Phy 213: General Physics III 6/14/2007 Chapter 30 Worksheet 1

Size: px
Start display at page:

Download "Phy 213: General Physics III 6/14/2007 Chapter 30 Worksheet 1"

Transcription

1 Phy 13: General Phyic III 6/14/007 Chapter 30 Workheet 1 Faraday Law of Electromagnetic Induction and Lenz Law 1. For the following cenario, determine whether the magnetic flux change or tay the ame. If the flux change: indicate whether it i increaing or decreaing (and in which direction). Explain your anwer. a. he magnet i held tationary to the olenoid. = 0 b. he magnet i moving toward the olenoid. increaing c. he magnet i moving away from the olenoid. decreaing. Find the direction of the induced current for the olenoid in the figure below, when the magnet i. a. tationary to the olenoid. i=0 b. moving toward the olenoid. counter-clockwie c. moving away from the olenoid. clockwie

2 Phy 13: General Phyic III 6/14/007 Chapter 30 Workheet 3. circular loop (radiu of 10 cm or 0.10 m) i placed in a uniform magnetic field of magnitude, =.0, where the face of the loop i perpendicular to the direction of the magnetic field. =.0 (out of page) a. Determine the magnetic flux through the loop. Φ = d = co φ = 0.68 m b. he loop i then rotated 90 o in 3.0 econd. What i the magnetic flux through the loop at the end of the 3.0 econd? Φ = d = co φ = 0 m c. What i the induced emf in the loop during the rotation? 0.68 m 3 m =- = = ( or V) 4. peron move a -m rod at a contant velocity of 3 m/ in a magnetic field, =.0. he rod i perpendicular to the direction of the field. a. What i the direction of induced current in the rod? in the +z direction b. Determine the induced emf in the rod. W F L qvl = = = =vl= 1 V q q q c. he reitance in the rod (and connecting wire) i -Ω. What i the current in the rod? 1V i = = = 6 R Ω d. Determine the magnitude and direction of the magnetic force acting on the rod. F =il =- 4 ˆi e. Determine the force the peron exert on the rod to keep it in motion. F =F +F =0 F = -F = 4 ˆi net hand hand i v = 3 m/ z y x

3 Phy 13: General Phyic III 6/14/007 Chapter 30 Workheet 3 5. Conider a 1-m conducting rod attached at each end by conducting rail. he rail are connected at the top and the total loop ha a reitance of 5-Ω. (ee figure below). he rod fall to the ground at a contant velocity, v. he apparatu i inide a contant magnetic field, = 3.0 (directed out of the page). he ma of the rod i 0.5kg. = 3.0 (out of page) R = 5 Ω 1 m v = contant a) What i the magnetic force on the falling rod, due to the magnetic field? F = F - mg = mg ˆj = 4.9 ˆj net b) What i the induced current in the rod? φ F 4.9 L (1m)(3) F = ilin = 4.9 i = = = 1.63 c) What i the induced electromotive force,? = ir = (1.63)(5 Ω ) = 8.15 V d) What i the equation for the rate of change of magnetic flux for thi problem? d d(lh) dh = = = L = Lv = - e) How fat i the rod falling? ˆ 8.15 V ˆ m v = - j = - j = -.7 ˆ j L 3 m f) When the rail fall for 1 ec, verify that energy i conerved. P mg = P mgv = i i v = =.71 mg m, check with (e)

4 Phy 13: General Phyic III 6/14/007 Chapter 30 Workheet 4 Generator 6. water powered generator, hown below, to convert mechanical energy into electrical energy. rotating wheel receive falling water forcing a wire loop (=500), located within a contant magnetic field =0.01 (a hown), to rotate counter-clockwie at a rate of 150 rpm. he length of the egment normal to the field (ide a) are 0.0 m and the length of the egment parallel to the field (ide b) i 0.15 m. a. What i the area of the region of the coil within the magnetic field? = ab = (0.15m)(.0m) = m b. Determine the general equation for the magnetic flux through the coil in term of area,, and angular velocity ω. Φ = d= co ω t c. What i the angular velocity ω of the rotating coil? 1 min π rad = 150 min = rot rot ω ( ) d. Calculate the induced electromotive force around the loop. ( ω ) =- =- co t 0 avg 0 avg d rad ω inωt 4 = = - coωt = - = -1.5 V a b he intantaneou emf i: (t)= ωin( ωt+ φ ) e. What direction doe the induced current flow around the coil? Explain. he current will flow clockwie (looking down on the armature), in accordance with RHR.

5 Phy 13: General Phyic III 6/14/007 Chapter 30 Workheet 5 elf Inductance: 7. olenoid, r=0.01 m, l=0.03 m (length) and =100, i in erie with a 10 Ω reitor, both of which are in parallel with a 10 Ω reitor, all of thee are in erie with a 5 V power upply. a. Determine the inductance, L, of the olenoid. µ -6 L = o = 3.96x10 H b. When the power upply i initially connected. What i the current acro the olenoid? i o-olenoid = 0 c. What i the initial current drawn from the power upply? i = o V R = 0.50 d. fter 1 minute, what i the current through the olenoid? 60 -Rt 5V - L -7 olenoid max ( ) ( ) 3.96x10 i = i 1-e = 1-e = Ω e. What i the total current drawn from the power upply? i tot = 1.00 f. How much energy i tored in the inductor after 1 minute? U = ½Li = 4.95x10-7 J V 10 Ω L 10 Ω

Magnetism Lecture Series. Electromagnetic Induction

Magnetism Lecture Series. Electromagnetic Induction Magnetim Lecture Serie Electromagnetic Induction Applied Science Education Reearch Group (ASERG) aculty of Applied Science Unieriti Teknologi MARA email: jjnita@alam.uitm.edu.my; drjjlanita@hotmail.com

More information

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 11B - HW # Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed [1.] Problem 7. from Griffith A capacitor capacitance, C i charged to potential

More information

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

More information

Chapter 9 FARADAY'S LAW Recommended Problems:

Chapter 9 FARADAY'S LAW Recommended Problems: Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want

More information

Motional EMF. Toward Faraday's Law. Phys 122 Lecture 21

Motional EMF. Toward Faraday's Law. Phys 122 Lecture 21 Motional EMF Toward Faraday's Law Phys 122 Lecture 21 Move a conductor in a magnetic field Conducting rail 1. ar moves 2. EMF produced 3. Current flows 4. ulb glows The ig Idea is the induced emf When

More information

Lenz s Law (Section 22.5)

Lenz s Law (Section 22.5) Lenz s Law (Section 22.5) : Thursday, 25 of February 7:00 9:00 pm Rooms: Last Name Room (Armes) Seats A - F 201 122 G - R 200 221 S - Z 205 128 2016-02-21 Phys 1030 General Physics II (Gericke) 1 1) Charging

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS_N_A_Network Theory_098 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 0-4546 CLASS TEST 08-9 NSTRUMENTATON ENGNEERNG Subject

More information

CHAPTER 5: ELECTROMAGNETIC INDUCTION

CHAPTER 5: ELECTROMAGNETIC INDUCTION CHAPTER 5: ELECTROMAGNETIC INDUCTION PSPM II 2005/2006 NO. 5 5. An AC generator consists a coil of 30 turns with cross sectional area 0.05 m 2 and resistance 100 Ω. The coil rotates in a magnetic field

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

More information

FARADAY S AND LENZ LAW B O O K P G

FARADAY S AND LENZ LAW B O O K P G FARADAY S AND LENZ LAW B O O K P G. 4 3 6-438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been

More information

Application Of Faraday s Law

Application Of Faraday s Law Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions

More information

PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

More information

Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-32) Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

More information

PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems. Induction PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with

More information

PHYS Fields and Waves

PHYS Fields and Waves PHYS 2421 - Fields and Waves Idea: We have seen: currents can produce fields We will now see: fields can produce currents Facts: Current is produced in closed loops when the magnetic flux changes Notice:

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

Course Updates. 2) Assignment #9 posted by Friday (due Mar 29)

Course Updates.  2) Assignment #9 posted by Friday (due Mar 29) Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html Reminders: 1) Assignment #8 due now 2) Assignment #9 posted by Friday (due Mar 29) 3) Chapter 29 this week (start Inductance)

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

Question 6.1: Predict the direction of induced current in the situations described by the following Figs. 6.18(a) to (f ). (a) (b) (c) (d) (e) (f) The direction of the induced current in a closed loop

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

PHYS 1442 Section 004 Lecture #14

PHYS 1442 Section 004 Lecture #14 PHYS 144 Section 004 Lecture #14 Wednesday March 5, 014 Dr. Chapter 1 Induced emf Faraday s Law Lenz Law Generator 3/5/014 1 Announcements After class pickup test if you didn t Spring break Mar 10-14 HW7

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS_B_EC_Network Theory_0098 CLASS TEST (GATE) Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONCS

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

Electromagnetic Induction and Faraday s Law

Electromagnetic Induction and Faraday s Law Electromagnetic Induction and Faraday s Law Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: He found no evidence

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Faraday s Law of Electromagnetic Induction

Faraday s Law of Electromagnetic Induction Faraday s Law of Electromagnetic Induction 2.1 Represent and reason The rectangular loop with a resistor is pulled at constant velocity through a uniform external magnetic field that points into the paper

More information

Faraday s Law; Inductance

Faraday s Law; Inductance This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, self-inductance, inductance, RL circuits, and energy in a magnetic field, with some

More information

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it - Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common

More information

8.022 (E&M) Lecture 15

8.022 (E&M) Lecture 15 8.0 (E&M) Lecture 5 Topics: More on Electromagnetic Inductance Mutual and self inductance Practical applications Last time Electromagnetic inductance Faraday s (and Lentz s) law: Φ Integral form: emf...

More information

Electromagnetic Induction

Electromagnetic Induction Faraday s Discovery Faraday found that there is a current in a coil of wire if and only if the magnetic field passing through the coil is changing. This is an informal statement of Faraday s law. Electromagnetic

More information

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other. Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : Ch1_EE_C_Power Electronic_6818 Delhi Noida Bhopal Hyderabad Jaipur ucknow Indore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 11-451461 CASS ES 18-19 EECRICA ENGINEERING Subject

More information

General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II. Electromagnetic Induction and Electromagnetic Waves General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

More information

Magnetism. and its applications

Magnetism. and its applications Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3 - Magnetic force, either attractive or repelling varies

More information

Pulsed Magnet Crimping

Pulsed Magnet Crimping Puled Magnet Crimping Fred Niell 4/5/00 1 Magnetic Crimping Magnetoforming i a metal fabrication technique that ha been in ue for everal decade. A large capacitor bank i ued to tore energy that i ued to

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are posted at http://www.physics.ohio-state.edu/~humanic/ Information for Physics 1201 Midterm I Wednesday, February 20 1) Format: 10 multiple choice questions (each worth 5 points) and

More information

Chapter 23: Magnetic Flux and Faraday s Law of Induction

Chapter 23: Magnetic Flux and Faraday s Law of Induction Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the

More information

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical INDUCTION MOTO 1 CONSTUCTION Baic part of an AC motor : rotor, tator, encloure The tator and the rotor are electrical circuit that perform a electromagnet. CONSTUCTION (tator) The tator - tationary part

More information

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1 Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and

More information

A) 0 V B) 0.4 V C) 2.5 V D) 10 V E) 40 V A) 0. B) vbl 2. C) vbl 2. D) vbl. E) vbl

A) 0 V B) 0.4 V C) 2.5 V D) 10 V E) 40 V A) 0. B) vbl 2. C) vbl 2. D) vbl. E) vbl 1. A straight rod of length 3.0 m is held perpendicular to a magnetic field of 2.0 T. It is rotated about its midpoint at a rate of 5.0 revolutions per second, remaining perpendicular to the field the

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Magnetic flux What is a magnetic flux? This is very similar to the concept of an electric flux through an area

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15)

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE EE6302-ELECTROMAGNETIC THEORY UNIT 4 PART A 1. Define mutual inductance and self inductance. (A/M-15) Self inductance is the ration between the induced

More information

Our goal for today. 1. To go over the pictorial approach to Lenz s law.

Our goal for today. 1. To go over the pictorial approach to Lenz s law. Our goal for today 1. To go over the pictorial approach to Lenz s law. Lenz s Law Exposing a coil or loop to a changing magnetic flux will generate a current if the circuit is complete. The direction of

More information

Tactics: Evaluating line integrals

Tactics: Evaluating line integrals Tactics: Evaluating line integrals Ampère s law Whenever total current I through passes through an area bounded by a closed curve, the line integral of the magnetic field around the curve is given by Ampère

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question. ame: Class: Date: ID: A AP Physics Spring 2012 Q6 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (2 points) A potential difference of 115 V across

More information

Magnets and Electromagnetism

Magnets and Electromagnetism Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire

More information

Last time. Gauss' Law: Examples (Ampere's Law)

Last time. Gauss' Law: Examples (Ampere's Law) Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iot-savart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field

More information

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION 1 P a g e Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called

More information

Physics 115. Induction Induced currents. General Physics II. Session 30

Physics 115. Induction Induced currents. General Physics II. Session 30 Physics 115 General Physics II Session 30 Induction Induced currents R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 1 Lecture Schedule Today 5/23/14 2 Physics

More information

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them. AP Physics - Problem Drill 17: Electromagnetism Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. A house has a wall that has an area of 28 m

More information

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,

More information

MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics. Problem Set 8 Solution

MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics. Problem Set 8 Solution MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics 8.0 with Kai Spring 003 Problem : 30- Problem Set 8 Solution Determine the magnetic field (in terms of I, a and b) at the origin due to the current loop

More information

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external E-field» E-field generated by Σq i Magnetostatics» motion of q and i in external -field» -field generated by I Electrodynamics»

More information

13. Faraday s Law. S. G. Rajeev. March 3, 2009

13. Faraday s Law. S. G. Rajeev. March 3, 2009 13. Faraday s Law S. G. Rajeev March 3, 009 1 Electromotive Force If a coil moves (or rotates) near a magnet, a current in induced on it, even if it is not connected to a battery. That means an electric

More information

III.Sources of Magnetic Fields - Ampere s Law - solenoids

III.Sources of Magnetic Fields - Ampere s Law - solenoids Magnetism I. Magnetic Field - units, poles - effect on charge II. Magnetic Force on Current - parallel currents, motors III.Sources of Magnetic Fields - Ampere s Law - solenoids IV.Magnetic Induction -

More information

ELECTROMAGNETIC WAVES AND PHOTONS

ELECTROMAGNETIC WAVES AND PHOTONS CHAPTER ELECTROMAGNETIC WAVES AND PHOTONS Problem.1 Find the magnitude and direction of the induced electric field of Example.1 at r = 5.00 cm if the magnetic field change at a contant rate from 0.500

More information

Induced Emf. Book pg

Induced Emf. Book pg Induced Emf Book pg 428-432 Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: History of Induction 1819 Oersted:

More information

Lecture 29: MON 03 NOV

Lecture 29: MON 03 NOV Physics 2113 Jonathan Dowling Lecture 29: MON 03 NOV Ch30.1 4 Induction and Inductance I Fender Stratocaster Solenoid Pickup Magnetic Circuit Breaker As the normal operating or "rated" current flows through

More information

PHYS 1444 Section 003 Lecture #18

PHYS 1444 Section 003 Lecture #18 PHYS 1444 Section 003 Lecture #18 Wednesday, Nov. 2, 2005 Magnetic Materials Ferromagnetism Magnetic Fields in Magnetic Materials; Hysteresis Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced

More information

Electromagnetism 03/12/2010. Electromagnetism Canada s Triumph Accelerator. Putting it All Together. Hydrogen Minus. Initial Acceleration

Electromagnetism 03/12/2010. Electromagnetism Canada s Triumph Accelerator. Putting it All Together. Hydrogen Minus. Initial Acceleration Electromagnetism Canada s Triumph Accelerator Putting it All Together Hydrogen Minus Electromagnetism Initial Acceleration Electrostatic Circular Motion Magnetic Steering iltering Magnetic lux Magnetic

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 34-35 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators

More information

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 )

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 ) 016 PhyicBowl Solution # An # An # An # An # An 1 C 11 C 1 B 31 E 41 D A 1 B E 3 D 4 B 3 D 13 A 3 C 33 B 43 C 4 D 14 E 4 B 34 C 44 E 5 B 15 B 5 A 35 A 45 D 6 D 16 C 6 C 36 B 46 A 7 E 17 A 7 D 37 E 47 C

More information

Physics 106, Section 1

Physics 106, Section 1 Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays

More information

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM)

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) name Write your name also in the back of the last page. blazer id [a] PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) You may not open the textbook nor notebook. A letter size information may be used. A

More information

AP Physics 2 Electromagnetic Induction Multiple Choice

AP Physics 2 Electromagnetic Induction Multiple Choice Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the

More information

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1 PART III Problem Problem1 A computer dik tart rotating from ret at contant angular acceleration. If it take 0.750 to complete it econd revolution: a) How long doe it take to complete the firt complete

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 15 Electricity and Magnetism Magnetism Applications of magnetic forces Induced voltages and induction Magnetic flux and induced emf Faraday s law http://www.physics.wayne.edu/~apetrov/phy2140/

More information

CHAPTER 5 ELECTROMAGNETIC INDUCTION

CHAPTER 5 ELECTROMAGNETIC INDUCTION CHAPTER 5 ELECTROMAGNETIC INDUCTION 1 Quick Summary on Previous Concepts Electrostatics Magnetostatics Electromagnetic Induction 2 Cases of Changing Magnetic Field Changing Field Strength in a Loop A Loop

More information

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set University of the Philippines College of Science PHYSICS 72 Summer 2012-2013 Second Long Problem Set INSTRUCTIONS: Choose the best answer and shade the corresponding circle on your answer sheet. To change

More information

Physics 182. Assignment 4

Physics 182. Assignment 4 Physics 182 Assignment 4 1. A dipole (electric or magnetic) in a non-uniform field will in general experience a net force. The electric case was the subject of a problem on the midterm exam; here we examine

More information

Physics 180B Fall 2008 Test Points

Physics 180B Fall 2008 Test Points Physics 180B Fall 2008 Test 2-120 Points Name You can cross off questions or problems worth up to15 points. Circle your answers or pu them in the box provided. 1) The diagram represents a one loop coil

More information

Induction and Inductance

Induction and Inductance Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only

More information

Chapter 21 Lecture Notes

Chapter 21 Lecture Notes Chapter 21 Lecture Notes Physics 2424 - Strauss Formulas: Φ = BA cosφ E = -N Φ/ t Faraday s Law E = Bvl E = NABω sinωt M = (N 2 Φ 2 )/I 1 E 2 = -M I 1 / t L = NΦ/I E = -L I/ t L = µ 0 n 2 A l Energy =

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Physics 102, Learning Guide 4, Spring Learning Guide 4

Physics 102, Learning Guide 4, Spring Learning Guide 4 Physics 102, Learning Guide 4, Spring 2002 1 Learning Guide 4 z B=0.2 T y a R=1 Ω 1. Magnetic Flux x b A coil of wire with resistance R = 1Ω and sides of length a =0.2m and b =0.5m lies in a plane perpendicular

More information

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case. Electromagnetism Magnetic Force on a Wire Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information

F A C U L T Y O F E D U C A T I O N. Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group

F A C U L T Y O F E D U C A T I O N. Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

Electromagnetism IB 12

Electromagnetism IB 12 Electromagnetism Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field (N to S) What is the

More information

Transweb Educational Services Pvt. Ltd Tel:

Transweb Educational Services Pvt. Ltd     Tel: . The equivalent capacitance between and in the circuit given below is : 6F F 5F 5F 4F ns. () () 3.6F ().4F (3) 4.9F (4) 5.4F 6F 5F Simplified circuit 6F F D D E E D E F 5F E F E E 4F F 4F 5F F eq 5F 5

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information