E-Companion: Mathematical Proofs

Size: px
Start display at page:

Download "E-Companion: Mathematical Proofs"

Transcription

1 E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth ttegy et nd ot uncton e dentcl co etle In ode to etlh the etence o ue-ttegy ymmetc equlum y udeneg nd Tole 99 t uce to how tht Π unmodl unde the condton Gven o ny Π tctly concve n nd ttn unque otmum t ES y uttuton Π cn e wtten uncton o only Π Π Π The t-ode devtve o Π wth eect to ] [ w Π ettng T Π we hve TS n T d d n TS d dn d d T T d d n n d dn d d T d d n d n d n / whch negtve n / decee n nd / d d

2 The t-ode devtve o T wth eect to chnge gn t mot once om otve to negtve Gven T > ence ethe T h unque oot t whch Π ttn otmum o the ot uncton monotone In ethe ce the uncton unmodl on the comct ttegy et The me nly le to etle y ymmety o tht unde the me condton etle ot uncton unmodl gven etle decon Pt DS Sytem et the ttegy et o ech etle n DS e { : [ w M ] [ ]} whee M lge otve nume y ml gument tht n the oo o t t uce to how tht Π unmodl unde the condton Gven Π concve n y uttuton we cn wte nd ttn the otmum t EST Π uncton o only Π Π Π It t-ode devtve wth eect to w [ ] Π ettng T we hve T n TS T n d T d I d / d then t-ode devtve o T chnge gn t mot once om otve to negtve h uot ] [ T / > nce > nd w T [ ] w [ ] o T coe eo then t h unque oot t whch etle ot uncton ttn the otmum; othewe the ot uncton monotone In ethe ce etle ot uncton unmodl etle ot uncton cn e nlyed y ymmety nd t unmodl unde the me condton ence the clm eoe contnung wth the oo we eent ome eult tht we wll lte ee to We dened nd n the mn tet whch cn e wtten :

3 d d Λ Λ d We dene nd o In emm E nd E we eent nd ove the oete o nd eectvely emm E h the ollowng oete: Gven [] ncee n on Gven > t decee n wth Poo o emm E Pt Gven [] o d o ] > nd > then tctly ncee n on It cn e veed tht nd So o Pt Gven d] d Snce > d nd d d > Theeoe decee n o > nd d nd d It ey to vey tht emm E: h the ollowng oete: 3

4 4 > concve nd ncee n on ; nd Λ > concve nd ncee n 3 lm Λ nd ] [lm lm 4 k ncee n on k Poo o emm E Pt > G whee d G et > d G g ence G tctly ncee nd tctly concve n on G nd d G G nd then We hve thu hown tht concve nd nceng n on IS Λ Λ > nce > IS Pt y denton IS Λ It t-ode devtve wth eect to IS Λ Λ d d Λ Λ d d d Λ Λ d d d d ξ > d ξ The outh equlty ollow y Intemedte Vlue Theoem wth ξ

5 The lt nequlty ollow nce ξ nd > ξ o ] So IS nd hence tctly ncee n 3 d thu concve nd nceng n Pt 3 lm lm Λ d lm { Λ d d} { Λ Λ } lm lm lm Λ { d} lm { } d lm [lm ] ence lm Pt 4 ~ k dene k k ~ k It t-ode devtve wth eect to : k y Pt Snce k then ~ k > nd hence k ncee n o To chctee the ymmetc equl n DS nd DS [] [] we dene: M M nd [ Λ ] E E In emm E3 we chctee ome oete o M emm E3: o ] nd [] M nd M nd M ncee n then: e concve wth unque oot n ; 5

6 et the unque oot o M nd M M M nd Poo o emm E3 Pt e nd eectvely then y denton o M n E t t-ode devtve wth eect to dm d concve n y emm E decee n ncee n nd ncee n y umton So dm decee n nd hence M concve d M > nce > y umton M y contnuty thee et oot uch tht M The unquene o the oot gunteed y the concvty o M y denton o M dm d n E t t-ode devtve wth eect to decee n ncee n nd ncee n y umton So dm M d decee n nd hence M concve n > nce > y umton M y contnuty thee et t whch M The unquene o the oot gunteed y the concvty o M Pt M M > nd y Pt the unque oot o M then ollow y the concvty o M M M > nd y Pt the unque oot o M then ollow y the concvty o M We net contnue wth the oo o the mn eult Poo o Pooton 6

7 Pt et e the ymmetc equlum n DS Gven t the et ttegy o m to et y t-ode condton wth nd we cn get equton 8 nd 9 Suttutng 9 nto 8 nd mlyng we cn how tht te [ Λ ] whch y denton E gve M I monotone ncee then y emm E3 the unque oot to M Suoe tht etle chooe I the condton tted n emm t hold then etle ot uncton unmodl Snce t te the t-ode condton the otml decon o m y ymmety mut olve the et o the et-eone uncton y oth etle nd hence the equlum Pt et e the ymmetc equlum n DS Gven t otml o m to et y t-ode condton wth nd we get nd Suttutng nto nd mlyng we cn how whch y denton E gve M I ncee n then y emm E3 the unque oot to M te n Suoe etle chooe dented ove I the condton tted n emm t hold then etle ot uncton unmodl gven etle decon Snce the decon vecto te t-ode condton t the otml oluton o m y ymmety t the oluton to the et o et-eone uncton y oth etle nd the equlum o the emnng oo we ume tht thee et ue-ttegy h equlum n ce nd tock n oth DS nd DS ncee n nd > We wll lo ue the ct tht nd [] o Poo o Pooton In DS the unque oot to M y Imlct uncton Theoem we hve dened n E 7

8 8 M d d y emm E3 e M y emm E ncee n The t-ode devtve o wth eect to d So the ove devtve otve nd ncee n y The eected le cn e wtten [ ] S The t-ode devtve o nd S wth eect to e d d d d nd d d d ds ncee n nd ncee n nd o nd S ncee n Poo o Pooton 3 In DS the unque oot to M dened n E y Imlct uncton Theoem we hve ] [ M d d M y emm E3 nd ncee n y emm E It h een hown tht decee n et we how tht decee n when ucently lge d d d d decee n

9 When we let ; othewe thee mut et uch tht nd o nd > othewe et u{ : } then o o ll nd hence ncee n Ung 8 the equlum ce cn e wtten [ Λ ] It t-ode devtve wth eect to d { G d d } d ncee n o ncee n So ncee n Ung 8 the eected equlum le cn e wtten S [ Λ ] [ Λ ] It t-ode devtve wth eect to ds G d > [] nd d d I M M G M then 3 [ ] G G { G } Then [ ] { G } On the othe hnd > [] nd ; nd > 9

10 I then nd hence S ncee n Poo o Pooton 4 We t conde DS [] te M whee M The t-ode devtve o M M dened n E wth eect to M nd hence M decee n whch mle tht the unque oot to M decee n w It t-ode devtve wth eect to w Snce decee n decee n Totl tock q cn e wtten q q > nce > y umton nd decee n q then ncee n Totl le S cn e wtten S S G G

11 > > G emm E decee n o S ncee n whee the econd nequlty ollow om In DS [] te M whee M dened n E The t-ode devtve o M wth eect to M nd hence M / Snce M decee n o nd the unque oot to M decee n The oo to how decee nd q nd S ncee n e the me thoe o the coeondng eult n DS ; we omt the detl Poo o Pooton 5 y emm E decee n > Then y 9 ncee n Wth eogenou nd dentcl etl ce the tock nd le t one etle e eectvely q nd S ncee n o q ncee n S ncee n y emm E y the denng equton nd hence the tock nd le n DS when e dentcl to thoe n DS Poo o Pooton 6 Pt y the denton n [] g U ncee n o tht te whee g U conve concve n o g U concve g U > nd g U g U then h unque oot nd thee unque oluton to [] The oo to how tht [] h unque oluton ml y denng the oot o g Λ Pt In DS the unque oot to M dened n E

12 y emm E Λ y denton g M g [ ] nd [] Snce g U g nd M dmt unque oot g M g mle tht et ~ w Snce ncee n ~ ncee n ~ ~ nd ~ mle tht Tht nd cn e veed y comng the coeondng denng equton Pt 3 lyng Imlct uncton Theoem to d d g U we hve u [ ] g U y emm E y Pt g u concve nd dmt unque oot g u g u > nd g u then nd hence ncee n y denton [] It t-ode devtve wth eect to d d G d n The oo to how tht ncee n ml Pt 4 ollow y comng [] wth - Tht ncee n mle tht ncee Poo o Pooton 7 Pt y emm E [] y the denng equton n 9 nd o eogenou nd dentcl etl ce eult tock nd le e hghe n DS thn n DS Pt Wth endogenou etl ce n DS nd DS nd e the unque oot to M nd M dened eectvely n E nd E y emm E nd U

13 E decee n nd > Λ Gven > nd [] M [ Λ ] y emm E3 oth M M M M nd M e concve nd hve unque oot > M M o mle y 8 nd the equlum etl ce n the two ytem cn e eeed y [ Λ ] nd Snce Λ nd ncee n mle [ Λ Pt Gven > when ung 8 nd the equlum tock n DS nd DS cn e wtten q q q q > wth y Pt Snce o y emm E ncee n Then we hve > nd hence q > q ] 3

14 Ung 8 nd equlum le n DS nd DS cn e wtten S S S S [ ] > mle > nd hence S > S When y Pt Ung 9 nd equlum totl tock n DS nd DS e q nd q q q et then q q The t-ode devtve o wth eect to nd d d > mle q > q Smlly ung 9 nd totl le n DS nd DS e: S nd S S S ~ ~ ~ et then S S ~ The t-ode devtve o wth eect to ~ ~ d G d Snce G nd > ~ then mle tht S > S 4

15 Poo o Pooton 8 Pt We t ketch the oo to how / ymmetc equlum et n the DS ytem wth endogenou ech ntenty Sml to the oo o emm we how tht unde tted condton whee M lge otve nume Gven Π unmodl on { : [ w M ] [ ]} Π tctly concve n Whle n elct eeon o otml oluton not vlle t cn e veed to e nceng nd concve n y uttuton we cn wte Π devtve wth eect to to e w [ ] Π ettng T we hve T Π uncton o nd how t t-ode T n / T n d nd I / then the t-ode devtve o T chnge gn t mot once om otve to negtve h the uot on [ gven T / > nce > nd w T w [ ] o T coe eo then t h unque oot t whch etle ot uncton ttn the otmum; othewe the ot uncton monotone In ethe ce etle ot uncton unmodl nly o etle ot uncton ollow y ymmety nd we cn how t unmodl unde the me condton ence unde the tted condton thee et ymmetc E n DS wth endogenou ech ntenty whch cn e otned y t-ode condton The oo o unquene ml to tht o Pooton nd we omt the detl Pt Suoe when the ech ntenty eogenou nd te I oety In th oo we dd uct on the quntte wth eogenou ech ntenty y emm E3 the equlum ety tock n DS wth eogenou ech ntenty otned the unque oot to M y t the equlum ety tock n DS wth endogenou ech ntenty cn e otned the unque oot to M w Θ Θ non-negtve n nceng uncton y denton o tht 5

16 Wth M M gven whch mle tht y nd 6 w et w nd w ncee n wth mle q Then the tock n DS wth eogenou nd endogenou ech ntente e eectvely q q nd q q q Then mle tht q q et S Then the le n DS wth eogenou nd endogenou ech ntente e eectvely S S nd S S S G So mle tht S S 6

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

Two kurtosis measures in a simulation study

Two kurtosis measures in a simulation study Two kuto meue n multon tudy Ann M Fo Deptment o Quntttve Method o Economc nd Bune Scence Unvety o Mlno-Bcocc nn.o@unmb.t CNAM, P COMPSTAT 00 Augut 3, 00 Ovevew The IF (SIF) nd t ole n kuto tude Fom nequlty

More information

Physics 15 Second Hour Exam

Physics 15 Second Hour Exam hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ------------------------------- ol / I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7.

More information

Lecture 9-3/8/10-14 Spatial Description and Transformation

Lecture 9-3/8/10-14 Spatial Description and Transformation Letue 9-8- tl Deton nd nfomton Homewo No. Due 9. Fme ngement onl. Do not lulte...8..7.8 Otonl et edt hot oof tht = - Homewo No. egned due 9 tud eton.-.. olve oblem:.....7.8. ee lde 6 7. e Mtlb on. f oble.

More information

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units! Knemtc Quntte Lner Phyc 11 Eyre Tme Intnt t Fundmentl Tme Interl t Dened Poton Fundmentl Dplcement Dened Aerge g Dened Aerge Accelerton g Dened Knemtc Quntte Scler: Mgntude Tme Intnt, Tme Interl nd Speed

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function vlle t htt:vu.edu l. l. Mth. ISSN: 93-9466 Vol. 3 Iue Jue 8. 8 36 Pevouly Vol. 3 No. lcto d led Mthetc: Itetol Joul M Cet Exo Foule Ivolvg c logue o Fox -Fucto S.. Puoht etet o c-scece Mthetc College o

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Chapter I Vector Analysis

Chapter I Vector Analysis . Chpte I Vecto nlss . Vecto lgeb j It s well-nown tht n vecto cn be wtten s Vectos obe the followng lgebc ules: scl s ) ( j v v cos ) ( e Commuttv ) ( ssoctve C C ) ( ) ( v j ) ( ) ( ) ( ) ( (v) he lw

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler -T Sytem: Ung Bode Plot EEE 30 Sgnal & Sytem Pro. Mark Fowler Note Set #37 /3 Bode Plot Idea an Help Vualze What rcut Do Lowpa Flter Break Pont = / H ( ) j /3 Hghpa Flter c = / L Bandpa Flter n nn ( a)

More information

EE Control Systems LECTURE 8

EE Control Systems LECTURE 8 Coyright F.L. Lewi 999 All right reerved Udted: Sundy, Ferury, 999 EE 44 - Control Sytem LECTURE 8 REALIZATION AND CANONICAL FORMS A liner time-invrint (LTI) ytem cn e rereented in mny wy, including: differentil

More information

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

Module 6: Two Dimensional Problems in Polar Coordinate System

Module 6: Two Dimensional Problems in Polar Coordinate System odule 6: Two Dmenonl olem n ol oodnte Sytem 6.3. RS WITH LRGE INITIL URVTURE Thee e ctcl ce of, uch hook, lnk nd ng, etc. whch hve lge ntl cuvtue. In uch ce, the dmenon of the coecton e not vey mll n comon

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions Knemtc Quntte Lner Moton Phyc 101 Eyre Tme Intnt t Fundmentl Tme Interl Defned Poton x Fundmentl Dplcement Defned Aerge Velocty g Defned Aerge Accelerton g Defned Knemtc Quntte Scler: Mgntude Tme Intnt,

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st. Mth 2142 Homework 2 Solution Problem 1. Prove the following formul for Lplce trnform for >. L{1} = 1 L{t} = 1 2 L{in t} = 2 + 2 L{co t} = 2 + 2 Solution. For the firt Lplce trnform, we need to clculte:

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

Lectures # He-like systems. October 31 November 4,6

Lectures # He-like systems. October 31 November 4,6 Lectue #5-7 7 Octoe 3 oveme 4,6 Self-conitent field Htee-Foc eqution: He-lie ytem Htee-Foc eqution: cloed-hell hell ytem Chpte 3, pge 6-77, Lectue on Atomic Phyic He-lie ytem H (, h ( + h ( + h ( Z Z:

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

A Primer on Portfolio Theory

A Primer on Portfolio Theory Pt I: Some Bscs A Pme on Potolo Theoy The ottom lne th otolo constucton s lenng ho to del th uncetnty. To egn, let s stt th some dentons: A ndom vle s nume ssocted th n outcome tht s uncetn. Fo exmle,

More information

2. Work each problem on the exam booklet in the space provided.

2. Work each problem on the exam booklet in the space provided. ECE470 EXAM # SOLUTIONS SPRING 08 Intructon:. Cloed-book, cloed-note, open-mnd exm.. Work ech problem on the exm booklet n the pce provded.. Wrte netly nd clerly for prtl credt. Cro out ny mterl you do

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

Fredholm Type Integral Equations with Aleph-Function. and General Polynomials

Fredholm Type Integral Equations with Aleph-Function. and General Polynomials Iteto Mthetc Fou Vo. 8 3 o. 989-999 HIKI Ltd.-h.co Fedho Te Iteg uto th eh-fucto d Gee Poo u J K.J. o Ittute o Mgeet tude & eech Mu Id u5@g.co Kt e K.J. o Ittute o Mgeet tude & eech Mu Id dehuh_3@hoo.co

More information

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114 Lner Accelerton nd Freell Phyc 4 Eyre Denton o ccelerton Both de o equton re equl Mgntude Unt Drecton (t ector!) Accelerton Mgntude Mgntude Unt Unt Drecton Drecton 4/3/07 Module 3-Phy4-Eyre 4/3/07 Module

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

( ) α is determined to be a solution of the one-dimensional minimization problem: = 2. min = 2

( ) α is determined to be a solution of the one-dimensional minimization problem: = 2. min = 2 Homewo (Patal Solton) Posted on Mach, 999 MEAM 5 Deental Eqaton Methods n Mechancs. Sole the ollowng mat eqaton A b by () Steepest Descent Method and/o Pecondtoned SD Method Snce the coecent mat A s symmetc,

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

A Dynamical Quasi-Boolean System

A Dynamical Quasi-Boolean System ULETNUL Uestăţ Petol Gze Ploeşt Vol LX No / - 9 Se Mtetă - otă - Fză l Qs-oole Sste Gel Mose Petole-Gs Uest o Ploest ots etet est 39 Ploest 68 o el: ose@-loesto stt Ths e oes the esto o ol theoetl oet:

More information

PHYSICS 211 MIDTERM I 22 October 2003

PHYSICS 211 MIDTERM I 22 October 2003 PHYSICS MIDTERM I October 3 Exm i cloed book, cloed note. Ue onl our formul heet. Write ll work nd nwer in exm booklet. The bck of pge will not be grded unle ou o requet on the front of the pge. Show ll

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecton and Etmaton Theoy Joeph A. O Sullvan Samuel C. Sach Pofeo Electonc Sytem and Sgnal Reeach Laboatoy Electcal and Sytem Engneeng Wahngton Unvety 411 Jolley Hall 314-935-4173 (Lnda anwe) jao@wutl.edu

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Pythagorean triples. Leen Noordzij.

Pythagorean triples. Leen Noordzij. Pythagorean trple. Leen Noordz Dr.l.noordz@leennoordz.nl www.leennoordz.me Content A Roadmap for generatng Pythagorean Trple.... Pythagorean Trple.... 3 Dcuon Concluon.... 5 A Roadmap for generatng Pythagorean

More information

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rg Bo Dnmcs CSE169: Compute Anmton nstucto: Steve Roteneg UCSD, Wnte 2018 Coss Pouct k j Popetes of the Coss Pouct Coss Pouct c c c 0 0 0 c Coss Pouct c c c c c c 0 0 0 0 0 0 Coss Pouct 0 0 0 ˆ ˆ 0 0 0

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M.

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M. Solution Prolem Set 2 Prolem.4 () Let M denote the DFA contructed y wpping the ccept nd non-ccepting tte in M. For ny tring w B, w will e ccepted y M, tht i, fter conuming the tring w, M will e in n ccepting

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015 Introducton to Interfacal Segregaton Xaozhe Zhang 10/02/2015 Interfacal egregaton Segregaton n materal refer to the enrchment of a materal conttuent at a free urface or an nternal nterface of a materal.

More information

Solving the Dirac Equation: Using Fourier Transform

Solving the Dirac Equation: Using Fourier Transform McNa Schola Reeach Jounal Volume Atcle Solvng the ac quaton: Ung oue Tanfom Vncent P. Bell mby-rddle Aeonautcal Unvety, Vncent.Bell@my.eau.edu ollow th and addtonal wok at: http://common.eau.edu/na Recommended

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

2. Elementary Linear Algebra Problems

2. Elementary Linear Algebra Problems . Eleety e lge Pole. BS: B e lge Suoute (Pog pge wth PCK) Su of veto opoet:. Coputto y f- poe: () () () (3) N 3 4 5 3 6 4 7 8 Full y tee Depth te tep log()n Veto updte the f- poe wth N : ) ( ) ( ) ( )

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, See A, OF HE ROMANIAN ACADEMY Volue 9, Nube 3/8,. NONDIFFERENIABLE MAHEMAICAL PROGRAMS. OPIMALIY AND HIGHER-ORDER DUALIY RESULS Vale PREDA Uvety

More information

Solution of Tutorial 5 Drive dynamics & control

Solution of Tutorial 5 Drive dynamics & control ELEC463 Unversty of New South Wles School of Electrcl Engneerng & elecommunctons ELEC463 Electrc Drve Systems Queston Motor Soluton of utorl 5 Drve dynmcs & control 500 rev/mn = 5.3 rd/s 750 rted 4.3 Nm

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Hoeffding, Azuma, McDiarmid

Hoeffding, Azuma, McDiarmid Hoeffding, Azum, McDirmid Krl Strtos 1 Hoeffding (sum of independent RVs) Hoeffding s lemm. If X [, ] nd E[X] 0, then for ll t > 0: E[e tx ] e t2 ( ) 2 / Proof. Since e t is conve, for ll [, ]: This mens:

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Propagation of error for multivariable function

Propagation of error for multivariable function Propagaton o error or multvarable uncton ow consder a multvarable uncton (u, v, w, ). I measurements o u, v, w,. All have uncertant u, v, w,., how wll ths aect the uncertant o the uncton? L tet) o (Equaton

More information

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM Interntionl Crpthin Control Conference ICCC 00 ALENOVICE, CZEC REPUBLIC y 7-30, 00 COOSING TE NUBER OF ODELS OF TE REFERENCE ODEL USING ULTIPLE ODELS ADAPTIVE CONTROL SYSTE rin BICĂ, Victor-Vleriu PATRICIU

More information

Introduction to Robotics (Fag 3480)

Introduction to Robotics (Fag 3480) Intouton to Robot (Fg 8) Vå Robet Woo (Hw Engneeeng n pple Sene-B) Ole Jkob Elle PhD (Mofe fo IFI/UIO) Føtemnuen II Inttutt fo Infomtkk Unvetetet Olo Sekjonlee Teknolog Intevenjonenteet Olo Unvetetkehu

More information

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r Sufce e f ic lid Cue f ide R See f diu 6 Cuid c c Elliticl cectin c Cylinde, wit diu nd eigt Tu, wit cicul c ectin f diu R R Futum, ( tuncted ymid) f e eimete, t e eimete nd lnt eigt. nd e te eective e

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Imrovement on Warng Problem L An-Png Bejng 85, PR Chna al@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th aer, we wll gve ome mrovement for Warng roblem Keyword: Warng Problem, Hardy-Lttlewood

More information

Chapter 6 Plane Motion of Rigid Bodies

Chapter 6 Plane Motion of Rigid Bodies Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD e Karus-Kun-ucker condtons and dualt Nuno Vasconcelos ECE Department, UCSD Optmzaton goal: nd mamum or mnmum o a uncton Denton: gven unctons, g, 1,...,k and, 1,...m dened on some doman Ω R n mn w, w Ω

More information

Substitution Matrices and Alignment Statistics. Substitution Matrices

Substitution Matrices and Alignment Statistics. Substitution Matrices Susttuton Mtrces nd Algnment Sttstcs BMI/CS 776 www.ostt.wsc.edu/~crven/776.html Mrk Crven crven@ostt.wsc.edu Ferur 2002 Susttuton Mtrces two oulr sets of mtrces for roten seuences PAM mtrces [Dhoff et

More information

φ (x,y,z) in the direction of a is given by

φ (x,y,z) in the direction of a is given by UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Electronic Companion for Optimal Design of Co-Productive Services: Interaction and Work Allocation

Electronic Companion for Optimal Design of Co-Productive Services: Interaction and Work Allocation Submitted to Mnufctuing & Sevice Oetions Mngement mnuscit Electonic Comnion fo Otiml Design of Co-Poductive Sevices: Intection nd Wok Alloction Guillume Roels UCLA Andeson School of Mngement, 110 Westwood

More information

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd. GCE AS d A Level MATHEMATICS FORMULA BOOKLET Fom Septeme 07 Issued 07 Pue Mthemtcs Mesuto Suce e o sphee = 4 Ae o cuved suce o coe = heght slt Athmetc Sees S = + l = [ + d] Geometc Sees S = S = o < Summtos

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th EN: Contnuum Mechncs Homewok 4: Blnce lws, wok nd enegy, vtul wok Due : noon Fdy Feuy 4th chool of Engneeng Bown Unvesty. how tht the locl mss lnce equton t cn e e-wtten n sptl fom s xconst v y v t yconst

More information

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract Endogenous tmng n a mxed olgopoly consstng o a sngle publc rm and oregn compettors Yuanzhu Lu Chna Economcs and Management Academy, Central Unversty o Fnance and Economcs Abstract We nvestgate endogenous

More information

Tutorial 5 Drive dynamics & control

Tutorial 5 Drive dynamics & control UNIVERSITY OF NEW SOUTH WALES Electic Dive Sytem School o Electical Engineeing & Telecommunication ELEC463 Electic Dive Sytem Tutoial 5 Dive dynamic & contol. The ollowing paamete ae known o two high peomance

More information

The Backpropagation Algorithm

The Backpropagation Algorithm The Backpopagaton Algothm Achtectue of Feedfowad Netwok Sgmodal Thehold Functon Contuctng an Obectve Functon Tanng a one-laye netwok by teepet decent Tanng a two-laye netwok by teepet decent Copyght Robet

More information

SGN Audio and Speech Processing. Linear Prediction

SGN Audio and Speech Processing. Linear Prediction SGN-46 Audo d Seech Poceg Le Pedcto Slde fo th lectue e bed o thoe ceted by Kt Mhoe fo TUT coue Puheeättely meetelmät Sg 3. Othe ouce: K. Koe: Puheeättely meetelmät, lectue mtel, TUT, htt://www.c.tut.f/coue/sgn-4/g4.df

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information