Simulation: Density FOR THE TEACHER

Size: px
Start display at page:

Download "Simulation: Density FOR THE TEACHER"

Transcription

1 Simulation: Density FOR THE TEACHER Summary In this simulation, students will investigate the effect of changing variables on both the volume and the density of a solid, a liquid and a gas sample. Students will analyze the different states of matter at the particle level as well as quantitatively. This lesson accompanies the simulation from the September 2015 issue of Chemistry Solutions. Grade Level High or middle school Objectives By the end of this lesson, students should be able to Understand the relationships between temperature, volume and density in a liquid and solid sample. Understand the effect of changing the pressure or the temperature of a gas sample on both the volume and density of the gas sample. Accurately calculate the final values for both volume and density of a sample based on a set of conditions. Predict the spatial distribution of particles in samples of solid, liquid and gas as variables are changed. Describe the interaction and motion of particles in samples of solid, liquid and gas as variables are changed. Chemistry Topics This lesson supports students understanding of Density Molecular Motion Volume Temperature Gas Pressure Time Teacher Preparation: 10 minutes Lesson: minutes Materials Computer with internet access Calculator Safety No specific safety considerations are needed for this investigation.

2 Teacher Notes All particles are represented in the same manner in this simulation (both molecules and atoms are represented as spheres). The values shown on the controls for temperature are the same fixed amounts for solid, liquid and gas; the options are 23.0⁰C, 50.0⁰C and 90.0⁰C. The user cannot choose any other temperature value other than these. In the gas simulation, the user can manipulate either temperature or pressure, but not both. If the temperature is changed, the pressure with automatically become locked at 1.00atm. If the pressure is changed, the temperature will automatically become locked at 50.0⁰C. In all of the simulations the user can choose to display either Kelvin or Celsius units for temperature. Students should understand the density formula, and how to calculate density, mass and volume from the formula before using this activity. Students should understand the meaning of density, temperature, volume and pressure (gas only) before the activity. All values and calculations are reported with correct significant digits in the simulation. For best results students should work individually or with a partner. Larger groups should be avoided for this activity. Younger students may not know Kelvin units yet, so this option can be ignored if that is the case, as well as the pre-lab question regarding Kelvin. Answers to the student activity: Pre-lab Questions: o 1. Student sketches should show that the particles have the least amount of space between them in the solid example, followed by more space in the liquid sample, and the gas should have the most space represented between particles. o 2. Solid o 3.a. Temperature is the measure of the average kinetic energy in the particles of a sample of matter at a specific time. b. Celsius units are often the most common measurement units used in chemistry. Kelvin units are measured on an absolute scale, and are often associated with the measurement of gas temperature, particularly important when calculating values using any of the gas laws. o 4. Expansion refers to an increase in volume, and an increase in the amount of space between particles in a sample of matter. Compression is the opposite of expansion, referring to a decrease in volume and a decrease in the amount of space between particles in a sample of matter. Activity Questions: o 1.a. T 1 = 50.0 ⁰C, V 1=2.000 cm 3, D 1= g/cm 3 b. T 2=90.0 ⁰C c. The volume of the nail increased by 0.001cm 3 when the temperature was increased. This change cannot be seen in the image of the nail because it is so minor; however the particles in the sample can be seen to increase their speed. d. V 2= cm 3, D 2= g/cm 3 2.a n/a b. T 2=23.0 ⁰C c. The volume of the nail decreased by 0.001cm 3. The particles in the sample can be seen to decrease their speed. d. V 2= 1.999cm 3, D 2= 7.854g/cm 3

3 o o e. As the temperature fluctuates throughout the year, it is important that the connectors be able to expand and compress as needed in order to support the bridge properly. 3.a. There is much more empty space between particles, and the particles in the liquid sample can flow more freely than the particles in the solid sample. b. Correct answer is a temperature increase will cause the volume of water to increase. c. The volume increases from 10.00mL to 10.20mL. The particles in the sample move faster when the temperature has been increased. d. D 2 (at 90.0⁰C)= g/ml e. D 2 (at 23.0⁰C) =0.998g/mL f. greater than 10.00mL, but less than 10.20mL g. In general, as the temperature of liquid water increases, the density decreases, and as the temperature of liquid water decreases, the density increases. This is an indirect relationship. h. Volume =103.6mL 4.a. The volume in the balloon will increase when temperature is increased and the volume will decrease when temperature is decreased; this is a direct relationship. b. The volume in the balloon will decrease when pressure is increased and the volume will increase when pressure is decreased; this is an indirect relationship. c. Increasing the pressure only. d. D 2 (at 2.00atm) = 0.357g/L e. D 2 (at 90.0⁰C) = 0.159g/L f. Yes! FOR THE STUDENT Student Activity Sheet: Density Lesson Background Density is the mass of a substance per unit of volume. In this investigation you will interact with several different samples of matter, and examine how manipulating variables can affect the density of these samples. The formula for calculating density is: Density = mass volume Common unit of measurement for density include: g/ml, g/cm 3 and g/l. Prelab Questions 1. In the squares below, draw how you think particles are arranged in the three states of matter: solid, liquid and gas. Use circles to represent the particles and label each box with the state it represents.

4 According to the drawings above, which state of matter is typically the most dense? 2. a. Define temperature. b. What is the difference between the Celsius and Kelvin temperature scales? Is there a situation where one unit should be used rather that the other? 3. Define the vocabulary terms expansion and compression in relation to the behavior of the particles in a sample of matter. Procedure Visit Make sure that you have the simulation set to solid to begin. You should see a picture of a nail on your screen. 1. a. Record the initial values for temperature, volume and density in the table below (be sure to include the proper units): T 1 = T 2 = V 1 = V 2 = D 1 = D 2 =

5 b. Next, increase the temperature of the nail. Record the final temperature value (T 2 ) in the data table. c. Briefly explain how the increase in temperature affected the volume of the nail. Could you see this change in the image of the nail? d. Record the final volume (V 2 ) for the nail in the data table. Using the mass value shown on the screen for the nail, and the V 2 value, calculate the final density for the nail. (Show your calculations below): 2. a. Press the reset symbol in the top corner of the screen. The initial values, shown in the table below should appear. T 1 = 50.0 ⁰C T 2 = V 1 = cm 3 V 2 = D 1 = 7.850g/cm 3 D 2 = b. Next, decrease the temperature of the nail. Record the final temperature value (T 2 ) in the data table. c. How was the volume of the nail affected by the temperature decrease? Considering the particles of the nail, what is their response to this temperature change? d. Record the final volume (V 2 ) for the nail in the data table. Using the mass value shown on the screen for the nail, and the V 2 value, calculate the final density for the nail. (Show your calculations below): e. Bridges often contain flexible connections in the middle. Based on what you ve observed about how solids act when they are heated and cooled, why do you think they put flexible connectors in the road on a bridge? Change the simulation to liquid by clicking the option in the top left corner of the screen. You should now see a picture of water contained in a graduated cylinder on your screen.

6 3. a. Describe the most immediate difference you see at the particle level in the liquid simulation compared to the solid? b. Before changing the temperature value for the water sample, make a prediction by choosing one of the following statements as correct (it is okay if it turns out to be incorrect!): A temperature increase will cause the volume of the water to increase A temperature increase will cause the volume of the water to decrease A temperature increase will not affect the volume of the water c. Now increase the initial temperature value from 50⁰C to 90⁰C. What happens to the volume of the water in the graduated cylinder, and what change can you see at the particle level? d. Using the mass value of the water, 9.88g, and the new value for the V 2 of water at 90⁰C shown on your screen, calculate the density value for this sample of hot water. (Show your calculations below): e. Now reduce the temperature value of water to 23.0⁰C. Using the V 2 for the water, calculate the density of the room temperature sample of water. (Show your calculations below):

7 f. If you heated the 9.88g sample of water to 70⁰C, what volume would you predict for the sample to occupy? How did you determine this? g. In one sentence, make a statement that describes the relationship between temperature change and the density of liquid water. h. If you were given a 100.0gram sample of water at 90⁰C, what volume would you expect the sample to occupy? (Show your calculations below): Change the simulation to gas by clicking the option in the top left corner of the screen. You should now see a picture of a helium balloon on your screen. 4. a. When temperature is changed, the pressure value is held constant at 1.00atm. How does volume respond to an increase in temperature? A decrease in temperature? b. When pressure is changed, the temperature value is held constant at 50.0⁰C. How does volume respond to an increase in pressure? A decrease in pressure? c. Based on your answers to the previous two questions, which of the following choices will result in an increase in the density of the helium balloon? Increasing the pressure only OR

8 Increasing the temperature only d. Calculate the density value for the helium balloon when the pressure value is increased to 2.00atm; use the V 2 value on the screen for the volume. (Show your calculations below): e. Calculate the density value for the helium balloon with the temperature value increased to 90.0⁰C; use the V 2 value on the screen for the volume. (Show your calculations below): f. Do the values that you calculated for density in parts d. and e. above support your answer to the question in part c.?

Simulation: Gas Laws FOR THE TEACHER

Simulation: Gas Laws FOR THE TEACHER Simulation: Gas Laws FOR THE TEACHER Summary In this simulation, students will investigate three of the fundamental gas laws, including Boyle s Law, Charles Law and Gay-Lussac s Law. Students will have

More information

Charles Law: V 1 = V 2 T 1 T 2

Charles Law: V 1 = V 2 T 1 T 2 Name: Gas Laws Background In this investigation you will examine three gas laws including Boyle s Law, Charles Law and Gay-Lussac s Law. You will explore how manipulating the variables of volume (L), pressure

More information

Activity Sheet Chapter 3, Lesson 3 Density of water

Activity Sheet Chapter 3, Lesson 3 Density of water Activity Sheet Chapter 3, Lesson 3 Density of water Name Date DEMONSTRATION 1. One of your classmates lifted different amounts of water. The largest amount of water also had the most mass. You know how

More information

Unit 2. Phases of Matter and Density

Unit 2. Phases of Matter and Density Name Pd Unit 2 Phases of Matter and Density Name Pd Name Pd Homework for Unit 2 1. Vocab for Unit 2; due: 2. Pg 17 (1-5), pg 19 (1-5), pg21 (1-5) complete sentences; due: 3. Pg 23 (1-6), pg 27 (1-6) complete

More information

PRACTICE TEST Topic 5: Heating, Cooling, and Phase Diagrams

PRACTICE TEST Topic 5: Heating, Cooling, and Phase Diagrams PRACTICE TEST Topic 5: Heating, Cooling, and Phase Diagrams Directions: Use the heating graph below to answer the following questions. Known Melting Point Data Name of Chemical Lauric Acid Naphthalene

More information

Limiting Reactants Lab

Limiting Reactants Lab Name: Teacher s Name: Class: Block: Date: Partners: Limiting Reactants Lab Purpose: Through experimentation, determine the limiting reactant and the percent yield in a chemical reaction that generates

More information

Chapter 3 - Measurements

Chapter 3 - Measurements Chapter 3 - Measurements You ll learn it in the summer, If not, it ll be a bummer. You ll need to know conversions, For units, Euro version. Metrics are powers of ten, And you might cry when, You re forced

More information

States of Matter Part 1: Lab Stations A. Initial Observations

States of Matter Part 1: Lab Stations A. Initial Observations States of Matter POGIL Activity Name Date Block Part 1: Lab Stations A. Initial Observations At your station you will find some solid aluminum, liquid water, and gaseous air. Observe these three objects

More information

Name: Period: Date: CHEMISTRY LAB #4 THE ILLUSION OF BLING: Using Density to Identify an Unknown Metal 90 MINUTES

Name: Period: Date: CHEMISTRY LAB #4 THE ILLUSION OF BLING: Using Density to Identify an Unknown Metal 90 MINUTES Name: Period: Date: KIPP NYC College Prep General Chemistry CHEMISTRY LAB #4 THE ILLUSION OF BLING: Using Density to Identify an Unknown Metal 90 MINUTES Do Now Pre- Lab Information: Lab Equipment and

More information

Lab: Density of Substances

Lab: Density of Substances Name: Date: Unit 1: Measuring the Earth - 2 Lab Hours Period: Lab: Density of Substances Introduction: You often hear statements like lead is heavier than water, or gold is the heaviest material on earth.

More information

Lesson 3 The Behavior of Gases

Lesson 3 The Behavior of Gases Lesson 3 The Behavior of Gases Student Labs and Activities Page Launch Lab 46 Content Vocabulary 47 Lesson Outline 48 MiniLab 50 Content Practice A 51 Content Practice B 52 Math Skills 53 School to Home

More information

Chemistry #3 Notebook States of Matter

Chemistry #3 Notebook States of Matter Name Hour Test Date Group # Chemistry #3 Notebook States of Matter LEARNING TARGETS I CAN model the motion and arrangement of particles in typical solids, liquids and gasses. I CAN describe how the motion

More information

TEACHER NOTES SCIENCE NSPIRED

TEACHER NOTES SCIENCE NSPIRED Science Objectives Students will determine the relationship between mass and volume. Students will mathematically describe the relationship between mass and volume. Students will relate the slope of a

More information

Unit 2 review for finals

Unit 2 review for finals Unit 2 review for finals These are the topics you should know and be able to answer questions about: 1. Heating/cooling curve (phase change diagram) a. Draw a heating curve showing a solid melting to a

More information

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws Lesson Topics Covered Handouts to Print 1 Note: The States of Matter solids, liquids and gases state and the polarity of molecules the

More information

What Is The Matter? Matter Concept Map

What Is The Matter? Matter Concept Map What Is The Matter? Matter Concept Map Phases of Matter Solid Liquid Gas Use the selections below to complete the concept map for the phases of matter. Write the letter of each characteristic in the appropriate

More information

Do Now: Use the ruler below to answer the following questions

Do Now: Use the ruler below to answer the following questions Chemistry Ms. Ye Name Date Block Do Now: Use the ruler below to answer the following questions 1. What is each tick mark worth on the ruler? 2. When measuring, to which decimal place should you estimate

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Grade Six: Plate Tectonics 6.11 Density of Granite and Basalt. Density of basalt and granite affect the formation of landmasses on Earth.

Grade Six: Plate Tectonics 6.11 Density of Granite and Basalt. Density of basalt and granite affect the formation of landmasses on Earth. Grade Six: Plate Tectonics 6.11 Density of Granite and Basalt Lesson Concept Density of basalt and granite affect the formation of landmasses on Earth. Link Mountain formation in Lesson 6.10 is dependent

More information

Rashid School for Boys. Year 7 Science. Particles. Name: Form:

Rashid School for Boys. Year 7 Science. Particles. Name: Form: Rashid School for Boys Year Science Particles Name: Form: 1 By the end of this topic.. Unit Particles Level 3 I know that ice melts when it gets too warm and that liquid water turns into solid water (ice)

More information

Significant Digits What digits are important when recording a measurement?

Significant Digits What digits are important when recording a measurement? Significant Digits What digits are important when recording a measurement? Why? Scientists do a lot of measuring. When scientists use an instrument (ruler, graduated cylinder, spectrophotometer, balance

More information

Chemistry Lab Mr. Zamojski Q1 Mass & Volume PRE-LAB ASSIGNMENT

Chemistry Lab Mr. Zamojski Q1 Mass & Volume PRE-LAB ASSIGNMENT Name: Date: Chemistry Lab Mr. Zamojski Q1 Mass & Volume PRE-LAB ASSIGNMENT Required Safety Data Sheets (SDS): 1) Copper 2) Tin These 2 safety data sheets (SDS) are attached at the end of this pre-lab assignment.

More information

Introduction to Chemistry

Introduction to Chemistry Introduction to Chemistry CHEMISTRY = the study of the composition of matter, its chemical and physical changes, and the changes that accompany these changes. Scientific law vs. theory: Scientific law-

More information

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter.

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. Name: Block: Date: LCPS Core Experience Heat Transfer Student Notes OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. LINK 1. Particles in

More information

Density Bundle Contents

Density Bundle Contents Density Bundle Contents Click the items in the list below to jump to that part of the PDF. Unit Bundle Directions... 2 Printing Orientation... 6 Foldable: Density... 7 Foldable: Density Observed in Objects...11

More information

States of matter. Book page , Syllabus /09/2016

States of matter. Book page , Syllabus /09/2016 States of matter Book page 169 171, 173-175 Syllabus 5.7 5.14 05/09/2016 cgrahamphysics.com 2015 What is my state of matter? sand Decaffeinated coffee Glass Supercritical fluids Supercritical fluids Coldest

More information

You can call the center of the atom, the nucleus. Most atoms in our environment have a stable nucleus.

You can call the center of the atom, the nucleus. Most atoms in our environment have a stable nucleus. Build an Atom Simulation Part One Learning Objectives: Draw models that show atoms Use information about the number of protons, neutrons, and electrons to Identify an element and its position on the periodic

More information

Study Guide for Chapters 2, 3, and 10

Study Guide for Chapters 2, 3, and 10 Study Guide for Chapters 2, 3, and 10 1. What is matter? Where can it be found? Anything that has mass and takes up space. 2. What units are used to measure volume? Liters and meters cubed 3. How would

More information

DETERMINING AND USING H

DETERMINING AND USING H DETERMINING AND USING H INTRODUCTION CHANGES IN CHEMISTRY Chemistry is the science that studies matter and the changes it undergoes. Changes are divided into two categories: physical and chemical. During

More information

1. Base your answer to the following question on the information below and on your knowledge of chemistry.

1. Base your answer to the following question on the information below and on your knowledge of chemistry. 1. Base your answer to the following question on the information below and on your knowledge of chemistry. A beaker contains a liquid sample of a molecular substance. Both the beaker and the liquid are

More information

Lesson 2 Changes in State

Lesson 2 Changes in State Lesson 2 Changes in State Student Labs and Activities Page Launch Lab 25 Content Vocabulary 26 Lesson Outline 27 MiniLab 29 Content Practice A 30 Content Practice B 31 Language Arts Support 32 School to

More information

You be the Judge: Density

You be the Judge: Density 1 2 You be the Judge: Density Objectives The students will: develop an understanding of density calculate density of objects collect, analyze, and interpret data solve equations collaborate with partners

More information

Chapter 1, Lesson 3: The Ups and Downs of Thermometers

Chapter 1, Lesson 3: The Ups and Downs of Thermometers Chapter 1, Lesson 3: The Ups and Downs of Thermometers Key Concepts The way a thermometer works is an example of heating and cooling a liquid. When heated, the molecules of the liquid in the thermometer

More information

DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY

DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY LAB DEBRIEF What was the independent (test) variable? What was the dependent (outcome) variable? Which trial was solid, liquid, gas? Explain.

More information

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways Law vs. Theory A law summarizes what happens A theory (model) is an attempt to explain why it happens. Unit 2: (Chapter 5) Measurements and Calculations Cartoon courtesy of NearingZero.net Steps in the

More information

SG 4 Elements and Chemical Bonds 5 States of Matter

SG 4 Elements and Chemical Bonds 5 States of Matter Name Date Period SG 4 Elements and Chemical Bonds 5 States of Matter 4.1 Electrons and Energy Levels Directions: On the line before each definition, write the term that matches it correctly. Each term

More information

Regents Chemistry: Thermodynamics and Gas Laws Test [Practice]

Regents Chemistry: Thermodynamics and Gas Laws Test [Practice] Name Date Regents Chemistry: Thermodynamics and Gas Laws Test [Practice] 1. In a laboratory where the air temperature is 22 C, a steel cylinder at 100. C is submerged in a sample of water at 40. C. In

More information

TITLE Intermolecular forces and molecules. AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder)

TITLE Intermolecular forces and molecules. AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder) TITLE Intermolecular forces and molecules AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder) COURSE General Chemistry TYPE Interactive Lecture Demonstration

More information

Gas Pressure and Temperature Relationships *

Gas Pressure and Temperature Relationships * Gas Pressure and Temperature Relationships * MoLE Activities To begin this assignment you must be able to log on to the Internet (the software requires OSX for mac users). Type the following address into

More information

Student Exploration: Energy Conversion in a System

Student Exploration: Energy Conversion in a System Name: Date: Student Exploration: Energy Conversion in a System Vocabulary: energy, gravitational potential energy, heat energy, kinetic energy, law of conservation of energy, specific heat capacity Prior

More information

Full file at

Full file at Chapter Two Multiple Choice 1. Which SI prefix means 1000? A. Milli B. Centi C. Deci D. Kilo Answer: D; Difficulty: easy; Reference: Section 2.5 2. The number, 14.74999, when rounded to three digits is

More information

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated Teacher Information Ideal Gas Law Objectives Determine the number of moles of carbon dioxide gas generated during a reaction between hydrochloric acid and sodium bicarbonate. Through this investigation,

More information

Density of Aqueous Sodium Chloride Solutions

Density of Aqueous Sodium Chloride Solutions Experiment 3 Density of Aqueous Sodium Chloride Solutions Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

More information

Density of Brass: Accuracy and Precision

Density of Brass: Accuracy and Precision Density of Brass: Accuracy and Precision Introduction Density is a measure of a substance s mass-to-volume ratio. For liquids and solids, density is usually expressed in units of g/ml or g/cm 3 ; these

More information

Unit 1: Introduction to Chemistry

Unit 1: Introduction to Chemistry Unit 1: Introduction to Chemistry I. Observations vs. Inferences Observation: information you gather using your five senses ***You will NEVER use taste in class! o Describes facts Examples You see the

More information

Chapter 1, Lesson 3: The Ups and Downs of Thermometers

Chapter 1, Lesson 3: The Ups and Downs of Thermometers Chapter 1, Lesson 3: The Ups and Downs of Thermometers Key Concepts The way a thermometer works is an example of heating and cooling a liquid. When heated, the molecules of the liquid in the thermometer

More information

Practice Packet Unit 7: Heat

Practice Packet Unit 7: Heat Regents Chemistry: Mr. Palermo Practice Packet Unit 7: Heat Review (Things you need to know in order to understand the new stuff ) Particle Diagrams Draw a particle diagram of a compound of CaCl2, using

More information

Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown

Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown Key Concepts Different substances are made from different atoms, ions, or molecules, which interact with water in different ways. Since dissolving

More information

Chapter 10 Practice. Name: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 10 Practice. Name: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Score: 0 / 18 points (0%) [3 open ended questions not graded] Chapter 10 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A sample of gas

More information

Why does a hot air balloon rise up in the air? Record your ideas on the lines below. Why are gases less dense than liquids?

Why does a hot air balloon rise up in the air? Record your ideas on the lines below. Why are gases less dense than liquids? Fluids and Density Before You Read Why does a hot air balloon rise up in the air? Record your ideas on the lines below. What are fluids? A fluid is any form of matter that can flow. Liquids and gases are

More information

Activity 3.2: What holds the atoms of a molecule together?

Activity 3.2: What holds the atoms of a molecule together? Activity 3.2: What holds the atoms of a molecule together? In the previous investigations, you explored the idea that matter is made up of positive and negative particles that can attract or repel each

More information

Physical Science Final Examination-Review Sheet (14-15) KEY. 1. A process used to answer questions or solve problems is called scientific inquiry.

Physical Science Final Examination-Review Sheet (14-15) KEY. 1. A process used to answer questions or solve problems is called scientific inquiry. Physical Science Final Examination-Review Sheet (14-15) KEY 1. A process used to answer questions or solve problems is called scientific inquiry. 2. Anything that has mass and takes up space is matter.

More information

Chapter 3, Lesson 2: Finding Volume The Water Displacement Method

Chapter 3, Lesson 2: Finding Volume The Water Displacement Method Chapter 3, Lesson 2: Finding Volume The Water Displacement Method Key Concepts A submerged object displaces a volume of liquid equal to the volume of the object. One milliliter (1 ml) of water has a volume

More information

States of Matter. What physical changes and energy changes occur as matter goes from one state to another?

States of Matter. What physical changes and energy changes occur as matter goes from one state to another? Name States of Matter Date What physical changes and energy changes occur as matter goes from one state to another? Before You Read Before you read the chapter, think about what you know about states of

More information

THIS LAB IS CHAOS! 2. In liquids or gases? Explain.

THIS LAB IS CHAOS! 2. In liquids or gases? Explain. THIS LAB IS CHAOS! PRELAB INTRODUCTION Part 1 We are already familiar with the Enthalpy (H) for a reaction. We know that if a reaction gives off heat, that it is considered exothermic and has a negative

More information

Pg , Syllabus

Pg , Syllabus Pg. 169 171, 173-175 Syllabus 5.7 5.14 www.cgrahamphysics.com What do you remember? End www.cgrahamphysics.com How do particles move? 3 of 30 Boardworks Ltd 2012 4 of 30 Boardworks Ltd 2012 States of matter

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

10. How many significant figures in the measurement g? a. 2 b. 3 c. 4 d. 5 e. 6

10. How many significant figures in the measurement g? a. 2 b. 3 c. 4 d. 5 e. 6 Summer Practice Test Ch 1 (va pg 1 of 5) Matter and Measurement Name Per You should NOT use a calculator except for #0. This practice test should be in your 3 ring notebook on the first day of school.

More information

Activity Title: It s Either Very Hot or Very Cold Up There!

Activity Title: It s Either Very Hot or Very Cold Up There! Grades 3-5 Teacher Pages Activity Title: It s Either Very Hot or Very Cold Up There! Activity Objective(s): In this activity, and the follow-up activity next week, teams will design and conduct experiments

More information

INPUT~ Explore It! Station Directions: This is one of the four INPUT stations. They may be completed in any order.

INPUT~ Explore It! Station Directions: This is one of the four INPUT stations. They may be completed in any order. INPUT~ Explore It! Station Directions: This is one of the four INPUT stations. They may be completed in any order. One member of the group will read the task cards in order. The group will be responsible

More information

Lesson 1 Matter and Its Properties

Lesson 1 Matter and Its Properties Lesson 1 Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 Math Skills 15 School to Home 16 Key Concept Builders

More information

Solids, Liquids, and Gases. Chapter 14

Solids, Liquids, and Gases. Chapter 14 Solids, Liquids, and Gases Chapter 14 Matter & Thermal Energy Matter can exist as a solid, a liquid, a gas or a plasma. The Molecular Kinetic Theory of Matter explains their differences and how they can

More information

Lesson 1 Solids, Liquids, and Gases

Lesson 1 Solids, Liquids, and Gases Lesson 1 Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 School to Home 15 Key Concept Builders 16 Enrichment

More information

Practice Packet Unit 1: Math & Measurement

Practice Packet Unit 1: Math & Measurement Regents Chemistry Practice Packet Unit 1: Math & Measurement 1 Lesson 1: Metric Conversions Objective: o Recognize and convert various metric scales of measurement Use Reference Tables C and D to help

More information

Date: Summer Stem Section:

Date: Summer Stem Section: Page 1 of 7 Name: Date: Summer Stem Section: Summer assignment: Build a Molecule Computer Simulation Learning Goals: 1. Students can describe the difference between a molecule name and chemical formula.

More information

Significant Digits and Measurement

Significant Digits and Measurement Significant Digits and Measurement What digits are significant when recording a measurement? Scientists do a lot of measuring. When scientists use an instrument (such as a ruler, graduated cylinder, spectrophotometer

More information

TEACHER NOTES: ICE CUBE POSTER

TEACHER NOTES: ICE CUBE POSTER TEACHER NOTES: NATIONAL CURRICULUM LINKS THE PARTICULATE NATURE OF MATTER the properties of the different states of matter (solid, liquid and gas) in terms of the particle model, including gas pressure

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 3 12 SECTION Properties of Matter Physical Properties California Science Standards 8.7.c, 8.8.a, 8.8.b, 8.8.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

Boyle s Law and Charles Law Activity

Boyle s Law and Charles Law Activity Boyle s Law and Charles Law Activity Introduction: This simulation helps you to help you fully understand 2 Gas Laws: Boyle s Law and Charles Law. These laws are very simple to understand, but are also

More information

Chapter 5, Lesson 1: Water is a Polar Molecule

Chapter 5, Lesson 1: Water is a Polar Molecule Chapter 5, Lesson 1: Water is a Polar Molecule Key Concepts The water molecule, as a whole, has 10 protons and 10 electrons, so it is neutral. In a water molecule, the oxygen atom and hydrogen atoms share

More information

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70)

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 11 - Gas Laws Practice Problems Due Date Assignment On-Time (100) Late (70) 11.1 11.2 11.3 11.4 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located

More information

Name: Hour: Teacher: ROZEMA / CHEMISTRY. Molecular Attractions

Name: Hour: Teacher: ROZEMA / CHEMISTRY. Molecular Attractions Name: Hour: Teacher: ROZEMA / CHEMISTRY Molecular Attractions Name: Hour: Teacher: Ms. Rozema Starter Questions Grading: 2 pts = Date and full question written, question answered. 1 pt. = one requirement

More information

Post-Show HOT AND COLD. Gases. Liquids. Solids. After the Show. Traveling Science Shows

Post-Show HOT AND COLD. Gases. Liquids. Solids. After the Show. Traveling Science Shows Traveling Science Shows Post-Show HOT AND COLD After the Show We recently presented a Hot and Cold show at your school, and thought you and your students might like to continue investigating this topic.

More information

Matter Lesson 2. Learning Goal 3: I can describe the differences between physical and chemical changes of matter.

Matter Lesson 2. Learning Goal 3: I can describe the differences between physical and chemical changes of matter. Matter Lesson 2 Learning Goal 2: I can describe the differences between intensive physical properties, extensive physical properties, and chemical properties of matter. Learning Goal 3: I can describe

More information

Molecules and Matter. Grade Level: 4 6

Molecules and Matter. Grade Level: 4 6 Molecules and Matter Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 4 Partner Project page 5 Crossword Puzzle page 6 Answer Key page 7 Classroom Procedure 1. Without introduction,

More information

Chemistry Foundations of Chemistry Test. This is due:

Chemistry Foundations of Chemistry Test. This is due: Chemistry Foundations of Chemistry Test This is due: Directions: Answer the following questions on a separate sheet of paper (or on this paper if you have room), staple to this paper (if you used a separate

More information

Lesson 6 Matter. Introduction: Connecting Your Learning

Lesson 6 Matter. Introduction: Connecting Your Learning Lesson 6 Matter Introduction: Connecting Your Learning The previous lessons discussed mechanics and many forms of motion. Lesson 6 introduces the second major topic in physics, which is matter. This lesson

More information

Student Name. Teacher

Student Name. Teacher Student Name Teacher Question: I chose this question because Research Keywords Research Topic Source: Research Summary Paragraph Hypothesis If then Variables Manipulated Variable Responding Variable Constants

More information

Physics Lab 202P-3. Electric Fields and Superposition: A Virtual Lab NAME: LAB PARTNERS:

Physics Lab 202P-3. Electric Fields and Superposition: A Virtual Lab NAME: LAB PARTNERS: Physics Lab 202P-3 Electric Fields and Superposition: A Virtual Lab NAME: LAB PARTNERS: LAB SECTION: LAB INSTRUCTOR: DATE: EMAIL ADDRESS: Penn State University Created by nitin samarth Physics Lab 202P-3

More information

EXPERIMENT 1 Chemistry 110 LABORATORY SAFETY

EXPERIMENT 1 Chemistry 110 LABORATORY SAFETY EXPERIMENT 1 Chemistry 110 LABORATORY SAFETY MEASUREMENTS PURPOSE: The Purpose of this laboratory exercise is for the students to develop the skills of measuring length, volume, mass and temperature and

More information

DEMONSTRATION 4.1 MOLECULES HITTING EACH OTHER

DEMONSTRATION 4.1 MOLECULES HITTING EACH OTHER DEMONSTRATION 4.1 MOLECULES HITTING EACH OTHER Directions for doing the demonstration are in the Science Book Teacher's Guide. 1. Students should include these ideas: The air moving out of the hair dryer

More information

KEY 1 = PAN 2 = RIDERS 3 = BEAMS 4 = POINTER ~ Metric Measurement Scientist

KEY 1 = PAN 2 = RIDERS 3 = BEAMS 4 = POINTER ~ Metric Measurement Scientist Metric Measurement Scientist Mass Lab Class Date 2015 Objective: To use a triple-beam balance to these 3 together = 1 pt KEY a) to measure mass directly usually a SOLID b) to find mass by difference usually

More information

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018 Chemistry Day 5 Friday, August 31 st Tuesday, September 4 th, 2018 Do-Now Title: BrainPOP: States of Matter 1. Write down today s FLT 2. List two examples of gases 3. List two examples of things that are

More information

Lesson Plan: Stearic Acid

Lesson Plan: Stearic Acid Lesson Plan: Stearic Acid Created by: In this lesson, students investigate how stearic acid undergoes a 2014 AACT Middle School phase change from solid to liquid and back from liquid to solid. Content

More information

Chem. 105 Experiment 2 Name: Partners name(s): Laboratory 2: Density

Chem. 105 Experiment 2 Name: Partners name(s): Laboratory 2: Density Name: Partners name(s): Laboratory 2: Density Stamp: Density/Study of Matter (Theory-Test cycle) Objects to measure mass and volume: blocks of wood, Styrofoam, rubber stoppers, rocks. String, rulers, graduated

More information

Part I. Math Skills. 1. Convert 0.01 kilograms to grams. 2. Convert 180 centiseconds to seconds. 3. Convert 2.5 moles to millimoles.

Part I. Math Skills. 1. Convert 0.01 kilograms to grams. 2. Convert 180 centiseconds to seconds. 3. Convert 2.5 moles to millimoles. Name Date: Part I. Math Skills. 1. Convert 0.01 kilograms to grams. 2. Convert 180 centiseconds to seconds. 3. Convert 2.5 moles to millimoles. 4. Convert 4500 meters to kilometers. 5. Convert 5000 seconds

More information

Unit 1: Measurements Homework Packet (75 points)

Unit 1: Measurements Homework Packet (75 points) Name: Period: By the end of Unit 1 you should be able to: Measurements Chapter 3 1. Convert between scientific notation and standard notation 2. Define and identify significant digits including being able

More information

Chapter 3 Metric Units and Conversions

Chapter 3 Metric Units and Conversions Chapter 3 Metric Units and Conversions 3.1 The Metric System and Prefixes Metric system: a simple decimal system of measurement that uses the following basic units: Quantity Basic Unit Symbol length meter

More information

Unit 1: Analyzing Data 1. Measure the following using the appropriate number of significant digits. Name Hour Date. b. o C

Unit 1: Analyzing Data 1. Measure the following using the appropriate number of significant digits. Name Hour Date. b. o C Name Hour Date Chemistry Semester 1 Review!!! If you have completed ALL of the review on the assigned days you are allowed to use a cheat sheet that is created on the back of the periodic table found on

More information

2011 Sec 1 Physics (Term 2) Block Test Practice Questions (by Topic)

2011 Sec 1 Physics (Term 2) Block Test Practice Questions (by Topic) 2011 Sec 1 Physics (Term 2) lock Test Practice Questions (by Topic) Name: ( ) Class: 1/ Date: Section (10 marks): Multiple-Choice Questions Choose the best answer and write its letter in the table provided

More information

PS. 1 - SCIENTIFIC INVESTIGATION

PS. 1 - SCIENTIFIC INVESTIGATION PS. 1 - SCIENTIFIC INVESTIGATION Scientific Method: an organized set of investigative procedures which scientists follow to answer testable questions. Steps include: 1. Identify the problem or question.

More information

6-3 Particle model of matter Physics

6-3 Particle model of matter Physics 6-3 Particle model of matter Physics.0 A teacher uses a tray filled with table tennis balls to model how particles are arranged in materials, as shown in Figure Figure. Initially the balls are arranged

More information

Intermolecular and Ionic Forces

Intermolecular and Ionic Forces Intermolecular and Ionic Forces Comparing IMF Using Percent Evaporation: This lab will explore changing masses during evaporation of organic liquids. The decrease in mass is related to the strength of

More information

Conceptual Chemistry

Conceptual Chemistry Conceptual Chemistry Objective 1 Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Solids Definite shape Definite volume Particles are vibrating and packed close

More information

TEACHER NOTES SCIENCE NSPIRED

TEACHER NOTES SCIENCE NSPIRED Science Objectives Students will explore the force two charges exert on each other. Students will observe how the force depends upon the magnitude of the two charges and the distance separating them. Students

More information

Matter is made of atoms and molecules

Matter is made of atoms and molecules Name Per Talking to the Text Atoms and Molecules pt.2 Author Says (important ideas, vocabulary) Matter is made of atoms and molecules We have already used the term atom and molecule a couple of times.

More information

Thermal Energy and Temperature Lab. Experiment Question: How can the difference between thermal energy and temperature be experimentally observed?

Thermal Energy and Temperature Lab. Experiment Question: How can the difference between thermal energy and temperature be experimentally observed? Thermal Energy and Temperature Lab Name 7 th Grade PSI Grade / 20 Experiment Question: How can the difference between thermal energy and temperature be experimentally observed? Hypothesis Starters: 1.

More information

Chapter 3, Lesson 1: What is Density?

Chapter 3, Lesson 1: What is Density? Chapter 3, Lesson 1: What is Density? Key Concepts Density is a characteristic property of a substance. The density of a substance is the relationship between the mass of the substance and how much space

More information

Measurements in the Laboratory

Measurements in the Laboratory Measurements in the Laboratory Objectives The objectives of this laboratory are: a) Use standard laboratory measurement devices to measure length, volume and mass amounts. b) Use these measurements to

More information