# Applied Fluid Mechanics

Size: px
Start display at page:

Transcription

1 Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and Bernoulli s Equation 7. General Energy Equation 8. Reynolds Number, Laminar Flow, Turbulent Flow and Energy Losses Due to Friction

2 Applied Fluid Mechanics 9. Velocity Profiles for Circular Sections and Flow in Noncircular Sections 10.Minor Losses 11.Series Pipeline Systems 12.Parallel Pipeline Systems 13.Pump Selection and Application 14.Open-Channel Flow 15.Flow Measurement 16.Forces Due to Fluids in Motion

3 Applied Fluid Mechanics 17.Drag and Lift 18.Fans, Blowers, Compressors and the Flow of Gases 19.Flow of Air in Ducts

4 Chapter Objectives Differentiate between a gas and a liquid. Define pressure. Identify the units for the basic quantities of time, length, force, and mass in the SI system (metric unit system). Identify the units for the basic quantities of time, length, force, and mass in the U.S. Customary System. Properly set up equations to ensure consistency of units. Define the relationship between force and mass. Define density, specific weight, and specific gravity. Identify the relationships between specific weight, specific gravity, and density, and solve problems using these relationships. Define surface tension.

5 Chapter Outline 1. Basic Introductory Concepts 2. The International System of Units (SI) 3. The US Customary System 4. Weight and Mass 5. Temperature 6. Consistent Units In an Equation 7. The Definition of Pressure 8. Compressibility 9. Density, Specific Weight and Specific Gravity 10. Surface Tension

6 1.1 Basic Introductory Concepts Figure 1.1 shows the typical piping system for fluid power.

7 1.1 Basic Introductory Concepts Pressure Pressure is defined as the amount of force exerted on a unit area of a substance or on a surface. This can be stated by the equation p = A F ( 1-1)

8 1.1 Basic Introductory Concepts Liquid and Gases Fluids can be either liquids or gases. The following general descriptions of liquids and gases that we will use in this book: 1. Gases are readily compressible. 2. Liquids are only slightly compressible.

9 1.1 Basic Introductory Concepts Weight and Mass Mass is the property of a body of fluid that is a measure of its inertia or resistance to a change in motion. It is also a measure of the quantity of fluid. Weight is the amount that a body of fluid weighs, that is, the force with which the fluid is attracted toward Earth by gravitation. We use the symbol m for mass and w for weight in this book.

10 1.1 Basic Introductory Concepts Fluid Properties Other fluid properties are specific weight, density, specific gravity, surface tension and viscosity. It is also important in determining the character of the flow of fluids and the amount of energy that is lost from a fluid flowing in a system.

11 1.2 The International System of Units (SI) The SI units for the basic quantities are An equivalent unit for force indicated above is derived from the relationship between force and mass, where a is the acceleration expressed (m/s 2 )

12 1.2 The International System of Units (SI) Therefore, the derived unit for force is Similarly

13 1.2.1 SI Unit Prefixes Table 1.1 shows the SI unit prefixes.

14 1.2.1 SI Unit Prefixes Results of calculations should normally be adjusted so that the number is between 0.1 and times some multiple of Some examples follow.

15 1.3 The US Customary System U.S. Customary System defines the basic quantities as follows: It may help to note the relationship between force and mass,

16 1.4 Weight and Mass Weight is a force and mass is the quantity of a substance. We relate these two terms by applying Newton s law of gravitation stated as force equals mass times acceleration, or. Weight and mass relationship becomes w = mg ( 1-2)

17 1.4.1 Weight and Mass in the SI Unit System For example, consider a rock with a mass of 5.60 kg suspended by a wire. To determine what force is exerted on the wire, we use Newton s law of gravitation

18 1.4.1 Weight and Mass in the SI Unit System We can also compute the mass of an object if we know its weight. For example, assume that we have measured the weight of a valve to be 8.25 N. What is its mass?

19 1.4.2 Weight and Mass in the US Unit System For an example of the weight mass relationship in the U.S. Customary System, assume that we have measured the weight of a container of oil to be 84.6 lb. What is its mass? We write

20 1.4.3 Mass expressed as Ibm In the analysis of fluid systems, some professionals use the unit lbm (pounds-mass) for the unit of mass instead of the unit of slugs. When one tries to relate force and mass units using Newton s law, one obtains This is not the same as the lbf. In summary, because of the cumbersome nature of the relationship between lbm and lbf, we avoid the use of lbm in this book. Mass will be expressed in the unit of slugs when ã2005 Pearson problems Education South Asia Pte are Ltd in the U.S. Customary System of units.

21 1.5 Temperature Temperature is most often indicated in (degrees Celsius) or (degrees Fahrenheit). The following values at sea level on Earth is as follow: Given the temperature in F the temperature in C is Given the temperature in C the temperature in F is

22 1.5.1 Absolute Temperature The absolute temperature is defined so the zero point corresponds to the condition where all molecular motion stops. This is called absolute zero. In the SI unit system, the standard unit of temperature is the kelvin, for which the standard symbol is K and the reference (zero) point is absolute zero. We can then make the conversion from the Celsius to the kelvin scale by using

23 1.6 Consistent Units in an Equation A simple straightforward procedure called unit cancellation will ensure proper units in any kind of calculation, not only in fluid mechanics, but also in virtually all your technical work. Table 1.2 shows the SI units for common quantities used in fluid mechanics. Table 1.3 shows the U.S. customary units for common quantities used in fluid mechanics.

24 1.6 Consistent Units in an Equation

25 1.6 Consistent Units in an Equation

26 1.6 Consistent Units in an Equation The six steps of the procedure are listed below. UNIT-CANCELLATION PROCEDURE 1) Solve the equation algebraically for the desired term. 2) Decide on the proper units for the result. 3) Substitute known values, including units. 4) Cancel units that appear in both the numerator and the denominator of any term. 5) Use conversion factors to eliminate unwanted units and obtain the proper units as decided in Step 2. 6) Perform the calculation.

27 Example 1.1 Imagine you are traveling in a car at a constant speed of 80 kilometers per hour (km/h). How many seconds (s) would it take to travel 1.5 km? For the solution, use the equation where s is the distance traveled, is the speed, and t is the time. Using the unit-cancellation procedure outlined above, what is the first thing to do?

28 Example 1.1 The first step is to solve for the desired term. Because you were asked to find time, you should have written Step 2 is to decide on the proper units for the result, in this case time. From the problem statement the proper unit is seconds. If no specification had been given for units, you could choose any acceptable time unit such as hours. Proceed to Step 3. The result should look something like this:

29 Example 1.1 For the purpose of cancellation it is not convenient to have the units in the form of a compound fraction as we have above. To clear this to a simple fraction, write it in the form After some practice, equations may be written in this form directly. Now perform Step 4 of the procedure.

30 Example 1.1 The result should now look like this: The equation in the preceding panel showed the result for time in hours after kilometer units were cancelled. Although hours is an acceptable time unit, our desired unit is seconds as determined in Step 2. Thus the conversion factor 3600 s/1 h is required.

31 Example 1.1 The units determine this. Our objective in using the conversion factor was to eliminate the hour unit and obtain the second unit. Because the unwanted hour unit was in the numerator of the original equation, the hour unit in the conversion factor must be in the denominator in order to cancel. Now that we have the time unit of seconds we can proceed with Step 6. The correct answer is t = 67.5 s.

32 1.7 The Definition of Pressure Pressure is defined as the amount of force exerted on a unit area of a substance. This can be stated by the equation p = A F ( 1-3) Two important principles about pressure were described by Blaise Pascal, a seventeenth-century scientist: 1. Pressure acts uniformly in all directions on a small volume of a fluid. 2. In a fluid confined by solid boundaries, pressure acts perpendicular to the boundary.

33 1.7 The Definition of Pressure Fig 1.2 shows the pressure acting uniformly in all directions on a small volume of fluid.

34 1.7 The Definition of Pressure Fig 1.3 shows the direction of fluid pressure on boundaries.

35 1.7 The Definition of Pressure The bar is another unit used by some people working in fluid mechanics and thermodynamics. The bar is defined as 10 5 Pa or 10 5 N/m 2. Another way of expressing the bar is 1 bar = 100 x 10 3 N/m 2, which is equivalent to 100 kpa.

36 Example 1.2 Figure 1.4 shows a container of liquid with a movable piston supporting a load. Compute the magnitude of the pressure in the liquid under the piston if the total weight of the piston and the load is 500 N and the area of the piston is 2500 mm 2.

37 Example 1.2 It is reasonable to assume that the entire surface of the fluid under the piston is sharing in the task of supporting the load. The second of Pascal s laws states that the fluid pressure acts perpendicular to the piston. Then, using Eq. (1 3), we have

38 Example 1.2 The standard unit of pressure in the SI system is the N/m 2 called the pascal (Pa) in honor of Blaise Pascal. The conversion can be made by using the factor 10 3 mm = 1 m. We have Note that the pressure in N/mm 2 is numerically equal to pressure in MPa. It is not unusual to encounter pressure in the range of several megapascals (MPa) or several hundred kilopascals (kpa).

39 Example 1.3 A load of 200 pounds (lb) is exerted on a piston confining oil in a circular cylinder with an inside diameter of 2.50 inches (in). Compute the pressure in the oil at the piston.

40 Example 1.3 To use Eq. (1 3), we must compute the area of the piston

41 Example 1.3 Although the standard unit for pressure in the U.S. Customary System is pounds per square foot (lb/ft 2 ), it is not often used because it is inconvenient. Length measurements are more conveniently made in inches, and pounds per square inch (lb/in 2 ) abbreviated psi, is used most often for pressure in this system. The pressure in the oil is 40.7 psi. This is a fairly low pressure; it is not unusual to encounter pressures of several hundred or several thousand psi.

42 1.8 Compressibility Compressibility refers to the change in volume (V) of a substance that is subjected to a change in pressure on it. The usual quantity used to measure this phenomenon is the bulk modulus of elasticity or, simply, bulk modulus, E: E = - Dp / V ( DV ) ( 1-4)

43 1.8 Compressibility Table 1.4 shows the Values for bulk modulus for selected liquids at atmospheric pressure and 68 F (20 C).

44 Example 1.4 Compute the change in pressure that must be applied to water to change its volume by 1.0 percent. The 1.0-percent volume change indicates that V/V = Then, the required change in pressure is

45 1.9 Density, Specific Weight and Specific Gravity Density is the amount of mass per unit volume of a substance. Therefore, using the greek letter ρ (rho) for density, we write E ( 1 5) = m / V - where V is the volume of the substance having a mass m. The units for density are kilograms per cubic meter in the SI system and slugs per cubic foot in the U.S. Customary System.

46 1.9 Density, Specific Weight and Specific Gravity Specific weight is the amount of weight per unit volume of a substance. Using the Greek letter γ (gamma) for specific weight, we write g ( 1 6) = w/ V - where V is the volume of a substance having the weight w. The units for specific weight are newtons per cubic meter in the SI system and pounds per cubic foot in the U.S. Customary System.

47 1.9 Density, Specific Weight and Specific Gravity Specific gravity can be defined in either of two ways: a. Specific gravity is the ratio of the density of a substance to the density of water at 4 C. b. Specific gravity is the ratio of the specific weight of a substance to the specific weight of water at 4 C. These definitions for specific gravity (sg) can be shown mathematically as where the subscript s refers to the substance whose specific gravity is being determined and the subscript w refers to water. sg g s rs = = C C - w w ( 1 7)

48 1.9.1 Relation Between Density and Specific Weight Quite often the specific weight of a substance must be found when its density is known and vice versa. The conversion from one to the other can be made using the following equation: g = rg 1-9 ( ) The definition of specific weight is By multiplying g on numerator and denominator, we reduced to

49 Example 1.5 Calculate the weight of a reservoir of oil if it has a mass of 825 kg. We have

50 Example 1.6 If the reservoir from Example Problem 1.5 has a volume of 0.917m 3, compute the density, the specific weight, and the specific gravity of the oil.

51 Example 1.7 Glycerine at 20 C has a specific gravity of Compute its density and specific weight.

52 Example 1.8 A pint of water weighs N. Find its mass. Because w = mg, the mass is Remember that the units of kg and Ns 2 /m are the same.

53 Example 1.9 One gallon of mercury has a mass of 51.2 kg. Find its weight. Write This is correct, but the units may seem confusing because weight is normally expressed in N. The units of mass may be rewritten as Ns 2 /m, and we have

54 1.9.2 Specific Gravity in Degrees Baume or Degree API The reference temperature for specific gravity measurements on the Baumé or American Petroleum Institute (API) scale is 60 F rather than 4 C as defined before. To emphasize this difference, the API or Baumé specific gravity is often reported as

55 1.9.2 Specific Gravity in Degrees Baume or Degree API For liquids heavier than water, For liquids lighter than water, sg = deg Baume ( 1 10) 145 deg Baume = sg ( 1 11) ( 1 12) sg = deg Baume 140 deg Baume = sg ( 1 13)

56 1.9.2 Specific Gravity in Degrees Baume or Degree API The API has developed a scale that is slightly different from the Baumé scale for liquids lighter than water. The formulas are sg = deg API deg API = sg ( 1 15) ( 1 14)

57 1.9.2 Specific Gravity in Degrees Baume or Degree API Fig 1.5 shows the Hydrometer with built-in thermometer (thermohydrometer).

58 1.10 Surface Tension Surface tension acts somewhat like a film at the interface between the liquid water surface and the air above it. Surface tension is also the reason that water droplets assume a nearly spherical shape. The movement of liquids within small spaces depends on this capillary action. Wicking is the term often used to describe the rise of a fluid from a liquid surface into a woven material.

59 1.10 Surface Tension Table 1.5 shows the surface tension of water.

60 1.10 Surface Tension Table 1.6 shows the surface tension of some common liquids.

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

### Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

Course: TDEC202 (Energy II) Thermodynamics: An Engineering Approach Course Director/Lecturer: Dr. Michael Carchidi Course Website URL dflwww.ece.drexel.edu/tdec 1 Course Textbook Cengel, Yunus A. and Michael

### CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Fluid Mechanics-61341

An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [1] Fundamentals 1 The Book (Elementary Fluid Mechanics by Street, Watters and Vennard) Each chapter includes: Concepts

### CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

### Fluid Mechanics. The atmosphere is a fluid!

Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid

### Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

### Chemistry 104 Chapter Two PowerPoint Notes

Measurements in Chemistry Chapter 2 Physical Quantities Measurable physical properties such as height, volume, and temperature are called Physical quantity. A number and a unit of defined size is required

### Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition

1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

### Chapter 12: Gravity, Friction, & Pressure Physical Science, McDougal-Littell, 2008

SECTION 1 (PP. 381-388): GRAVITY IS A FORCE EXERTED BY MASSES. Georgia Standards: S8P3b Demonstrate the effect of balanced and unbalanced forces on an object in terms of gravity, inertia, and friction;

### APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations

APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations A ampere AASHTO American Association of State Highway & Transportation Officials ABS (%) Percent of Absorbed Moisture Abs. Vol. Absolute

### Student Academic Learning Services Page 1 of 6 Laws about gases

Student Academic Learning Services Page 1 of 6 Laws about gases Charles law Volume is directly proportional to temperature. V = ct, where c > 0 is constant. French balloonist Jacque Charles noticed that

### APPENDIX H CONVERSION FACTORS

APPENDIX H CONVERSION FACTORS A ampere American Association of State AASHTO Highway & Transportation Officials ABS (%) Percent of Absorbed Moisture Abs. Vol. Absolute Volume ACI American Concrete Institute

### CH. I ME2560 STATICS General Principles GENERAL PRINCIPLES. Rigid body mechanics. Fluid mechanics

1. MECHANICS GENERAL PRINCIPLES Mechanics is the branch of physics (classic) that studies the state of rest or motion of bodies subjected to the action of forces. Rigid body mechanics Mechanics Deformable

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

### FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

### Unit A-1: List of Subjects

ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-1: List of Subjects What is Thermodynamics? First and

### CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

### Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

### TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

### 5 Distributed Forces 5.1 Introduction

5 Distributed Forces 5.1 Introduction - Concentrated forces are models. These forces do not exist in the exact sense. - Every external force applied to a body is distributed over a finite contact area.

### Review of Fluid Mechanics

Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

### Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

### cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

### MECHANICAL PROPERTIES OF FLUIDS

CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

### Introduction. Chemistry the science of matter and the changes it can undergo.

Introduction Chemistry the science of matter and the changes it can undergo. Physical Chemistry concerned with the physical principles that underlie chemistry. Seeks to account for the properties of matter

### Physics 207 Lecture 18

Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

### Dr. Nidal Hussein 7/15/2018

Dr. Nidal Hussein What is a Fluid? A fluid is defined as a substance that deforms continuously whilst acted upon by any force (shear force) tangential to the area on which it acts The ratio of the shear

### Name : Applied Physics II Exam One Winter Multiple Choice ( 7 Points ):

Name : e-mail: Applied Physics II Exam One Winter 2006-2007 Multiple Choice ( 7 Points ): 1. Pure nitrogen gas is contained in a sealed tank containing a movable piston. The initial volume, pressure and

### CHAPTER 1 Fluids and their Properties

FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

### Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara

Continents Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and Viscosity -Newtonian and non Newtonian fluids -Surface tension Compressibility -Pressure -Cavitations

### Chapter 2 SOLUTION 100 = km = h. = h. ft s

Chapter.1. Convert the information given in the accompanying table from SI units to U.S. Customary units. Show all steps of your solutions. See Example.. km 1000 m.8 ft 1 mile 10 = 74.5 miles/h h 1 km

### Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

### Measurements in Chemistry

Measurements in Chemistry Measurements are part of our daily lives. We measure our weight, driving distances and gallons of gasoline. A health professional might measure blood pressure, temperature and

### The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

### 1 1. Round off the following numbers to three significant figures: (a) m, (b) s, (c) 4555 N, and (d) 2768 kg.

1 1. Round off the following numbers to three significant figures: (a) 4.65735 m, (b) 55.578 s, (c) 4555 N, and (d) 2768 kg. a) 4.66 m b) 55.6 s c) 4.56 kn d) 2.77 Mg Ans 1 2. Represent each of the following

### INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

### Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

### Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

### Energy: The ability to cause changes. thermodynamics stems from therme (heat) and dynamis (power).

Energy: The ability to cause changes. thermodynamics stems from therme (heat) and dynamis (power). Thermodynamics: The science of energy. Conservation of energy principle: During an interaction, energy

### 13.1 The Nature of Gases (refer to pg )

13.1 The Nature of Gases (refer to pg. 420-424) Essential Understanding any other state of matter. Temperature and pressure affect gases much more than they affect Lesson Summary Kinetic Theory and a Model

### The Metric System & Conversions

Purpose of this lab: The purpose of this lab exercise is for you to become familiar with basic measurements in metric units (SI), English units, and conversions between the two systems. Assignment Objectives:

### 1.1 WHAT IS MECHANICS?

H1 1 C H A P T E R Introduction 1 Chapter 1 Introduction 1.1 What Is Mechanics? 1.2 Fundamental Concepts and Principles 1.3 Systems of Units 1.4 Conversion from One System of Units to Another 1.5 Method

### AMME2261: Fluid Mechanics 1 Course Notes

Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

### Chemistry Section Review 2.2

Chemistry Section Review 2.2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Standards of measurement are chosen because they a. can be related to everyday

### MECHANICAL PROPERTIES OF FLUIDS:

Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

### Chapter 1 Fluid Proper2es. CE Fluid Mechanics Diogo Bolster

Chapter 1 Fluid Proper2es CE30460 - Fluid Mechanics Diogo Bolster What is a Fluid? A substance that deforms con2nuously when acted on by a shearing stress A solid will deform to a certain point for a given

### PUMP SYSTEM ANALYSIS AND SIZING. BY JACQUES CHAURETTE p. eng.

PUMP SYSTEM ANALYSIS AND SIZING BY JACQUES CHAURETTE p. eng. 5 th Edition February 2003 Published by Fluide Design Inc. www.fluidedesign.com Copyright 1994 I TABLE OF CONTENTS Introduction Symbols Chapter

### Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

### Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara

Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and

### Northern Lesson 2 Gear Pump Terminology. Gear Pump 101. Lesson 2: Gear Pump Terminology. When your reputation depends on it!

Gear Pump 101 Lesson 2: Gear Pump Terminology When your reputation depends on it! Symbol Term Metric Unit Abbreviation US Customary Unit Abbreviation Conversion factor a A Area square millimeter mm2 square

### 1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

### HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow

### M o d u l e B a s i c A e r o d y n a m i c s

Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 8-0 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 08-01- 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s

### Chapter Four fluid flow mass, energy, Bernoulli and momentum

4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

### 2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory!

2 Standards for Measurement Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! Chapter Outline 2.1 Scientific Notation 2.2 Measurement and

### PDHengineer.com Course O-5001

Hengineer.com Course O-500 Gas ipeline Hydraulics To receive credit for this course This document is the course text. You may review this material at your leisure either before or after you purchase the

### Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

### Properties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases

Properties of Gases Chapter 1 of Physical Chemistry - 6th Edition P.W. Atkins. Chapter 1 and a little bit of Chapter 24 of 7th Edition. Chapter 1 and a little bit of Chapter 21 of 8th edition. The perfect

### Summary of common Pressure Units Version 1.00, 12/15/2003

Summary of common Pressure Units Version.00, /5/003 Portland State Aerospace Society There are too many pressure units in common use. This is not nearly all of them. For PSAS,

### (Refer Slide Time: 0:28)

Engineering Thermodynamics Professor Jayant K Singh Department of Chemical Engineering Indian Institute of Technology Kanpur Lecture 08 Examples on basic concept & energy balance Welcome back! Myself Parul

### PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration

### 2 Standards of Measurement

What You ll Learn the SI units and symbols for length, volume, mass, density, time, and temperature how to convert related SI units 2 Standards of Measurement (A), 2(D), 2(C), 2(E) Before You Read If someone

### 1.4 Units of Measurement

1.4 Units of Measurement Many properties of matter are quantitative; that is, they are associated with numbers. When a number represents a measured quantity, the units of that quantity must always be specified.

### REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

### Lecture 1 INTRODUCTION AND BASIC CONCEPTS

Lecture 1 INTRODUCTION AND BASIC CONCEPTS Objectives Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts to form a sound foundation for the development

### 1. The Properties of Fluids

1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity

### ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

### SKMM 2413 Thermodynamics

SKMM 2413 Thermodynamics Md. Mizanur Rahman, PhD Department of Thermo-Fluids Faculty of Mechanical Engineering Universiti Teknologi Malaysia UTM Office: C23-228 mizanur@fkm.utm.my Semester I, 2016-2017

### Chapter 1: The Prime Movers

What is force? Chapter 1: The Prime Movers Force is a push or pull. It is a vector, meaning that it has a magnitude and direction. A vector is a physical quantity that has both magnitude and direction

### Physics 106 Lecture 13. Fluid Mechanics

Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle

### NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

### Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though

### CHEMISTRY. Introduction: Matter & Measurement. Cpt. 1 and 2

CHEMISTRY The Central Science Introduction: Matter & Measurement Cpt. 1 and 2 What is Chemistry? The central science The study of the matter, its composition, properties, and the changes it undergoes.

### Theory and Fundamental of Fluid Mechanics

1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

### 3 Tools and Measurement

CHAPTER 1 3 Tools and Measurement SECTION The Nature of Life Science BEFORE YOU READ After you read this section, you should be able to answer these questions: How do tools help scientists? How do scientists

### ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units

ME 201 Engineering Mechanics: Statics Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units Additional Assistance Tutoring Center Mck 272 Engineering Walk-In Help Lab Aus??? Schedule to

### Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

### Chapter: Measurement

Table of Contents Chapter: Measurement Section 1: Description and Measurement Section 2: SI Units *Section 1 Description and Measurements Measurement Measurement is a way to describe the world with numbers.

### Physical Science Density and Measurements

Physical Science Density and Measurements Name Date Density All matter has a mass that can be measured and a volume of space that it occupies. However, the relationship between mass and volume varies greatly

### Chapter 3 Basic Physical Principles Applications to Fluid Power Sy S stems

Chapter 3 Basic Physical Principles Applications to Fluid Power Systems 1 Objectives Identify and explain the design and operation of the six basic machines. Describe the factors that affect energy in

### Pre-Comp Review Questions- 8 th Grade

Pre-Comp Review Questions- 8 th Grade Section 1- Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s. Temperature K Fahrenheit Length

### Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

### INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

Lecture INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin The Metric System by Christopher G. Hamaker Illinois State University Basic Units and Symbols The English

### Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY

3.1 MEASUREMENTS AND THEIR UNCERTAINTY Section Review Objectives Convert measurements to scientific notation Distinguish among the accuracy, precision, and error of a measurement Identify the number of

### Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.

Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of

### Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi

1 Universität Duisburg-Essen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement

### Thermodynamics INTRODUCTION AND BASIC CONCEPTS. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics INTRODUCTION AND BASIC CONCEPTS Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. THERMODYNAMICS AND ENERGY Thermodynamics: The science of energy.

### Semester Exam Eigth Grade SG

Semester Exam Eigth Grade SG Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. 10 m is equal to a. 100 cm. c. 10,000 mm. b. 1,000 cm. d. Both

### MATTER AND HEAT. Chapter 4 OUTLINE GOALS

Chapter 4 MATTER AND HEAT OUTLINE Temperature and Heat 4.1 Temperature 4.2 Heat 4.3 Metabolic Energy Fluids 4.4 Density 4.5 Pressure 4.6 Buoyancy 4.7 The Gas Laws Kinetic Theory of Matter 4.8 Kinetic Theory

### Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection