arxiv: v1 [math.st] 6 Jun 2013

Size: px
Start display at page:

Download "arxiv: v1 [math.st] 6 Jun 2013"

Transcription

1 Eimaio of he fiie righ edpoi i he Gumbel domai Iabel Fraga Alve CEAUL ad DEIO Cláudia Neve CEAUL ad Uiveriy of Aveiro arxiv:306.45v [mah.st] 6 Ju 03 FCUL, Uiveriy of Libo Abrac A imple eimaor for he fiie righ edpoi of a diribuio fucio i he Gumbel maxdomai of aracio i propoed. Large ample properie uch a coiecy ad he aympoic diribuio are derived. A imulaio udy i alo preeed. Iroducio Le X, X,... X, be he order aiic from he ample X, X,..., X of i.i.d. radom variable wih commo uow diribuio fucio F. Le x F deoe he righ edpoi of F. We hall aume ha he diribuio fucio F ha a fiie righ edpoi, i.e. x F := up{x : F x < } R. The fudameal reul for exreme value heory i due i vary degree of geeraliy o Fiher ad Tippe 98, Gedeo 943, de Haa 970 ad Balema ad de Haa 974. The exreme value heorem or exremal ype heorem urpriigly reric he cla of all poible limiig diribuio fucio o oly hree differe ype, while he iduced domai of aracio embrace a grea variey of diribuio fucio. Thi i paricularly rue i he cae of he Gumbel domai of aracio. I oher word, if here exi coa a > 0, b R uch ha lim F a x + b = Gx,

2 Iroducio for all x, G o-degeerae, he G mu be oly oe of he followig: Ψ α x = exp{ x α }, x < 0, α > 0, Λx = exp{ exp x}, x R, Φ α x = exp{ x α }, x > 0, α > 0. Redefiig he coa a > 0 ad b R, hee ca i ur be eed i a oe-parameer family of diribuio, he Geeralized Exreme Value GEV diribuio wih diribuio fucio G γ x := exp{ + γx /γ }, + γx > 0, γ R. We he ay ha F i i he max-domai of aracio of G γ ad ue he oaio F D M G γ. For γ < 0, γ = 0 ad γ > 0, he GEV diribuio fucio reduce agai o Weibull, Gumbel ad Fréche diribuio fucio, repecively. A equivale exreme value codiio allow he limi relaio i o ru over he real liear cf. Theorem..6 de Haa ad Ferreira, 006: F D M G γ if ad oly if lim F a x + b = + γ x /γ, for all x uch ha + γx > 0, a := a [] ad b := b [], wih [] deoig he ieger par of. The exreme value idex γ deermie vary degree of ail heavie. If F D M G γ wih γ > 0, he he diribuio fucio F i heavy-ailed, i.e., F ha a power-law decayig ail wih ifiie righ edpoi. O he oppoie ed, γ < 0 refer o hor ail which mu have fiie righ edpoi. The Gumbel domai of aracio D M G 0 reder a grea variey of diribuio, ragig from ligh-ailed diribuio uch a he Normal diribuio, he expoeial diribuio, o moderaely heavy diribuio uch a he Logormal. All he ju meioed diribuio have a ifiie righ edpoi bu a fiie edpoi i alo poible i he Gumbel domai. We hall give everal example. Diribuio fucio of hi or, i.e. ligh-ailed diribuio wih fiie edpoi, bu o o ligh ha hey are ill icluded i he Gumbel domai, have bee i grea demad a feaible diribuio uderlyig real life pheomea. A riig example i he exreme value aalyi by Eimahl ad Magu 008 of he be mar i Ahleic, aimig a aeig he ulimae record for everal eve. For iace, Table 3 i Eimahl ad Magu 008 ha everal miig value for he eimae of he edpoi which are due o a eimaed exreme value idex γ ear zero. A aemp o fulfill hee bla pace wih a appropriae framewor

3 Iroducio for iferece i he Gumbel domai ha bee provided by Fraga Alve e al. 03, alhough from he ric view poi of applicaio o he Log Jump daa e ued i Eimahl ad Magu 008. The eaive eimaor propoed by Fraga Alve e al. 03 i virually he ame a he oe iroduced i he pree paper. The ovely here i i he developme of a imple cloedfrom expreio for he previou aiic. Hece, he problem of eimaig he righ edpoi x F of a diribuio fucio lyig i he Gumbel exremal domai of aracio i ow acled by he emi-parameric aiic or i a more compac form, by X, + X, log + X i,, log + i i=0 ˆx F := X, + a i, X, X i,, 3 i=0 where a i, := log + i + log + i / log, uch ha i=0 a i, =. Here ad hroughou hi paper, he umber i aumed iermediae, ha i, i i fac a equece of poiive ieger goig o ifiiy a bu a a much lower rae ha. More formally, we are aumig ha ˆx F i a fucioal of he op obervaio of he origial ample, which relie o a iermediae equece = uch ha, = o, a. From he o-egaivee of he weighed pacig i he um 3, we clearly ee ha he ow propoed eimaor i greaer ha X, wih probabiliy oe. Thi coiue a crucial advaage i compario wih he uual emi-parameric eimaor for he righ edpoi of a diribuio fucio i he Weibull domai of aracio i.e. wih γ < 0. We refer o Hall 98, Fal 995, Hall ad Wag 999 ad o de Haa ad Ferreira 006 ad referece herei. To he be of our owledge, oe of hee eimaor have eured o far he exrapolaio beyod he ample rage, meaig ha we ca ecouer i pracice eimae for he edpoi ha are maller ha he oberved ample maximum. There have bee, however, ome developme of he mo wellow edpoi eimaor coeced wih γ < 0 i he ee of bia reducio ad/or correcio. Li ad Peg 009 ad Cai e al. 0 are wo of he mo rece wor i hi repec. I fac, he problem of eimaig x F ill gaher a grea iere owaday. Recely, Girard e al. 0 devied a edpoi eimaor from he high-order mome peraiig o a diribuio 3

4 Framewor aached wih γ < 0; Li ad Peg 0 propoed a boorap eimaor for he edpoi evolvig from he oe by Hall 98 i cae γ /, 0. The pree paper deliberaely addree he cla of diribuio fucio belogig o he Gumbel domai of aracio, for which o pecific iferece ha ye bee provided i he coex of eimaio of he righ edpoi x F <. The appropriae framewor for he laer hall be developed i Secio. The remaider of he paper i a follow. The raioale behid he propoal of he ew eimaor for he righ edpoi i expouded i Secio 3. Large ample properie of hi eimaor, amely coiecy ad aympoic diribuio, are wored ou i Secio 4 by aig advaage of hi form of eparabiliy bewee he maximum ad he um of higher order aiic. I order o perform aympoic, we require ome baic codiio i he coex of he heory of regular variaio. Thee are laid ou i he ex ecio Secio. Fially, i Secio 5 we gaher ome imulaio reul ae a ey example. Framewor Le F be a diribuio fucio d.f. wih righ edpoi x F, x F := up{x : F x < }. Suppoe F belog o he domai of aracio of he Geeralized Exreme Value diribuio GEV wih d.f. G γ, ha i F aifie he followig exreme value codiio F + x f lim = + γ x /γ, 4 x x F F for all x R uch ha + γ x > 0, wih a uiable poiive fucio f equivale codiio o, ee Theorem..6 of de Haa ad Ferreira, 006. For he mo iereig cae of γ = 0 he limi i 4 read a e x. I hi cae f > 0 ca be defied a follow f := x F F x dx = E[X X > ] 5 F cf. Theorem..5 of de Haa ad Ferreira, 006, he f i he o called Mea Exce Fucio. Now le U be he geeralized ivere fucio of / F. If F aifie 4 wih γ = 0 he 4

5 Framewor we ca aume here exi a poiive fucio a 0 uch ha, for all x > 0, Ux lim = log x. 6 a 0 Hece U belog o he cla Π ee Defiiio B..4 of de Haa ad Ferreira, 006 ad a 0 i a meaurable fucio uch ha lim a 0 x/a 0 = for x > 0. The we ay ha a 0 i a lowly varyig fucio ad ue he oaio a 0 RV 0 ee Theorem B..7 of de Haa ad Ferreira, 006. Moreover, he fucio a 0 ad f iroduced i 6 ad 4, repecively are relaed o each oher by a 0 = f Uee Theorem B.. of de Haa ad Ferreira, 006. Throughou we hall ue he oaio U Πa 0 i order o pu ome emphai o he auxiliary fucio a 0. We have he followig reul: Lemma. Suppoe U Πa. For ay ε > 0 here exi 0 = 0 ε uch ha, for 0, a a ε maxε, ε.. Suppoe a > 0 i a lowly varyig fucio, iegrable over fiie ierval of R + uch ha for every > 0. The a 0, a, ad a d <. a d lim a =. Proof: Par. of he Lemma come from Dree, 998 cf. Propoiio B..0 of de Haa ad Ferreira, 006. The ecod par follow from Karamaa heorem for regularly varyig fucio cf. Theorem B..5 of de Haa ad Ferreira, 006. The relaiohip bewee codiio impoed o he auxiliary fucio a i.e. wo codiio i. of Lemma ad he ail quaile fucio U, for which x F := U = lim U exi fiie, i give by U = c + a d + o a, 7 c R cf. Theorem B.. ad Propoiio B of de Haa ad Ferreira, 006. I hi 5

6 Saiic developme, he followig hold: U = a d + o a,, 8 which i our mai aumpio eveually. Moreover, 8 implie ha U Πa ad a a 0, a, wih a 0 he auxiliary fucio i 6. We ca obai from 6 wih a 0 replaced by a i.e. U Πa ye aoher limiig relaio ow ivolvig iegraio of U ad a: applyig Cauchy rule oce, we obai lim / 0 U x / a d 0 d = lim Ux /, 9 a/ he for arbirary poiive x, he Π-variaio of U acerai ha log x i he limi above, i.e. x lim U d U d a d for all x > 0. Hece U d/ i alo Π-varyig wih auxiliary fucio q := = log x, 0 a d. I he uual oaio, U d/ Πq. The q i lowly varyig while relaio 8 eail ha q 0 a. 3 Saiic Le X, X,..., X be a radom ample of ize from he uderlyig diribuio fucio F wih fiie righ edpoi x F. Le X, X,... X, be he correpodig order aiic. We iroduce he eimaor ˆq/ for he auxiliary fucio defied above, i.e. q = a d = 0 a d evaluaed a = /. Thi eimaor ha he propery ha, a, = ad / 0 provided ome uiable ye mild rericio ivolvig he ecod order refieme of 6

7 Saiic U/ d, q ˆq a q d N, where N i a o-geerae radom variable. Several eimaor for he righ edpoi x F = U < ca be readily devied from 8, i he ee ha hee migh evolve from ˆx F = Û + ˆq = X, + ˆq, 3 which alo eable he eimae yield o carry aalogou large ample properie o ˆq/. I paricular, relaio 0 a x = / ogeher wih a = / promp he followig approximaio for large eough : 0 U d q log. Our propoal for eimaig q/ hu arie quie aurally from he correpodig empirical couerpar i.e. Û /θ = X [θ],, 0, ], θ =, : ˆq := log 0 X [], X [], d. 4 A cerai amou of imple calculaio yield he followig aleraive expreio for ˆq: ˆq = X, + + i log X i,. 5 log + i + Combiig 3 wih 5 we are led o he eimaor for he righ edpoi i=0 ˆx F := X, + X, + + i log X i,. 6 log + i + i=0 We oe ha, afer rearragig compoe, i i poible o expre ˆx F a he maximum X, added by ome weighed mea of o-egaive ummad a follow: ˆx F = X, + a i, X, X i,, i=0 a i, := log + i log + i + > 0, log 7

8 Aympoic reul all i = 0,,... ad N. We ca eaily ee ha a i, are uch ha a i, =. i=0 Remar We emphaize ha he ow propoed eimaor for he righ edpoi reur value alway larger ha x,. Thi coiue a major advaage i compario o he available emi-parameric eimaor for he edpoi i he cae of Weibull domai of aracio, for which he exrapolaio beyod he ample rage i o guaraeed. Thi iadequacy of he exiig eimaor ofe lead o ome diappoiig reul i pracical applicaio, wih eimae-yield ha may be lower ha he oberved maximum i he daa. 4 Aympoic reul Throughou hi ecio we hall bear i mid ha ˆx F re clearly o wo buildig bloc: he high radom hrehold X, ad ˆq/ defied i 5. We hall hadle ˆq/ fir. The proof for coiecy of he eimaor ˆq/ defied i 4 i uppored o he aerio i Lemma.4.0 of de Haa ad Ferreira 006. The aympoic diribuio of ˆq/ i aaied uder a ecod order limi regardig he mai codiio of exeded regular variaio provided i Secio, by aig advaage of i ihere eparabiliy bewee he maximum ad he um of oher highorder aiic. The he wo mai reul cocerig ˆx F, compriig Theorem 5 ad Theorem 3, arie almo direcly from he previou. Le U, U,..., U be idepede ad ideically diribued uiform radom variable o he ui ierval ad le U, U :... U : be heir order aiic. Noe ha U/U i d =X i, i =,,.... Sice = i a iermediae equece uch ha, = o, a, he we ca defie a equece of Browia moio { W } uch ha, for each ε > 0, 0 up 3 +ε θ θ θ U [θ]+, W = o p, 7 for all θ cf. Lemma.4.0 of de Haa ad Ferreira, 006, wih γ =. Le X, X,... be i.i.d radom variable wih he ame diribuio fucio F belogig o he Gumbel domai of aracio, i.e., F DG 0, wih fiie righ edpoi x F. I view of 8

9 Aympoic reul characerizaio 7 for U Πa, he followig relaio hold Ux a /x a a for all x > 0. Hece we obai for ufficiely large ha d, X [θ], θ a d = U θ θ U [θ]+, θ θ a θ U [θ]+, θ a θ x a dx x. θ Now he uiform iequaliie i Lemma ell u ha, for ay ε > 0, Sice U [θ]+, [0, ] ad for every 0, ], a θ a = ± ε ε, 0 <. θ U [θ]+, θ U [θ]+, θ P, we ge X [θ], θ a θ d U[θ]+, = log log + ± θ = log U[θ]+, θ U[θ]+, θ ε + op ± ε + o p, wih he o p -erm edig o zero uiformly for [θ, ]. Now we ca apply Cramér δ-mehod o relaio 7 i order o obai: X [θ], θ a = log + W + o p / ε ± ε + o p, 8 θ θ a, uiformly for θ, θ. We ow coider he ormalized differece bewee a ample iermediae quaile ad correpodig heoreical quaile ad deoe i by R θ, i.e. R θ := X [θ], θ a 9 θ = X [θ], θ a a θ + θ a X [θ], θ θ a + U θ θ θ a θ 9

10 Aympoic reul Bearig o 8 combied wih he uiform iequaliie i Lemma ad he oe for Π-varyig fucio provided i Propoiio B..7 of de Haa ad Ferreira 006, we hu ge for ay ε > 0, R θ = log + W + / ε o p θ ± ε + o p ± ε ε log + log ± ε ε = W ± ε + o p ε ε log, 0 θ for [θ, ], all θ. Therefore, we have ju ee ha he diribuio of deviaio bewee high large ample quaile ad heir heoreical couerpar i aaiable wih a differe ormalizaio ha i 8. Before we proceed we hall require he followig lemma regardig a ecod order codiio o he auxiliary fucio a: Lemma 3 Le U Πa uch ha U = lim U exi fiie. The he followig limi hold wih q := a d/ defied i, lim ax a a q = log x, x > 0. Proof: The aumpio ha U Πa eail q ax a a = = q Ux Ux ax a a q ax Ux log x a + o. Furhermore, accordig o defiiio of he fucio q ad he mai relaio 8, q Ux = x a d a d = + + o x x a d a d + o. By aig he limi of he laer erm whe, we ge from Cauchy rule ogeher wih he fudameal heorem of iegral calculu ha x lim x a d a d ax ax = lim ax a = lim a. 0

11 Aympoic reul Givig heed o, he limiig aeme follow i a raighforward maer: q ax a a = log x + x x d a a d ax a + o ax = log x + log x a + o. Propoiio 4 Le X, X,... be i.i.d. radom variable wih ail quaile fucio U aifyig codiio 8. Suppoe = i a equece of poiive ieger uch ha, / 0, a. The ˆq/ i a coie eimaor for q/ i he ee ha he followig covergece i probabiliy hold, Proof: We begi by oig ha ˆq q = log = log ˆq q p. Û Û 0 q d { X [], q d X, q d + X [], q d U q } d. 3 The wo iegral erm i hall be hadled joily hrough he coideraio of R ee Eq. 9 wih θ = i he oe iegral below: X [], q d X [], U q d = X [], U q d =: I, 4 whece I, = a { q R d + a a R d }. 5

12 Aympoic reul Now, Lemma 3 acerai I, = X [], q d a q R d a + q R log d a q + a q log R d, 6 wih high probabiliy, for ufficiely large. We ca provide a imilar lower boud. Owig o 0, he followig hold w.r.. he iegral feaurig i he upper boud 6, for ay poiive ε, R d Sice ε > 0 i arbirary, he meaig ha W d + 0 < ε d ε d = ε ε ε d ca be dicarded. A imilar lie of reaoig applie o hu alo dicarded. ε + op ε log ε 0 0, ε log d = ε log ε 0, ε ε 0 ε log d. We ow recall ha = i a equece of poiive ieger edig o ifiiy a. Le u defie Y := W d, which regard a equece of ormal radom variable wih zero mea ad variace equal o V ary = log 0. The laer mea ha he equece of radom variable {Y } 0 i a equece of degeerae radom variable, eveually, ad he wo iegral i uifyed i 4; ee alo Eq. 5 i

13 Aympoic reul erm of R vaih wih probabiliy edig o oe a. I hi repec we oe ha a//q/ = o, which eail i fac ha I, = o p = o p a/ q/ = O p a/ q/. The re of he proof perai o he erm i 3. Regardig he fir iegral i 3, we oe ha I, := = / d = a q = a q = a q X, q X, d d q { U U, a { log U, log + } d U log a } + op log d log log U, log + op. Now, he probabiliy iegral raformaio yield he followig equaliy i diribuio for he radom erm above: log U, d = E, log, 7 where E, i he maximum of i.i.d. adard expoeial radom variable. Hece, he radom variable 7 coverge i diribuio o a Gumbel radom variable wih diribuio fucio give by exp{ e x }, x R. Moreover, a/q/ 0, a, becaue a//q/ = o ee Lemma, where he auxiliary poiive fucio a aifie a 0, a, by aumpio. Therefore, I, = o p = O p a q/. 8 I order o fially aai coiecy of ˆq/ le u coider he la iegral i 3, which we will how i i bouded. O he oe had, for he upper boud, U q d U 0 q d 9 3

14 Aympoic reul ad o he oher had, for he lower boud, = 0 0 U q U U +/ + d q q + + d + d + U +/ q + d +. Maig = / ru o he real lie oward ifiiy, he he Π variaio i relaio 0 i rephraed a lim 0 U x d 0 U d q which clearly eail he followig limi for he upper boud i 9: 0 U d q Regardig he lower boud, 0 U d = = log x, x > 0, 30 0 U d 0 U d q log. U q d 0 U + q q q U + +/ d + q + 3 d +, 3 we oe ha for every ε > 0, here exi 0 N uch ha for 0, + / < ε. 33 Whece, we have i ur he followig iequaliy wih repec o 3: 0 U + q + d + > 0 U + q + ε d. For he fir par of he righ-had ide of he above we ue agai codiio 30, while he ecod 4

15 Aympoic reul par i deal wih Theorem B..9 of de Haa ad Ferreira 006 ivolvig he fac ha U Πa: U + 0 q = log + o ε a log. q + d + εa q log + o 0 U + a + d For he laer, we recall ha a/ = o q/. Now we wrie δ = / > 0 everywhere i 3. Furhermore, we aume ha here exi 0 N uch ha, for 0, he erm δ i large eough ad he iegral i 3 ca rephraed a I δ := δ U +δ δ d a δ +δ δ d +δ. 34 We oe ha, for every fixed δ > 0, we have ha from he Π-variaio of U ha he followig hold for he umeraor of I δ 006: properly recaled by aδ cf. Theorem B..9 i de Haa ad Ferreira, δ U +δ δ +δ δ d +δ aδ log δ d = log + δ log. + δ For arbirary mall δ, he laer approache zero. Predicaed o he above, we apply Cauchy rule o obai lim δ 0 I δ we recall ha δ 0 implie. Toward hi ed, we apply Eq.. of Chiag 000 upo he umeraor of I δ, whece lim δ 0 I δ = lim δ 0 δ U +δ δ +δ 3 +δ δ { + lim δ δ 0 δ aδ δ U δ +δ δ +δ aδ +δ 3 d Sice U = a/ he he limi become equal o he he limi of a δ +δ δ aδ a δ +δ aδ d + δ + δ δ U δ +δ δ +δ aδ d Uδ δ } δ. + δ aδ d Uδ δ. + δ aδ We ca ow ae ay arbirary mall δ maig i order o apply he uiform covergece of a RV 0 ad U Πa o ha he above iegral are eured fiie ad he equal o zero by defiiio. Hece, all he erm are egligible a δ coverge o zero meaig ha lim δ 0 I δ 5

16 Aympoic reul become ull. Therefore, U q d log. ad he precie reul for coiecy of ˆq/ hu follow by oig ha q/ q /. I view of 3, we have he followig aleraive formulaio aimed a eablihig coiecy of he propoed eimaor for he righ edpoi. Theorem 5 Le X, X,... be i.i.d. radom variable wih ail quaile fucio U aifyig codiio 8. Suppoe = i a equece of poiive ieger uch ha, / 0, a. The ˆx F := X, + ˆq/ i a coie eimaor for x F <, i.e. ˆx F p xf. Proof: I will uffice o oe here are hree mai coribuig compoe for x F ˆx F. Specifically, x F ˆx F d = U ˆq U +, = U = I II III, q U U +, q ˆq q where: I := U q = o a, which follow direcly from relaio 8; II := U = op a U +, becaue U Πa while Smirov Lemma eure / U +, ad Ferreira, 006; P III := q ˆq q = o p ee Lemma..3 i de Haa which i verified by Propoiio 4 ad he fac ha relaio 8 implie q/ = o. The aympoic diribuio of ˆq/ i predicaed o a uiable ecod order refieme of 6

17 Aympoic reul 6: uppoe here exi fucio a, poiive ad A, poiive or egaive, boh edig o zero a, uch ha for all x > 0. lim Ux U a log x = A log x, 35 Remar 6 The ecod order codiio above follow direcly from Theorem B.3.6, Remar B.3.7 ad Corollary.3.5 of de Haa ad Ferreira 006 becaue he former ae ha, i our eup of γ = 0 ad x F <, he oly cae allowed i he cae of he ecod order parameer ρ equal o zero. Lie he fucio a, he ecod order auxiliary fucio A coverge o zero, o chagig ig for ear ifiiy, ad A i lowly varyig, i.e. Ax/A, oaio: A RV 0. Furhermore, Theorem.3.6 of de Haa ad Ferreira 006 acerai he exiece of fucio a 0 ad A 0 aifyig, a, A 0 A ad a 0 /a = o A, wih he propery ha for ay ε > 0, here exi 0 = 0 ε uch ha for all, x 0, Ux U a 0 log x A 0 log x ε maxx ε, x ε 36 ad a 0x a 0 A 0 log x ε maxxε, x ε. 37 Remar 7 We oe ha relaio 37 combied wih Lemma 3 acerai ha a 0 /q = ca 0, wih c 0 becaue ρ = γ = 0 cf. Eq. B.3.4 ad Remar B.3.5 i de Haa ad Ferreira, 006. Heceforh we may aume ha he fucio q i coveiely redefied o ha a/q A. Example 8 The Negaive Fréche model wih parameer β > 0, i.e.,, wih diribuio fucio F x = exp{ x F x β }, x x F, β > 0. The aociaed ail quaile fucio U i give by U = x F log /β,. The U Πa 0 wih a 0 = /βlog /β 0, a. Therefore, he auxiliary fucio q defied i become q = log /β, β > 0. Now, by raighforward calculaio we ee ha A 0 = + /βlog, which implie ha a 0 /q = A 0 / + β, for ear ifiiy. Theorem.4. of de Haa ad Ferreira 006 allow o gai iigh abou he diribuioal repreeaio diplayed i 8. Specifically, if he ail quaile fucio aifie he ecod order 7

18 Aympoic reul codiio 35 he, for each ε > 0, up /+ε θ X [θ], θ θ a + log 0 θ W provided =, / = o ad A 0 / = O. θ A 0 log θ p 0, 38 Therefore, he aympoic diribuio of ˆq/ will appear ierwied wih he proof of coiecy i Propoiio 4 via R θ, defied i 9 for [θ, ], ee alo 0, albei uder he ecod order grap provided above. The ex Propoiio accou for hi cf..4.7 of de Haa ad Ferreira, 006. Propoiio 9 Suppoe he ecod order codiio 35 hold. Le =, / = o ad A/ λ R, a. The, for θ ad for each ε > 0 ufficiely mall, up /+ε θ X [θ], θ θ a W = o p. θ Proof: Similarly o he equaliy righ afer 9, we have ha Noig ha R θ := X [θ], θ a = a { 0 θ θ a X [θ], θ θ a θ } θ 0 θ a. 0 θ a 0 a = a 0 a a a, for all > 0, he Lemma 3 combied wih Remar 7 yield he expaio a 0 a = a 0 a a a q log + o q = a 0 a + A log + o A, 39 for all > 0. I hi repec, we alo oe ha A RV 0 ad a 0 /a = + o A. Havig e /θ, we hu have from 38, he uiform boud i 36 ad he ecod equaliy i 39, ha θ Rθ = W + A θ log W ε ε θ A ± ε ε log θ A θ θ + o p ε + o p ε log A θ uiformly i. Hece, he aumpio ha A/ = O eail ha log/a /θ 0,, 8

19 Aympoic reul wherea ε ε θa /θ virually become o / ε for each ε > 0 arbirarily mall ad uiformly i [θ, ]. The o p -erm are uiform i [/θ, ]. Hece he followig repreeaio for θ R θ, valid for ε 0,, θ Rθ = W + o p / ε. Theorem 0 Aume he ecod order codiio 35 hold. Suppoe = i uch ha, a,, / 0, a/a/ ad A/ = O. Aume furhermore ha The lim A/ q ˆq a q U q d Λ log d log = λ R. 40 λ log, 4 where Λ i a Gumbel radom variable wih diribuio fucio exp{ e x }, all x R. Before givig a proof, we oe ha he aumpio 40 of he heorem regard a ecod order refieme of 0, more cocreely: lim x d U q Q U d log x = log x, 4 ae i he poi x = for large eough = /. Hece, he aumpio 40 ha bee ailored via he uual ecod order eup ee alo Eq. 35 provided by he heory of exeded regular variaio, wih Q = OA. We refer o Appedix B of de Haa ad Ferreira 006 for a good caalog o reul cocerig heory of exeded regular variaio. The aumpio o ha a//a, a i, however, a bi more rericive i erm of creeig for a adequae value which will deermie he umber of op order aiic o bae our iferece from. For example, if we aume he Negaive Fréche for he uderlyig diribuio fucio ee Example 8 ad = p, p 0,, he a a/ = log /β+ = p /β+, log which i approximaely if ad oly if p approache zero. A more appropriae choice regard 9

20 Aympoic reul iermediae equece a a lower rae uch a = log r, r 0, ]. Bearig hi choice i mid, we have ha a a/ = log log /β+ = r log log log /β+ +. log The upper boud r i impoed i order o comply wih he aumpio A/ = O. Give he low variaio feaure of all he fucio ivolved i he characerizaio of he pree ubcla of diribuio i he Gumbel domai wih fiie righ edpoi, we believe ha he laer choice for = i a feaible oe for mo model aifyig 8, meaig ha we require iermediae value uch ha log = olog. Alogeher, we are excludig Neverhele, we ca brig forward he fac ha a mi-pecificaio of i he ee ha a/ /a coverge o a coa differe ha, ha a direc impac o he aympoic variace of he ormalized relaive error preeed i Theorem 0 raher ha upo he aympoic bia. Thi ca be clearly ee i he proof we pree below. Proof of Theorem 0: Similarly a i 4, we have ha q ˆq a q = { a log = log X [], d q X, U d q d log } { J, J, } + q a log J 3,. 43 By mimicig he ep of progreio from 4 o 5, we obai for he fir iegral above ha J, := X [], a d = R d a + a R d. Hece, Propoiio 9 while aumig ha a//q/ = O by appoime of Remar 7 ad applicaio of he uiform boud i 37 wih a 0 := a + oa ad A 0 := A, 0

21 Aympoic reul imply for each ε > 0, J, = W log d + o p log 3/+ε d + op A 0. Sice he iegral / W log d coverge o a um of idepede ormal radom variable, he he expreio above allow o coclude ha he fir radom compoe i 43 i egligible wih high probabiliy becaue J, = O p. Now, imilarly o I, i he proof of Propoiio 4, albei uder he ecod order codiio 35 ad peraiig uiform boud provided by 36, we ow have ha J, := = a a X, a d { log log U, + a 0 a log d + A 0 Agai, oe ha a 0 /a = o A ad A 0 = A. Hece, a a log J, = log log U, + log A = log U, log + o. log log ± ε ε d }. ± ε ε d + o A Furhermore, aumig ha = i uch ha a/a/, he he followig covergece i diribuio hold a a log J d, Λ log, where Λ deoe a Gumbel radom variable wih diribuio fucio exp{ e x }, x R cf. Eq. 7 ad ubeque ex. The followig alo hold provided 37 ad ha A/ = O: log J d, Λ log, Fially we ur o he bia erm J 3,. By aumpio, J 3, A = A U q d log λ,

22 Aympoic reul a. Therefore, ice A a /q cf. Remar 7, he deermiiic erm J 3, reder he followig coribuio o he aympoic bia: q a log J 3, λ log. Example We reume here he reul for he Negaive Fréche diribuio iroduced i Example 8. The Negaive Fréche diribuio wih peraiig ail quaile fucio U = x F log /β,, 0 < β <, aifie he ecod order limiig codiio 4 wih Q = β log. We are hu ready o purue wih deviig he aympoic diribuio of ˆx F. The followig propoiio re heavily o he aeme i Theorem 0. Propoiio Uder he codiio of Theorem 0, ˆx F x F q ˆq a/ a q P 0. Proof: We ue he fac ha X, d =U/U+,, where U +, i he + h order aiic aociaed wih a ample of idepede ad adard uiform radom variable, i order o wrie ˆx F x F a/ q/ ˆq/ a/ q/ = ˆxF ˆq/ a/ = X, / a/ xf q/ a/ U / q/. a/ Sice U Πa ad /U +, i aympoically adard ormal ee Corollary.. of de Haa ad Ferreira 006 he X, / a d = U U +, = O p = o p. a The re follow from relaio 8. The ex heorem ecloe a aleraive formulaio of he reul compried i Theorem 0 ad Propoiio aimig a providig cofidece bad for ˆx F.

23 Simulaio Theorem 3 Le X, X,... be i.i.d. radom variable wih ail quaile fucio U aifyig he ecod order codiio 35. Le â/ be a coie eimaor for a/. Suppoe = i a equece of poiive ieger uch ha, a,, / 0, a/a/ ad A/ = O. Furhermore aume ha lim A/ U q d log = λ R. The â/ ˆx F x F d Λ log λ log. Proof: The reul follow eaily by cojugaig Theorem 0 wih Propoiio ad he applyig Sluy heorem. There are i he lieraure everal poibiliie for eimaig he auxiliary or cale fucio a/. The mo obviou choice i he Maximum Lielihood Eimaor MLE by preedig ha he exceedace over a cerai high radom hrehold follow a Geeralized Pareo diribuio cf. ecio 3.4 of de Haa ad Ferreira, 006: 5 Simulaio â = ˆσ MLE := X i, X,. i=0 The hree diribuio ierveig i hi imulaio udy are ae hroughou a ey example for he purpoe of illuraig he fiie ample behavior of our eimaor for x F defied i 6. Model : Negaive Fréche, wih diribuio fucio F x = exp{ x F x β }, x x F, β > 0. The peraiig ail quaile fucio U i give by U = x F log /β,. Clearly U Πa wih a = β log /β, β > 0 cf. Example 8. Model : The diribuio fucio F give by F x = exp{ ax/β}, 0 x < βπ/, β > 0. The peraiig fucio U i give by U = β arcalog, ad U Πa wih auxiliary fucio a = / log + β. Model 3: The diribuio fucio F give by F x = exp{π/ β arci x/β β }, 0 x < β, β > 0. The peraiig fucio U i give by U = β { i [ /π β + log ] /β },. The U Πa wih a = log /β+ co log /β. 3

24 Simulaio Figure : Probabiliy deiy fucio of Model fir row, Model ecod row ad Model 3 hird row. 4

25 Simulaio Figure : Mea eimae ad empirical Mea Squared Error of ˆx F for Model wih he rue value x F = ad everal ample ize: = 00 fir row, = 000 ecod row, = 0000 hird row; All plo are depiced agai he umber = of op order aiic ued i he eimaor. 5

26 Simulaio Figure 3: Mea eimae ad empirical Mea Squared Error of ˆx F for Model wih he rue value x F = π/8, π/4, π/ ad everal ample ize: = 00 fir row, = 000 ecod row, = 0000 hird row; All plo are depiced agai he umber = of op order aiic ued i he eimaor. 6

27 Simulaio Figure 4: Mea eimae ad empirical Mea Squared Error of ˆx F for Model 3 wih he rue value x F = /4, /, ad everal ample ize: = 00 fir row, = 000 ecod row, = 0000 hird row; All plo are depiced agai he umber = of op order aiic ued i he eimaor. 7

28 Simulaio We have imulaed 000 ample of ize = 00, 000, 0000, from each model ad for differe parameer β =, /, /4. The reul are depiced i Figure, 3 ad 4. Sice he umber acually implie ha he umber of op order aiic ued i he eimaio i wice a much, we have ploed he eimaed mea of ˆx F a a fucio of he laer, i.e., he plo are agai =. The mo commo approach of elecig he umber or i he pree cae i o loo for a regio where he plo are relaively able. Thi way, give he coiecy propery of he adoped eimaor, oe hould i priciple be away from mall value of avoidig large variace mall i uually aociaed wih a large variace ad o o far off i he ail preveig bia o iill bia uually due o large. A already dicued i Secio 4, for Model a appropriae choice for a iermediae = may be give by = log r, wih r 0, ]. If we are uig = 000, for iace, ad if we e r =, he maximum allowed for r, we obai 48 ad hu 96. Bearig o a value of, aroud 00 e.g., all he plo i Figure loo quie able i a cloe viciiy of he arge value x F = repreeed by he olid horizoal grey lie. A more horough examiaio of he graph i Figure eem o give accou of a edecy o a beer eimaio uder Model i.e., wih uderlyig Negaive Fréche diribuio if he parameer β i le ha, which correpod o he cae where he ihere ecod order codiio are aified. We recall ha if β, he Negaive Fréche diribuio ill aifie he fir order codiio. Furher deail o he Negaive Fréche diribuio are give i Example 8 ad. Aalogouly, i Figure 3 ad Figure 4, he upper par of ample from Model ad Model 3 eem o yield mall egaive deviaio from he rue value x F pecified i coecio wih he choe value for he parameer β > 0. However, he geeral paer for hee model i quie differe i wha cocer a moderaed bia wih icreaig, coraig wih he fa icreaig bia wih oberved i model. Noe ha for ay model wih righ edpoi fiie he ample pah of ˆx F deparure from he op value x,, i.e.,, he ample maximum. Taig all io accou, we may coclude ha he propoed eimaor ˆx F perform reaoably well for pare diribuio i he Gumbel domai deaiig fiie righ edpoi x F. A a hor fial remar abou he robue of edpoi eimaor defied i 3, we ca ay i coiue a advied iferece procedure uder Weibull domai of aracio. The heoreical bacgroud upporig hi aeme i a opic of furher udergoig reearch, bu beyod he cope of he pree ubjec. 8

29 REFERENCES REFERENCES Acowledgeme The auhor are graeful o Profeor Laure de Haa for iroducig he appropriae characerizaio of diribuio wih fiie righ edpoi i he Gumbel domai, a he origi of he propoed eimaor. Referece Balema, A. A. ad de Haa, L Reidual life ime a grea age. The Aal of Probabiliy, : Cai, J. J., de Haa, L., ad Zhou, C. 0. Bia correcio i exreme value aiic wih idex aroud zero. Exreme, 5:DOI 0.007/ x. Chiag, A. C Eleme of Dyamic Opimizaio. Wavelad Pre. de Haa, L O regular variaio ad i applicaio o he wea covergece of ample exreme. Mahemaich Cerum Amerdam. de Haa, L. ad Ferreira, A Exreme Value Theory: A Iroducio. Spriger. Dree, H O mooh aiical ail fucioal. Scad. J. Saic., 5:87 0. Eimahl, J. H. J. ad Magu, J. R Record i Ahleic hrough Exreme-Value Theory. JASA, 03: Fal, M Some be parameer eimae for diribuio wih fiie edpoi. Saiic, 7:5 5. Fiher, R. A. ad Tippe, L. H. C. 98. Limiig form of he frequecy diribuio of he large ad malle member of a ample. Cambridge Philoophical Sociey. Mahemaical Proceedig, 4: Fraga Alve, I., de Haa, L., ad Neve, C. 03. How far ca Ma go? I Torelli, N., Peari, F., ad Bar-He, A., edior, Advace i Theoreical ad Applied Saiic, page Spriger. Seleced Paper of 45h Meeig of he Ialia Saiical Sociey SIS00 Padua, Ialy, 00. Girard, S., Guillou, A., ad Supfler, G. 0. Eimaig a edpoi wih high-order mome. TEST, :

30 REFERENCES REFERENCES Gedeo, B. V Sur la diribuio limie du erme maximum d ue érie aléaoire. Aal of Mahemaic, 44: Hall, P. 98. O eimaig he edpoi of a diribuio. The Aal of Saiic, 0: Hall, P. ad Wag, J. Z Eimaig he ed-poi of a probabiliy diribuio uig miimum-diace mehod. Beroulli, 5: Li, D. ad Peg, L Doe bia reducio wih exeral eimaor of ecod order parameer wor for edpoi? JSPI, 39: Li, Z. ad Peg, L. 0. Boorappig edpoi. Sahyā: The Idia Joural of Saiic, 74:

ESTIMATION OF THE FINITE RIGHT ENDPOINT IN THE GUMBEL DOMAIN

ESTIMATION OF THE FINITE RIGHT ENDPOINT IN THE GUMBEL DOMAIN Saiica Siica 4 4, 8-835 doi:hp://dx.doi.org/.575/.3.83 ESTIMATION OF THE FINITE RIGHT ENDPOINT IN THE GUMBEL DOMAIN Iabel Fraga Alve ad Cláudia Neve Uiveriy of Libo ad Uiveriy of Aveiro Abrac: A imple

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution:

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution: Exercie: Show ha Soluio: y ¾ y ¾¾ L c Þ y ¾¾ p c. ¾ L c Þ F y (l Fc (l I[c,(l "l¹c Þ P( y c

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2) UD 5 The Geeralized Riema' hypohei SV aya Khmelyy, Uraie Summary: The aricle pree he proo o he validiy o he geeralized Riema' hypohei o he bai o adjume ad correcio o he proo o he Riema' hypohei i he wor

More information

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations Codiioal diribuio, exchageable paricle yem, ad ochaic parial differeial equaio Da Cria, Thoma G. Kurz, Yoojug Lee 23 July 2 Abrac Sochaic parial differeial equaio whoe oluio are probabiliy-meaurevalued

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Suggested Solutions to Assignment 1 (REQUIRED)

Suggested Solutions to Assignment 1 (REQUIRED) EC 45 dvaced Macroecoomic Irucor: Sharif F ha Deparme of Ecoomic Wilfrid Laurier Uiveri Wier 28 Suggeed Soluio o igme (REQUIRED Toal Mar: 5 Par True/ Fale/ Ucerai Queio [2 mar] Explai wh he followig aeme

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Présentée pour obtenir le grade de. Docteur en Science **************TITRE************** UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR**************

More information

Comparisons Between RV, ARV and WRV

Comparisons Between RV, ARV and WRV Comparisos Bewee RV, ARV ad WRV Cao Gag,Guo Migyua School of Maageme ad Ecoomics, Tiaji Uiversiy, Tiaji,30007 Absrac: Realized Volailiy (RV) have bee widely used sice i was pu forward by Aderso ad Bollerslev

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

Minimal Supersolutions of Convex BSDEs

Minimal Supersolutions of Convex BSDEs Miimal Superoluio of Covex BSDE Samuel Drapeau a,1,, Gregor Heye a,2,, Michael Kupper a,3, Jauary 22, 2013 ABSTRACT We udy he oliear operaor of mappig he ermial value ξ o he correpodig miimal uperoluio

More information

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1) Fourier Series Iroducio I his secio we will sudy periodic sigals i ers o heir requecy is said o be periodic i coe Reid ha a sigal ( ) ( ) ( ) () or every, where is a uber Fro his deiiio i ollows ha ( )

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

Weak Solutions of Mean Field Game Master Equations

Weak Solutions of Mean Field Game Master Equations Weak Soluio of Mea Field Game Maer Equaio Cheche Mou ad Jiafeg Zhag March 5, 19 Abrac I hi paper we udy maer equaio ariig from mea field game problem, uder he Lary-Lio moooiciy codiio. Claical oluio of

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability: Oulie Sabiliy Sab Sabiliy of Digial Syem Ieral Sabiliy Exeral Sabiliy Example Roo Locu v ime Repoe Fir Orer Seco Orer Sabiliy e Jury e Rouh Crierio Example Sabiliy A very impora propery of a yamic yem

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science MAY 2006 EXAMINATIONS ECO220Y1Y PART 1 OF 2. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science MAY 2006 EXAMINATIONS ECO220Y1Y PART 1 OF 2. Duration - 3 hours UNIVERSITY OF TORONTO Faculy of Ar ad Sciece MAY 6 EXAMINATIONS ECOYY PART OF Duraio - hour Eamiaio Aid: Calculaor, wo piece of paper wih ay yped or hadwrie oe (ma. ize: 8.5 ; boh ide of paper ca be ued)

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Functional Weak Laws for the Weighted Mean Losses or Gains and Applications

Functional Weak Laws for the Weighted Mean Losses or Gains and Applications Applied Mahemaic 5 6 847-863 Publihed Olie May 5 i SciRe hp://wwwcirporg/joural/am hp://dxdoiorg/436/am56579 Fucioal Wea Law for he Weighed Mea Loe or Gai ad Applicaio Gae Samb Lo Serige Touba Sall 3 Pape

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

TESTING FOR STRUCTURAL STABILITY IN THE WHOLE SAMPLE

TESTING FOR STRUCTURAL STABILITY IN THE WHOLE SAMPLE TESTING FOR STRUCTURAL STABILITY IN THE WHOLE SAMPLE JAVIER HIDALGO AND MYUNG HWAN SEO Abrac. Teig for rucural abiliy ha araced a lo of aeio i heoreical ad applied reearch. Ofeime he e i baed o he upremum

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA Proceedigs of he 202 Ieraioal Coferece o Idusrial Egieerig ad Operaios Maageme Isabul, urey, July 3 6, 202 A eeralized Cos Malmquis Ide o he Produciviies of Uis wih Negaive Daa i DEA Shabam Razavya Deparme

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

Heat Equation Derivative Formulas for Vector Bundles

Heat Equation Derivative Formulas for Vector Bundles Joural of Fucioal Aalyi 183, 4218 (21) doi:1.16jfa.21.3746, available olie a hp:www.idealibrary.com o Hea Equaio Derivaive Formula for Vecor Budle Bruce K. Driver 1 Deparme of Mahemaic-112, Uiveriy of

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

Applying the Moment Generating Functions to the Study of Probability Distributions

Applying the Moment Generating Functions to the Study of Probability Distributions 3 Iformaica Ecoomică, r (4)/007 Applyi he Mome Geerai Fucios o he Sudy of Probabiliy Disribuios Silvia SPĂTARU Academy of Ecoomic Sudies, Buchares I his paper, we describe a ool o aid i provi heorems abou

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information