Two-Input Fuzzy TPE Systems

Size: px
Start display at page:

Download "Two-Input Fuzzy TPE Systems"

Transcription

1 Two-Input Fuzzy TPE Sytem Joo P. Cvlho, Joe Tome, Dnel Chng-Yn IST - TU Lon, INESC-ID R. lve Redol, 9, Lo, PORTUGL {oo.vlho, oe.tome}@ne-d.pt dnlyn@gml.om tt. Sngle nput Fuzzy TPE ytem, popoed y Sudkmp nd Hmmel, llow moe effent omputtonl nfeene of ngle nput fuzzy ule e. Th ppe how tht t pole to genelze ngle nput Fuzzy TPE ytem to 2-nput ytem, theefoe extendng t nge of pole pplton. The ppe peent the detl nd poof of the extenon vldty, nd how enhmk eult ompng the 2-nput Fuzzy TPE wth ll nfeene ytem. Keywod: 2-nput fuzzy TPE, fuzzy nfeene omputtonl effeny. Intoduton Sudkmp nd Hmmell Fuzzy TPE ytem [] povde wy to elete the fuzzy nfeene poedue n -nput fuzzy ytem. It lo mke the nfeene poe ndependent fom the nume of nvolved lngut tem, ne nted of equentl pplton of ll ule n ule e, t llow the det e to the elevnt ule ung n ndexton poe nd nfe the ule eult ung pevouly omputed ontnt. Th ppoh pole due to etton mpoed on the nvolved lngut tem: ll memehp funton mut e tngul, omplementy, nd evenly ped n the unvee of doue (UoD). Howeve, Sudkmp ppoh w developed fo ngle-nput ytem, nd ould not e detly ppled n ytem wth moe nput. Theefoe t ue w lmted to few ptul polem. Though the ye TPE ytem hve een ued [2][3], ut when moe thn one nput deemed neey, ltentve nfeene method tht do not mplement pope fuzzy nfeene mehnm, lke FM, e ued nted. y pope fuzzy nfeene mehnm one men mehnm tht lthough omputtonlly fte, do not podue the ext me eult of ll fuzzy ule e nfeene poee. Th ppe how tht t pole to genelze ngle nput Fuzzy TPE ytem to 2-nput ytem extendng nge of pole Fuzzy TPE ytem pplton. Th wok w uppoted n pt y the FCT - Potuguee Foundton fo Sene nd Tehnology unde poet POSI/SRI/4788/2002

2 2 Fuzzy TPE Sytem Sudkmp nd Hmmell model ed on n even tngul ptton of ngle vle fuzzy unvee of doue (UoD), hene the nme TPE Tngul Ptton Evenly. The model e t effeny on the ymmety of the tght lne ued to defne the tngul memehp funton. Th eton ummze Sudkmp nd Hmmel fuzzy TPE ytem. In th model, the memehp funton (mf) of lngut tem n e defned y (), whee µ ( x) the memehp of p nput x n, nd µ ( ) =. ( x ) ( ) f x µ ( x) = ( x ) ( ) f x 0 othewe On n-lngut tem fuzzy vle, ll mf e equl wth the exepton of the lowe nd uppe lngut tem. The mf of thee lngut tem e epetvely tunted to the left nd to the ght of the pont,.e., µ ( ) = nd µ () n =. n ddtonl ondton tht ll mf e omplement n ll UoD,.e.: n µ ( x) =, x UoD. = Equton (2) enue the ompletene of the ule e. Fg. how even fuzzy lngut tem TPE et. µ () (2) Fg. Exmple of mf tht omply wth Fuzzy TPE ytem etton Wthn fuzzy TPE ytem, one n dvde the UoD nto et of [, ] ntevl whee µ ( x) = µ ( x), µ ( ) = nd µ ( ) = 0 fo. Theefoe, the memehp degee wthn the ntevl n e defned y the two followng tght lne equton:

3 x x = µ ( ). (3) µ x ( x) =. Wthn ngle-nput/ngle-output TPE ule ed fuzzy ytem, the fuzzy ule tht nvolve nteedent nd n e expeed : f X then Z C, f X then Z C whee C nd C e lo TPE lngut tem. Defnng nd the entl pont of C ndc, nd y ung weghted vegng defuzzfton, the eult z pefed y p nput x gven y: µ ( x) µ ( x) z =. µ ( x) µ ( x) (4) (5) y eplng (3) nd (4) n (5) nd mplfyng one otn: x( ) z = = x. (6) Equton (6) how tht only two ontnt e needed to ompute z gven ny p nput x [, ]. Thee ontnt, ( ) ( ) nd ( ) ( ), e detemned y the fuzzy ule e nd the mdpont of the tngul memehp funton, nd theefoe ndependent of x. Thu fuzzy TPE ytem n e epeented y tle ontnng the ontnt oted wth eh nput ntevl. Sne ll ntevl e equl n ze, one n detly dde the ontnt oted wth gven nput x y ung the funton 2x 2 tun( ). n On fuzzy TPE ytem one n kp the nfeene of ll ule n the ule e. Gven nput x, ll tht needed to get the ppopte ontnt fom tle nd pply (6) to fnd defuzzfed output z. Theefoe, nfeene tme on TPE fuzzy ule e ndependent of the nume of ule nd lngut tem ze, nd TPE fuzzy nfeene ptully well dpted to del wth lge fuzzy ule e. (7)

4 3 Two-nput Fuzzy TPE Sytem ngle nput vle fuzzy ule ed ytem h n ovouly lmted nteet. Multple nput Fuzzy TPE ytem e neey f one wnt to ue thee mehnm n gnfnt nge of pplton. lthough t theoetlly pole to extend the model to hghe nume of nput, n th ppe we lmt the extenon to 2-nput ytem. One mut note tht n ule ed fuzzy ytem t ometme pole to ognze n-nput ule e nto evel onneted 2-nput ule e. Th mnpulton ptul to the ytem eng modeled nd ele on the ntedependene of t nput vle. Theefoe, let u fou on the 2-nput e. ny 2-nput fuzzy ytem ule e wth n-lngut tem vle n e epeented 2 dmenonl tle. Tle, epeent n exept of gene 2- nput fuzzy ule e, whee ll, nd C x e fuzzy lngut tem defned y fuzzy memehp funton. On uh ytem, ny omnton of nput vlue tvte t mot fou dffeent ule of the ulee. Tle. n exept of 2-nput Fuzzy Rule e. Y X C C C t C u f X nd Y then Z C f X nd Y f X then Z C nd Y then Z C t f X nd Y then Z C u Sne TPE memehp funton e, y defnton, tngul nd ymmet, Tle n e epled y Nume Infeene (NI) tle, whh n ltentve epeentton whee eh lngut tem epled y t entl pont x-oodnte. Theefoe, f one ume the weghted vegng defuzzfton method, one n dedue the followng output equton fo the ule e peented n Tle, whee,, t nd u e the entl pont x-oodnte of the onequent mf: z = ( µ ( x), µ ( y)) ( µ ( x), µ ( y)) ( µ ( x), µ ( y)) ( µ ( x), µ ( y)) mn mn mn mn t u ( µ ( x), µ ( y)) ( µ ( x), µ ( y)) ( µ ( x), µ ( y)) ( µ ( x), µ ( y)) mn mn mn mn (8) In ode to fnd the 2-dmenonl equvlent of (6), onde two fuzzy vle nd defned epetvely y n nd m TPE mf. Fg.2 how ptol epeentton of nd, whee x nd y e the p nput vlue.

5 The 2-dmenonl ntevl we onde to fnd the 2-dmenonl equton equvlent of (6) e epeented y [, ] nd [, ]. The hdowed egon n Fg.2 how 2-dmenonl ntevl. 2-dmenonl ntevl ndexton ed on (7), nd eult on (9): n, f x= ntevl = ( x )( n) tun, f x 2 m, f y = ntevl = ( y )( m) tun, f y 2 (9) =n x 2 2 3=m y Fg.2 Two-dmenonl epeentton of TPE lngut tem. The hdowed egon epeent 2-dmenonl ntevl One n dvde eh 2-dmenonl ntevl n fou dffeent e, depted n Fg.3. Eh of thee e htezed y ontnt elton etween the memehp degee of x nd y n the petnng lngut tem. Fo exmple, n e, ll the followng equton hold tue: mn( µ ( x), µ ( y)) = µ ( x), mn mn ( µ ( x), µ ( y)) = µ ( x), ( µ ( x), µ ( y)) = µ ( x), ( µ ( x), µ ( y)) = µ ( x) mn.

6 x 4 3 Fg. 3 The 4 dffeent e n eh ntevl ed on the htet of eh of the 4 e, t pole to dvde the defuzzfton equton (8) nto 4 dffeent defuzzfton equton, whee the mn() funton not neey. The 4 e n e dvded y two tght lne defned y the followng equton: ( x ) ( n ) ntevl ntevl y = 2. m m n y (0) 2 ( n )( x ) ntevl ntevl y = 2. ( m) m n () Equton (0) nd () n e ued to ete Tle2, whh dvde the Unvee of Doue n ntevl, nd eh ntevl n the 4 dffeent e. Tle 2. e defnton fo eh ntevl 2 ( n )( x ) ntevl ntevl y 2 ( m) m n ( n )( x ) ntevl ntevl ( n )( x ) ntevl ntevl y < 2 y 2 ( m) m n ( m) m n e e 3 2 ( n )( x ) ntevl ntevl y < 2 ( m) m n e 2 e 4

7 Sne we e delng wth TPE ytem, (3) nd (4) e tll vld fo eh fuzzy vle. Theefoe, µ ( x), µ ( x), µ ( y), µ ( y) n e defned y: x y µ x = µ y = ( ) ( ) x µ ( x) = µ ( y) = y. (2) Condeng the 4 dffeent e defned n Fg.3 fo eh ntevl, one n eple (2) n (8) nd mnpulte the eultng expeon n ode otn the followng defuzzfton equton: e : z y ( ) ( ) ( ) x y t u t u y x x t u y y x x y x = = (3) e 2: z 2 3 ( ) ( u) ( ) y x u t x y t x y t u x y y x 2 2 y x.0 = = e 3: z 4 ( ) ( t) ( ) y x t u u y x y x t u y x y x 2 2 = = e 4: z y y x.0 ( ) t u ( ) ( ) x u t x y y x t u x y x y 2 2 y.0 = = Note tht ll 4 equton n e expeed unde the fom z = whee ll H e ontnt. yh H xh H yh H xh H x, (4) (5) (6) (7)

8 n the ngle nput e, the H ontnt e detemned y the fuzzy ule e nd y the entl pont of eh lngut tem (,, l ), nd e ndependent of nput p vlue x nd y. Theefoe, they n e omputed only one, po to the tul ule e nfeene poe. ed on (9) nd Tle 2, one n detly ndex n nfeene mtx wth dmenon [n-] [m-] [4] [8], whee n eh poton of the nfeene mtx one wll hve the pevouly defned H ontnt. Fom th nfeene mtx, one n detly ompute the defuzzfed output z. y ung th nfeene poe, one vod the equentl omputton of eh ngle ule whle multneouly mplfyng the defuzzfton poe. Theefoe, long ll H e pevouly omputed, nd wth pope ndexton of the nput vlue, t pole to otn vey ft fuzzy nfeene poe tht doe not gow exponentlly wth the nee of nume of lngut tem n eh nvolved fuzzy vle. 4 Reult In ode to tet the omputtonl effeny of 2-Input Fuzzy TPE Sytem, ompon w mde wth tdtonl fuzzy ule ed nfeene method. Sne the Fuzzy TPE method omputtonl nfeene tme doe not gow exponentlly wth the nee of nume of lngut tem n eh nvolved fuzzy vle (onty to the tdtonl method), ette eult wee to e expeted when lge nume of memehp funton wee ued. Theefoe tet wee mde nvolvng fuzzy vle wth 3 nd 7 lngut tem, eultng n omplete ule e wth 9 nd 49 ule epetvely. Tle 3. nd Tle 4. how the ued ule e. Note tht nfeene omputtonl tme ndependent of tul ule ontent. Tle 3. Fuzzy ule e fo 3 lngut tem nput vle Y X L M H L L M H M M H M H H M L Fo the tdtonl fuzzy nfeene method omputtonl mplementton, one opted to ue n ndvdul y to epeent eh lngut tem memehp funton. Th method omputtonlly fte thn ung tght lne equton, ne nfeng µ ( x) done v mple y ndexton.

9 Tle 4. Fuzzy ule e fo 7 lngut tem nput vle X VVL VL L M H VH VVH Y VVL VVL VL L M H VH VVH VL VL L M H VH VVH VH L L M H VH VVH VH H M M H VH VVH VH H M H H VH VVH VH H M L VH VH VVH VH H M L VL VVH VVH VH H M L VL VVL Ung th method, the C ode to ompute fuzzy ule lke If x nd y Then Z C, n e eumed : mu=min((,x),(,y)); //If x nd y f (mu!=0){ fo (n=0; n<nume_of_mf; n) //Then z C foutput[n] = mu*c[n]; } whee funton () mply: flot (nt LT, nt np){ //LT-Lngut Tem,np-nput etun mf[lt][np];} //mf-y of ll LT The ove mentoned ode epeted fo eh ule n the ule e. eult one otn n y epeentng fuzzy vle z. The defuzzfton method ued weghted vegng, whh lo mple to mplement: fo (n=0;n<mfze;n){ m=foutput[n]*n; e=foutput[n]; } z=m/e; lthough the defuzzfton ode mple, t not omputtonlly effent ne the nume of ule gow exponentlly wth the nee n the nume of lngut tem, nd the ode ue evel yle to un though the ule e. It pole to vtly mpove defuzzfton omputton tme, ut not wthout mpong etton to mf hpe (whh wht fuzzy TPE doe). The Fuzzy TPE method ee the tve ule though det ndexton, nd theefoe vod the neety to tet eh ngle ule. Due to the etton n the hpe of the memehp funton, t lo ue muh moe effent defuzzfton method. Tle 5. how the vege nfeene omputng tme fo the ule e n Tle 3. nd Tle 4.

10 Tle 5. vege ule e nfeene omputng tme ompon (n) Method #LT/#ule Cll Infeene Fuzzy TPE 3 / / The vege nfeene tme w otned fte omputng nput on.86ghz PentumM poeo. One n ee tht Fuzzy-TPE nfeene oughly 8 tme fte thn ll fuzzy nfeene method, whh n e ondeed ondele mpovement. Howeve, one mut not gnoe tht the nvolved omputng tme e o mll tht n often e ondeed neglgle fto n mny pplton. Theefoe, due to the etton mpoed to the lngut tem, the ue of 2-nput Fuzzy-TPE ytem n only e utfed n pplton whee lge volume of nfomton mut e poeed nd whee tme mo ue, lke eltme ontol ytem o ompute he. 5 Conluon nd Futue Development It w hown tht two-nput Fuzzy TPE nfeene ytem n e mplemented nd tht they povde gnfnt mpovement ove ll fuzzy nfeene ytem n wht onen omputng pefomne. Howeve, th mpovement n only e ueful n ytem whee tme nd pefomne e tl nd whee the etton mpoed to the lngut tem memehp funton n e epted. N-nput Fuzzy TPE ytem e theoetlly pole. Howeve, the nume of nput nee, the omplexty of the defuzzfton equton nd the dmenonlty of the omputng mtxe nee exponentlly. Theefoe, n-nput Fuzzy TPE ytem vlty ove ll nfeene ytem tll need to e poved on futue wok. Refeene. Sudkmp,T., Hmmell,R.J., Intepolton, Completon, nd Lenng Fuzzy Rule, IEEE Tnton on Sytem, Mn, nd Cyenet, Vol. 24, 2, Cmho, E., eengel, M., Ruo, F., dvned Contol of Sol Plnt, dvne n Indutl Contol, Spnge-Velg, Co,V., Sudkmp,T., Spe Dt nd Rule e Completon, Poeedng of the 2003 Confeene of the Noth men Fuzzy Infomton Soety, NFIPS 2003, Chgo, 2003

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

Lecture 9-3/8/10-14 Spatial Description and Transformation

Lecture 9-3/8/10-14 Spatial Description and Transformation Letue 9-8- tl Deton nd nfomton Homewo No. Due 9. Fme ngement onl. Do not lulte...8..7.8 Otonl et edt hot oof tht = - Homewo No. egned due 9 tud eton.-.. olve oblem:.....7.8. ee lde 6 7. e Mtlb on. f oble.

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Introduction to Robotics (Fag 3480)

Introduction to Robotics (Fag 3480) Intouton to Robot (Fg 8) Vå Robet Woo (Hw Engneeeng n pple Sene-B) Ole Jkob Elle PhD (Mofe fo IFI/UIO) Føtemnuen II Inttutt fo Infomtkk Unvetetet Olo Sekjonlee Teknolog Intevenjonenteet Olo Unvetetkehu

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

2. Elementary Linear Algebra Problems

2. Elementary Linear Algebra Problems . Eleety e lge Pole. BS: B e lge Suoute (Pog pge wth PCK) Su of veto opoet:. Coputto y f- poe: () () () (3) N 3 4 5 3 6 4 7 8 Full y tee Depth te tep log()n Veto updte the f- poe wth N : ) ( ) ( ) ( )

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

NXO a Spatially High Order Finite Volume Numerical Method for Compressible Flows

NXO a Spatially High Order Finite Volume Numerical Method for Compressible Flows NXO Spty Hgh Ode Fnte Voume Nume Method fo Compebe Fow Jen-Me e Gouez One CFD Deptment Fouth HO CFD Wohop Heon June 4th B of the NXO heme Eue o Nve-Stoe fo pefet g w of tte dof pe e nd pe equton Voume

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Fuzzy Retrial Queues with Priority using DSW Algorithm

Fuzzy Retrial Queues with Priority using DSW Algorithm ISSN e: Volume 6 Iue 9 Septeme 6 Intentonl Jounl of omputtonl Engneeng Reeh IJER Fuzzy Retl Queue wth Poty ung DSW lgothm S Shnmugunm Venkteh Deptment Of MthemtGovenment t ollege Slem-7 In Deptment Of

More information

6 Random Errors in Chemical Analysis

6 Random Errors in Chemical Analysis 6 Rndom Error n Cheml Anl 6A The ture of Rndom Error 6A- Rndom Error Soure? Fg. 6- Three-dmenonl plot howng olute error n Kjeldhl ntrogen determnton for four dfferent nlt. Anlt Pree Aurte 4 Tle 6- Pole

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

Exam 1. Sept. 22, 8:00-9:30 PM EE 129. Material: Chapters 1-8 Labs 1-3

Exam 1. Sept. 22, 8:00-9:30 PM EE 129. Material: Chapters 1-8 Labs 1-3 Eam ept., 8:00-9:30 PM EE 9 Mateal: Chapte -8 Lab -3 tandadzaton and Calbaton: Ttaton: ue of tandadzed oluton to detemne the concentaton of an unknown. Rele on a eacton of known tochomet, a oluton wth

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

Ch. 3: Forward and Inverse Kinematics

Ch. 3: Forward and Inverse Kinematics Ch. : Fowa an Invee Knemat Reap: The Denavt-Hatenbeg (DH) Conventon Repeentng eah nvual homogeneou tanfomaton a the pout of fou ba tanfomaton: pout of fou ba tanfomaton: x a x z z a a a Rot Tan Tan Rot

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rg Bo Dnmcs CSE169: Compute Anmton nstucto: Steve Roteneg UCSD, Wnte 2018 Coss Pouct k j Popetes of the Coss Pouct Coss Pouct c c c 0 0 0 c Coss Pouct c c c c c c 0 0 0 0 0 0 Coss Pouct 0 0 0 ˆ ˆ 0 0 0

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Anly of Vrne Degn of Experment-II MODULE VI LECTURE - 8 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr Shlbh Deprtment of Mthemt & Sttt Indn Inttute of Tehnology Knpur Tretment ontrt: Mn effet The uefulne of hvng

More information

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions Knemtc Quntte Lner Moton Phyc 101 Eyre Tme Intnt t Fundmentl Tme Interl Defned Poton x Fundmentl Dplcement Defned Aerge Velocty g Defned Aerge Accelerton g Defned Knemtc Quntte Scler: Mgntude Tme Intnt,

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

EE 410/510: Electromechanical Systems Chapter 3

EE 410/510: Electromechanical Systems Chapter 3 EE 4/5: Eleomehnl Syem hpe 3 hpe 3. Inoon o Powe Eleon Moelng n Applon of Op. Amp. Powe Amplfe Powe onvee Powe Amp n Anlog onolle Swhng onvee Boo onvee onvee Flyb n Fow onvee eonn n Swhng onvee 5// All

More information

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx Tutoril 2 Euler Lgrnge In one entene: d Fy = F d Importnt ft: ) The olution of EL eqution i lled eterml. 2) Minmum / Mimum of the "Mot Simple prolem" i lo n eterml. 3) It i eier to olve EL nd hek if we

More information

Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction.

Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exat nferene: ntroduton Exat nferene: ntroduton Usng a ayesan network to ompute probabltes s alled nferene n general nferene nvolves queres of the form: E=e E = The evdene varables = The query varables

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r Sufce e f ic lid Cue f ide R See f diu 6 Cuid c c Elliticl cectin c Cylinde, wit diu nd eigt Tu, wit cicul c ectin f diu R R Futum, ( tuncted ymid) f e eimete, t e eimete nd lnt eigt. nd e te eective e

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units! Knemtc Quntte Lner Phyc 11 Eyre Tme Intnt t Fundmentl Tme Interl t Dened Poton Fundmentl Dplcement Dened Aerge g Dened Aerge Accelerton g Dened Knemtc Quntte Scler: Mgntude Tme Intnt, Tme Interl nd Speed

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114 Lner Accelerton nd Freell Phyc 4 Eyre Denton o ccelerton Both de o equton re equl Mgntude Unt Drecton (t ector!) Accelerton Mgntude Mgntude Unt Unt Drecton Drecton 4/3/07 Module 3-Phy4-Eyre 4/3/07 Module

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

Table of Information and Equation Tables for AP Physics Exams

Table of Information and Equation Tables for AP Physics Exams le of Infomton n Equton le fo P Phy Em he ompnyng le of Infomton n Equton le wll e pove to tuent when they tke the P Phy Em. heefoe, tuent my NO ng the own ope of thee tle to the em oom, lthough they my

More information

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev themtil efletions, Issue 5, 015 INEQULITIES ON TIOS OF DII OF TNGENT ILES YN liev stt Some inequlities involving tios of dii of intenll tngent iles whih inteset the given line in fied points e studied

More information

Abstract. 1. Introduction

Abstract. 1. Introduction ISTS 006-d-9 HALO GEO COLLOCATION METHOD ANALYSIS 5th Intenatonal Smpoum on Spae Tehnolog and Sene Mguel Angel Molna-Cobo GMV S.A, Iaa Newton 11, PTM Te Canto, E-8760 Madd, SPAIN (E-mal : mamolna@gmv.e)

More information

Andersen s Algorithm. CS 701 Final Exam (Reminder) Friday, December 12, 4:00 6:00 P.M., 1289 Computer Science.

Andersen s Algorithm. CS 701 Final Exam (Reminder) Friday, December 12, 4:00 6:00 P.M., 1289 Computer Science. CS 701 Finl Exm (Reminde) Fidy, Deeme 12, 4:00 6:00 P.M., 1289 Comute Siene. Andesen s Algoithm An lgoithm to uild oints-to gh fo C ogm is esented in: Pogm Anlysis nd Seiliztion fo the C ogmming Lnguge,

More information

The Backpropagation Algorithm

The Backpropagation Algorithm The Backpopagaton Algothm Achtectue of Feedfowad Netwok Sgmodal Thehold Functon Contuctng an Obectve Functon Tanng a one-laye netwok by teepet decent Tanng a two-laye netwok by teepet decent Copyght Robet

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

SYSTEMS OF NON-LINEAR EQUATIONS. Introduction Graphical Methods Close Methods Open Methods Polynomial Roots System of Multivariable Equations

SYSTEMS OF NON-LINEAR EQUATIONS. Introduction Graphical Methods Close Methods Open Methods Polynomial Roots System of Multivariable Equations SYSTEMS OF NON-LINEAR EQUATIONS Itoduto Gaphal Method Cloe Method Ope Method Polomal Root Stem o Multvaale Equato Chapte Stem o No-Lea Equato /. Itoduto Polem volvg o-lea equato egeeg lude optmato olvg

More information

Convolutional Data Transmission System Using Real-Valued Self-Orthogonal Finite-Length Sequences

Convolutional Data Transmission System Using Real-Valued Self-Orthogonal Finite-Length Sequences Poeengs of the 5th WSEAS Intentonl Confeene on Sgnl Poessng Istnbul Tukey y 7-9 6 (pp73-78 Convolutonl Dt Tnssson Syste Usng Rel-Vlue Self-Othogonl Fnte-Length Sequenes Jong LE n Yoshho TANADA Gute Shool

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

More information

Chapter I Vector Analysis

Chapter I Vector Analysis . Chpte I Vecto nlss . Vecto lgeb j It s well-nown tht n vecto cn be wtten s Vectos obe the followng lgebc ules: scl s ) ( j v v cos ) ( e Commuttv ) ( ssoctve C C ) ( ) ( v j ) ( ) ( ) ( ) ( (v) he lw

More information

Solving the Dirac Equation: Using Fourier Transform

Solving the Dirac Equation: Using Fourier Transform McNa Schola Reeach Jounal Volume Atcle Solvng the ac quaton: Ung oue Tanfom Vncent P. Bell mby-rddle Aeonautcal Unvety, Vncent.Bell@my.eau.edu ollow th and addtonal wok at: http://common.eau.edu/na Recommended

More information

CSCI565 - Compiler Design

CSCI565 - Compiler Design CSCI565 - Compiler Deign Spring 6 Due Dte: Fe. 5, 6 t : PM in Cl Prolem [ point]: Regulr Expreion nd Finite Automt Develop regulr expreion (RE) tht detet the longet tring over the lphet {-} with the following

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

4. UNBALANCED 3 FAULTS

4. UNBALANCED 3 FAULTS 4. UNBALANCED AULTS So fr: we hve tudied lned fult ut unlned fult re more ommon. Need: to nlye unlned ytem. Could: nlye three-wire ytem V n V n V n Mot ommon fult type = ingle-phe to ground i.e. write

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden Poton nd Speed Control Lund Unverty, Seden Generc Structure R poer Reference Sh tte Voltge Current Control ytem M Speed Poton Ccde Control * θ Poton * Speed * control control - - he ytem contn to ntegrton.

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Positioning Control of Voice Coil Motor with Shorted Turn

Positioning Control of Voice Coil Motor with Shorted Turn Potonng Contol of Voe Col Moto wth Shoted Tun T. S. Lu and C. W. Yeh Depatment of Mehanal Engneeng, Natonal Chao Tung Unvety Hnhu 3, Tawan, R.O.C. tlu@mal.ntu.edu.tw fankyeh7@hotmal.om Abtat Th eeah degn

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Properties and Formulas

Properties and Formulas Popeties nd Fomuls Cpte 1 Ode of Opetions 1. Pefom ny opetion(s) inside gouping symols. 2. Simplify powes. 3. Multiply nd divide in ode fom left to igt. 4. Add nd sutt in ode fom left to igt. Identity

More information

Discrete Model Parametrization

Discrete Model Parametrization Poceedings of Intentionl cientific Confeence of FME ession 4: Automtion Contol nd Applied Infomtics Ppe 9 Discete Model Pmetition NOKIEVIČ, Pet Doc,Ing,Cc Deptment of Contol ystems nd Instumenttion, Fculty

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

8. Two Ion Interactions

8. Two Ion Interactions 8. Two on ntetons The moels of mgnet oe hve een se on mltonns of the fom on J J zw. Wht s the physl ogn of ths two on ntetons 8. Dpol nteton The ogn of lge moleul fels nnot e the wek mgnet pol nteton CD

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

Module 4: Moral Hazard - Linear Contracts

Module 4: Moral Hazard - Linear Contracts Module 4: Mol Hzd - Line Contts Infomtion Eonomis (E 55) Geoge Geogidis A pinipl employs n gent. Timing:. The pinipl o es line ontt of the fom w (q) = + q. is the sly, is the bonus te.. The gent hooses

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

Illustrating the space-time coordinates of the events associated with the apparent and the actual position of a light source

Illustrating the space-time coordinates of the events associated with the apparent and the actual position of a light source Illustting the spe-time oointes of the events ssoite with the ppent n the tul position of light soue Benh Rothenstein ), Stefn Popesu ) n Geoge J. Spi 3) ) Politehni Univesity of Timiso, Physis Deptment,

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

15 DEFINITE INTEGRALS

15 DEFINITE INTEGRALS 5 DEFINITE INTEGRAL DEFINITION OF A DEFINITE INTEGRAL Let f(x) e defned n n ntervl 5 x 5. Dvde the ntervl nto n equl prt of length Ax = ( )/n. Then the defnte ntegrl of f(x) etween z = nd x = defned 5.

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Empirical equations for electrical parameters of asymmetrical coupled microstrip lines

Empirical equations for electrical parameters of asymmetrical coupled microstrip lines Epl equons fo elel petes of syel ouple osp lnes I.M. Bsee Eletons eseh Instute El-h steet, Dokk, o, Egypt Abstt: Epl equons e eve fo the self n utul nutne n ptne fo two syel ouple osp lnes. he obne ptne

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

UNIT 31 Angles and Symmetry: Data Sheets

UNIT 31 Angles and Symmetry: Data Sheets UNIT 31 Angles nd Symmetry Dt Sheets Dt Sheets 31.1 Line nd Rottionl Symmetry 31.2 Angle Properties 31.3 Angles in Tringles 31.4 Angles nd Prllel Lines: Results 31.5 Angles nd Prllel Lines: Exmple 31.6

More information

Two kurtosis measures in a simulation study

Two kurtosis measures in a simulation study Two kuto meue n multon tudy Ann M Fo Deptment o Quntttve Method o Economc nd Bune Scence Unvety o Mlno-Bcocc nn.o@unmb.t CNAM, P COMPSTAT 00 Augut 3, 00 Ovevew The IF (SIF) nd t ole n kuto tude Fom nequlty

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

IMA Preprint Series # 2202

IMA Preprint Series # 2202 FRIENDY EQUIIBRIUM INTS IN EXTENSIVE GMES WITH CMETE INFRMTIN By Ezo Mch IM epnt Sees # My 8 INSTITUTE FR MTHEMTICS ND ITS ICTINS UNIVERSITY F MINNEST nd Hll 7 Chuch Steet S.E. Mnnepols Mnnesot 5555 6

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

Data Compression LZ77. Jens Müller Universität Stuttgart

Data Compression LZ77. Jens Müller Universität Stuttgart Dt Compession LZ77 Jens Mülle Univesität Stuttgt 2008-11-25 Outline Intoution Piniple of itiony methos LZ77 Sliing winow Exmples Optimiztion Pefomne ompison Applitions/Ptents Jens Mülle- IPVS Univesität

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information