numerical Modeling and Piv Measurement

The Fluid Flow in the T-Junction. The Comparison of the Numerical Modeling and Piv Measurement Available online at www.sciencedirect.com Procedia Engineering 39 (2012 ) 19 27 XIIIth International Scientific and Engineering Conference HERVICON-2011 The Fluid Flow in the T-Junction. The Comparison

More information

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

More information

Numerical simulation of steady and unsteady flow for generalized Newtonian fluids

Numerical simulation of steady and unsteady flow for generalized Newtonian fluids Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical simulation of steady and unsteady flow for generalized Newtonian fluids To cite this article: Radka Keslerová et al 2016 J. Phys.: Conf.

More information

Water hammer simulation by explicit central finite difference methods in staggered grids

Water hammer simulation by explicit central finite difference methods in staggered grids Water hammer simulation by explicit central finite difference methods in staggered grids F. Khalighi a, A. Ahmadi a,* and A. Keramat b a Civil Engineering Department, Shahrood University of Technology,

More information

Calculation of Pipe Friction Loss

Calculation of Pipe Friction Loss Doc.No. 6122-F3T071 rev.2 Calculation of Pipe Friction Loss Engineering Management Group Development Planning Department Standard Pump Business Division EBARA corporation October 16th, 2013 1 / 33 2 /

More information

AN EFFICIENT SECOND-ORDER ACCURATE SHOCK-CAPTURING SCHEME FOR MODELING ONE AND TWO-PHASE WATER HAMMER FLOWS

AN EFFICIENT SECOND-ORDER ACCURATE SHOCK-CAPTURING SCHEME FOR MODELING ONE AND TWO-PHASE WATER HAMMER FLOWS AN EFFICIENT SECOND-ORDER ACCURATE SHOCK-CAPTURING SCHEME FOR MODELING ONE AND TWO-PHASE WATER HAMMER FLOWS Arturo S. León 1, Mohamed S. Ghidaoui, M. ASCE 2, Arthur R. Schmidt, M. ASCE 3, Marcelo H. García,

More information

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data Experiences in an Undergraduate Laboratory Using Analysis to Validate Engineering Models with Experimental Data W. G. Steele 1 and J. A. Schneider Abstract Traditionally, the goals of engineering laboratory

More information

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 08 Pipe Flow Lecture No. # 05 Water Hammer and Surge Tank Energy cannot be consumed

More information

THE EFFECT OF TWO PHASE (AIR-WATER) FLOW CHARACTERISTICS ON MOMENTUM FLUX DUE TO FLOW TURNING ELEMENTS AT ATMOSPHERIC CONDITIONS

THE EFFECT OF TWO PHASE (AIR-WATER) FLOW CHARACTERISTICS ON MOMENTUM FLUX DUE TO FLOW TURNING ELEMENTS AT ATMOSPHERIC CONDITIONS International Journal of Latest Trends in Engineering and Technology Vol.(8)Issue(1), pp.319-328 DOI: http://dx.doi.org/10.21172/1.81.041 e-issn:2278-621x AN EXPERIMENTAL STUDY OF THE EFFECT OF TWO PHASE

More information

Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump

Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump IOP Conference Series: Materials Science and Engineering OPEN ACCESS Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump To cite this article: X W Pan et al 2013 IOP Conf. Ser.:

More information

Efficient runner safety assessment during early design phase and root cause analysis

Efficient runner safety assessment during early design phase and root cause analysis IOP Conference Series: Earth and Environmental Science Efficient runner safety assessment during early design phase and root cause analysis To cite this article: Q W Liang et al 2012 IOP Conf. Ser.: Earth

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

P = ρ{ g a } + µ 2 V II. FLUID STATICS

P = ρ{ g a } + µ 2 V II. FLUID STATICS II. FLUID STATICS From a force analysis on a triangular fluid element at rest, the following three concepts are easily developed: For a continuous, hydrostatic, shear free fluid: 1. Pressure is constant

More information

Dynamic Stresses, and Piping Design

Dynamic Stresses, and Piping Design Fluid Mechanics, Water Hammer, Dynamic Stresses, and Piping Design Robert A. Leishear, FhJD., P. E. Savannah River National Laboratory On the cover: Steam plume due to a pipe explosion caused by water

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

Parameters affecting water hammer in metal pipelines

Parameters affecting water hammer in metal pipelines Parameters affecting water hammer in metal pipelines Kamil Urbanowicz 1,*, and Mateusz Firkowski 1 1 West Pomeranian University of Technology Szczecin, Department of Mechanical Engineering and Mechatronics,

More information

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Outline What is important? Liquid Properties Thermal Conditions Hydraulic Gradient Flow Regime in Liquids

More information

Experimental Studies for Determining Gas Flow Rate Accidental Release on Linear Part of Pipeline

Experimental Studies for Determining Gas Flow Rate Accidental Release on Linear Part of Pipeline IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Experimental Studies for Determining Gas Flow Rate Accidental Release on Linear Part of Pipeline To cite this article: V G Fetisov

More information

Head loss coefficient through sharp-edged orifices

Head loss coefficient through sharp-edged orifices Head loss coefficient through sharp-edged orifices Nicolas J. Adam, Giovanni De Cesare and Anton J. Schleiss Laboratory of Hydraulic Constructions, Ecole Polytechnique fédérale de Lausanne, Lausanne, Switzerland

More information

Major and Minor Losses

Major and Minor Losses Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops

More information

Experiment (4): Flow measurement

Experiment (4): Flow measurement Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

More information

Effect of hydrogen injection into natural gas on the mechanical strength of natural gas pipelines during transportation

Effect of hydrogen injection into natural gas on the mechanical strength of natural gas pipelines during transportation Arch. Mech., 66, 4, pp. 269 286, Warszawa 2014 Effect of hydrogen injection into natural gas on the mechanical strength of natural gas pipelines during transportation S. ELAOUD 1), B. ABDULHAY 2), E. HADJ-TAIEB

More information

Reservoir Oscillations with Through Flow

Reservoir Oscillations with Through Flow American Journal of Environmental Sciences 3 (): 37-42, 27 ISSN 553-345X 27 Science Publications Reservoir Oscillations with Through Flow A. A. Khan 28 Lowry Hall, epartment of Civil Engineering, Clemson

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

Parameters Affecting Water Hammer Wave Attenuation, Shape and Timing

Parameters Affecting Water Hammer Wave Attenuation, Shape and Timing Parameters Affecting Water Hammer Wave Attenuation, Shape and Timing by Anton Bergant 1 and Arris Tijsseling 1 LITOSTROJ E.I., Litostrojska 40, 1000 Ljubljana, Slovenia. anton.bergant@litostroj-ei.si Eindhoven

More information

Modelling water hammer in viscoelastic pipelines: short brief

Modelling water hammer in viscoelastic pipelines: short brief Journal of Physics: Conference Series PAPER OPEN ACCESS Modelling water hammer in viscoelastic pipelines: short brief To cite this article: K Urbanowicz et al 2016 J. Phys.: Conf. Ser. 760 012037 View

More information

AN EFFICIENT NUMERICAL SCHEME FOR MODELING TWO-PHASE BUBBLY HOMOGENEOUS AIR-WATER MIXTURES

AN EFFICIENT NUMERICAL SCHEME FOR MODELING TWO-PHASE BUBBLY HOMOGENEOUS AIR-WATER MIXTURES AN EFFICIENT NUMERICAL SCHEME FOR MODELING TWO-PHASE BUBBLY HOMOGENEOUS AIR-WATER MIXTURES ARTURO S. LEÓN 1, MOHAMED S. GHIDAOUI 2, ARTHUR R. SCHMIDT 3 and MARCELO H. GARCÍA 4 1 Ph.D. Candidate, Dept.

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone

Flow behaviour analysis of reversible pumpturbine in S characteristic operating zone IOP Conference Series: Earth and Environmental Science Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone To cite this article: S Q Zhang et al 2012 IOP Conf. Ser.:

More information

Influence of Pipe-Diameter on Water Hammer Phenomenon

Influence of Pipe-Diameter on Water Hammer Phenomenon Journal of Mechanics Engineering and Automation 5 (015) 370-376 doi: 10.1765/159-575/015.06.006 D DAVID PUBLISHING Influence of Pipe-Diameter on Water Hammer Phenomenon Provenzano, Pablo Gabriel Departamento

More information

Pressure pulsations in reciprocating pump piping systems Part 1: modelling

Pressure pulsations in reciprocating pump piping systems Part 1: modelling Source: Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, Vol. 211, No. 13, pp. 229 237, 1997; DOI: 10.1243/0959651971539768 Pressure pulsations

More information

Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.

Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter. SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment- To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

cen29305_ch08.qxd 11/30/05 3:05 PM Page 451 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating

cen29305_ch08.qxd 11/30/05 3:05 PM Page 451 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating cen29305_ch08.qxd 11/30/05 3:05 PM Page 451 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications. The fluid in such applications

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Ilaboya, I. R. 1, *, Oti, E. O. 1, Atikpo E. 3, Enamuotor, B. O. 2, Umukoro, L. O Introduction

Ilaboya, I. R. 1, *, Oti, E. O. 1, Atikpo E. 3, Enamuotor, B. O. 2, Umukoro, L. O Introduction American Journal of Environmental Engineering and Science 2014; 1(3): 15-23 Published online July 30, 2014 (http://www.openscienceonline.com/journal/ajees) Application of adaptive neuro-fuzzy inference

More information

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a

More information

CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

More information

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) No. of Printed Pages : 6 BME-028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) Term-End Examination December, 2011 00792 BME-028 : FLUID MECHANICS Time : 3 hours

More information

Modelling Vaporous Cavitation on Fluid Transients

Modelling Vaporous Cavitation on Fluid Transients Source: International Journal of Pressure Vessels and Piping, Vol. 80, No. 3, pp. 187-195, 2003; DOI: 10.1016/S0308-0161(03)00025-5 Modelling Vaporous Cavitation on Fluid Transients Jian-Jun SHU School

More information

Avenue, , Lisbon, Portugal c Instituto Superior Técnico, Technical University of Lisbon (TULisbon), Rovisco Pais

Avenue, , Lisbon, Portugal   c Instituto Superior Técnico, Technical University of Lisbon (TULisbon), Rovisco Pais This article was downloaded by: [IAHR ] On: 3 April 212, At: 2:11 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 172954 Registered office: Mortimer House, 37-41

More information

Integrated analysis of hydraulic PTOs in WECs

Integrated analysis of hydraulic PTOs in WECs Integrated analysis of hydraulic PTOs in WECs Conference on CeSOS Highlights and AMOS Visions Limin Yang 29 th May, 2013, Trondheim Content Introduction Model description of wave energy converter (WEC)

More information

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara Continents Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and Viscosity -Newtonian and non Newtonian fluids -Surface tension Compressibility -Pressure -Cavitations

More information

CHAPTER EIGHT P U M P I N G O F L I Q U I D S

CHAPTER EIGHT P U M P I N G O F L I Q U I D S CHAPTER EIGHT P U M P I N G O F L I Q U I D S Pupmps are devices for supplying energy or head to a flowing liquid in order to overcome head losses due to friction and also if necessary, to raise liquid

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

SIMILARITY METHODS IN ELASTO-PLASTIC BEAM BENDING

SIMILARITY METHODS IN ELASTO-PLASTIC BEAM BENDING Similarity methods in elasto-plastic eam ending XIII International Conference on Computational Plasticity Fundamentals and Applications COMPLAS XIII E Oñate, DRJ Owen, D Peric and M Chiumenti (Eds) SIMILARIT

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

STRUCTURAL RESPONSE OF A PIPELINE APPARATUS TO PULSATING FLOW AT RESONANCE AND NON- RESONANCE CONDITIONS

STRUCTURAL RESPONSE OF A PIPELINE APPARATUS TO PULSATING FLOW AT RESONANCE AND NON- RESONANCE CONDITIONS 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia STRUCTURAL RESPONSE OF A PIPELINE APPARATUS

More information

Self-Excited Vibration in Hydraulic Ball Check Valve

Self-Excited Vibration in Hydraulic Ball Check Valve Self-Excited Vibration in Hydraulic Ball Check Valve L. Grinis, V. Haslavsky, U. Tzadka Abstract This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Chapter 7 The Energy Equation

Chapter 7 The Energy Equation Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

More information

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

More information

Integral Equation Method for Ring-Core Residual Stress Measurement

Integral Equation Method for Ring-Core Residual Stress Measurement Integral quation Method for Ring-Core Residual Stress Measurement Adam Civín, Miloš Vlk & Petr Navrátil 3 Astract: The ring-core method is the semi-destructive experimental method used for evaluation of

More information

Chapter 6 Pneumatic Transport

Chapter 6 Pneumatic Transport Chapter 6 Pneumatic Transport 6.1 Pneumatic Transport Use of a gas to transport a particulate solid through pipeline Powder Rotary valve Blower Three major variables for pneumatic conveying - solid mass

More information

Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System

Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System

More information

Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver

Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver arcus Timgren 1 1 DYNAmore Nordic AB, Linköping, Sweden 1 Introduction Flow-induced vibrations, (FIV), is a terminology that

More information

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants , June 30 - July 2, 2010, London, U.K. Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants R. Mahmoodi, M. Shahriari, R. Zarghami, Abstract In nuclear power plants, loss

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1EXAMINATION 2017/2018

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1EXAMINATION 2017/2018 ENG00 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER EXAMINATION 07/08 ADVANCED THERMOFLUIDS & CONTROL SYSTEMS MODULE NO: AME6005 Date: 8 January 08 Time: 0.00.00

More information

UNSTEADY POISEUILLE FLOW OF SECOND GRADE FLUID IN A TUBE OF ELLIPTICAL CROSS SECTION

UNSTEADY POISEUILLE FLOW OF SECOND GRADE FLUID IN A TUBE OF ELLIPTICAL CROSS SECTION THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume, Numer 4/0, pp. 9 95 UNSTEADY POISEUILLE FLOW OF SECOND GRADE FLUID IN A TUBE OF ELLIPTICAL CROSS SECTION

More information

Fluid Properties and Units

Fluid Properties and Units Fluid Properties and Units CVEN 311 Continuum Continuum All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion. However, in dealing with fluid-flow flow relations

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

+ h4. + h5. 6! f (5) i. (C.3) Since., it yields

+ h4. + h5. 6! f (5) i. (C.3) Since., it yields Appendix C. Derivation of the Numerical Integration Formulae C.1. Derivation of the Numerical Integration of dy(x) / dx = f (x) For a given analytical or taulated function f (x), the left column in Tale

More information

Experimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers

Experimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Eds. R.K. Shah, M. Ishizuka, T.M. Rudy, and V.V. Wadekar, Engineering

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

AN INDIRECT MEASUREMENT METHOD OF TRANSIENT PRESSURE AND FLOW RATE IN A PIPE USING STEADY STATE KALMAN FILTER

AN INDIRECT MEASUREMENT METHOD OF TRANSIENT PRESSURE AND FLOW RATE IN A PIPE USING STEADY STATE KALMAN FILTER AN INDIRECT MEASUREMENT METHOD OF TRANSIENT PRESSURE AND FLOW RATE IN A PIPE USING STEADY STATE KALMAN FILTER Akira OZAWA*, Kazushi SANADA** * Department of Mechanical Engineering, Graduate School of Mechanical

More information

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground To cite this article: Jozef Vlek and Veronika

More information