Lesson Plan: Stearic Acid

Size: px
Start display at page:

Download "Lesson Plan: Stearic Acid"

Transcription

1 Lesson Plan: Stearic Acid Created by: In this lesson, students investigate how stearic acid undergoes a 2014 AACT Middle School phase change from solid to liquid and back from liquid to solid. Content Writing Team Temperature readings will be collected at one-minute intervals once the acid melts, the heat escapes, and the acid cools. Students are introduced to the idea that energy loss does not always result in a continuous temperature drop. Resource Type Lesson plan Grade Level Middle school Objectives By the end of this lesson, students should be able to Describe the reason that temperatures do not fall uniformly when a substance cools from liquid to solid. Determine the melting and freezing point of a substance through data collection and observation. Chemistry Topics This lesson supports students understanding of the following topics in chemistry: States of matter Freezing point Melting point Time Teacher Preparation: 30 mins Lesson: 80 mins Materials For each group: Test tube (16 x 150 mm) Stearic acid Hot plate Test tube rack Ring stand with clamp 1,000-L beaker Water Thermometer Test tube tongs Timer Safety Students will need to wear aprons and safety goggles. Do not directly touch stearic acid with your skin. If any acid gets on students skin, they should immediately alert you and thoroughly flush their skin with water. Exercise caution when using a heat source. Hot plates should be turned off and unplugged as soon as they are no longer needed.

2 The test tube should be removed from the hot water bath with gloves or test tube tongs. Students should wash their hands thoroughly before leaving the lab. When students complete the lab, instruct them how to clean up their materials. Vocabulary Terms Melting Melting point Solidifying Freezing point Keywords Stearic acid, graph, temperature, melting point, freezing point, solidifying Teacher Notes MSDS for stearic acid: If the class is shorter than 80 mins, the lesson can be broken into two parts. Students will set up the experiment and melt the acid on day one. For day two, the teacher can melt the acid prior to class so the students can start right away with tracking the minute by minute temperatures as the acid cools and solidifies. Lower level: prep the graph and the materials so that everything is set up and the students just proceed with the experiment and data collection Higher level: Students can set up the entire lab and write their own step-by-step procedures. They can also decide what type of graph is best to show the temperature change of the acid cooling. Lesson Student Activity Sheet: Stearic Acid Engage - Begin the class by having a short discussion about acids and their properties. Ask students what they know about acids and what acids can do and are used for. - Move the conversation in this direction: did anyone shower/bathe in the last 24 hours? Tell the students that they may have used an acid while bathing. Describe stearic acid and what it is used for. [It s a vegetable-derived waxy substance that is used as a hardening agent in soaps. It s also used in candles.] - Finally, ask students if all acids are liquids at room temperature. Explain that not all acids are liquids at room temperature and stearic acid is one of those examples. - Hand out the Student Activity Sheet and explain what students need to complete. The graph and summary questions can be assigned as homework, depending on time constraints. Explore 1. Place 3 ml of stearic acid into a test tube using a scoop (the teacher may want to prepare test tubes ahead of time to save time or to prevent waste).

3 2. Fill 1,000 ml of water into the beaker and place onto the hot plate. Depending on the hot plate, this may need to be done sooner as some hot plates take a while to heat. 3. Suspend a thermometer in the center of the water in the beaker using the ring stand. Do not just place the thermometer into the bottom of the beaker as the heat from the hot plate will distort temperature readings. 4. Once the water reaches 50 o C, remove the thermometer from the water and lower the bottom half of the test tube into the center of the water. Do not allow any water to get into the test tube. 5. Completely melt the stearic acid and remove it from the hot water. The acid will be clear once the solid melts. Using the test tube tongs, remove the test tube and place into the test tube rack. Immediately place the thermometer into the acid and position it so that it can be read without being touched. It is important to not touch the thermometer or test tube while it cools to allow for proper data collection. 6. Once the temperature stops rising on the thermometer, begin recording and timing the temperature readings. 7. Continue to take the temperature of the acid every minute for 30 minutes 8. Once the acid becomes solid, do not remove the thermometer! It may break. Melt the acid again, removing the thermometer once it melts. Place the acid in the test tube rack to cool and rinse the thermometer off in the sink with hot water. If any stearic acid remains on the thermometer, the hot water should remove it from the thermometer. Explain 1. Fill in the temperature data table provided on the activity sheet. 2. Create a graph of temperature versus time. o On the graph: label the area where the acid is liquid, solid, and solidifying. [The flat o area on the line graph is generally where the acid is a mixture of solid/liquid.] Determine the freezing/melting point using the graph. [Again the flat area on the graph is where the melting/freezing point will be found.] 3. Once students have completed the activity, discuss the following as a class: 1. Why did the temperature remain constant for several minutes well above room temperature? [Energy loss goes to converting the liquid to solid, not to changing temperature.] 2. What happens structurally to the molecules of stearic acid as the substance cools? [The molecules slow down and begin to stick together, so they don t have enough energy to bounce around in the liquid motion any more. They get closer together, which results in the solid state.] 3. What happens to the temperature of a bucket of ice as it melts into liquid water? [The ice should be at the freezing point of water because it s a mixture of water and ice. As the ice melts, the entire system should remain at the freezing point of water until all of the ice melts. If the bucket is large enough, this could take hours. Despite the room temperature around the bucket and ice being much higher, the temperature of the melted water can t increase until the entire process of melting is complete. This is similar to the stearic acid solidifying and the temperature remaining constant for several minutes even though the test tube and acid are surrounded by room temperature.] Elaborate 1. Fill a bucket with ice and add some room temperature tap water. 2. Insert a thermometer into the ice bath and record the temperature every minute until the ice melts. 3. Create a graph of temperature versus time and label the mixture of water and ice phase and the total liquid state.

4 4. What happens to the temperature of the water as the ice melts? [it hovers around freezing] 5. Why does the water maintain a temperature at/around freezing for so long despite the ice melting and the relatively warmer air temperature around the bucket? [The process of melting needs to be complete before the temperature can rise.] 6. How does this translate to a situation where a sealed thermos keeps ice cubes frozen in water for hours after it is removed from the freezer? [The sealed thermos traps the air within and the cold water and ice lower the air temperature. If the air temperature and the water remain at or near freezing, ice will remain as ice in the water for a longer period of time.] 7. How does this temperature versus time graph compare to your stearic acid graph? [This graph should begin with lower values before rising and plateauing. Finally the temperature will rise again after melting is complete. Depending on the amount of ice, the graph would indicate a much larger time period and an inverted line graph from the stearic acid. The melting point is also lower than steric acid s melting point.] 8. It is possible to add the following to the above experiment: a. Place the melted stearic acid into a small beaker of water and track the temperature of the water simultaneously with the cooling acid. Note the results and when the water temperature stops increasing. [The water temperature should continue to increase for some time even as the stearic acid cools.] Evaluate Multiple Choice Items 1. Why does stearic acid remain a solid at room temperature? a. It is a weak acid b. The freezing point is higher than room temperature* c. The liquid evaporated out of the acid, leaving solid particles d. The acid is too dense to be a liquid 2. Why should the thermometer remain motionless in the acid as it cools? a. The liquid in the thermometer could get shaken and therefore the reading could change b. Moving the thermometer in the solidifying acid could cause the thermometer to break* c. Friction could be created with movement that could increase the temperature artificially 3. Why does the temperature remain constant during the state change from liquid to solid? a. The energy released from molecules packed together keeps the temperature constant* b. The thermometer does not show accurate readings as the substance changes states c. Energy release pauses as the substance changes states Open-Ended Questions 1. Why do you think the temperature of the melted stearic acid remained steady or near steady at a temperature well above room temperature for at least several minutes? [the energy loss involved molecules slowing and sticking together before the temperature dropped again. Also the bonding between the molecules sticking releases some energy into the system]

5 2. What was going on with the particles of stearic acid (on a very small level) that can help explain why the temperature didn t drop consistently? [as energy escaped from the liquid, the particles came closer together to change from a liquid to a solid. During this transition, no temperature change is observed.] 3. Why did the temperature drop consistently as soon as it was removed from the warm water bath and then again at the end of the time period? [When all of a substance is in the same state, the temperature can change consistently to equalize to the temperature of its surroundings. But when a substance changes state, the temperature remains constant no matter what the surrounding temperature is.] Cross-Disciplinary Extensions Connect to Math Graphing; conversion between Celsius and Fahrenheit Connect to Reading/Writing Connect stearic acid to your home by researching what materials in your home contain stearic acid and how the stearic acid is necessary in the product, including what it does and what the product would be without it. Next Generation Science Standards This lesson supports the following: Practices of Science and Engineering Asking questions and defining problems Planning and carrying out investigations Analyzing and interpreting data Constructing explanations and designing solutions Engaging in argument from evidence Using mathematical and computational thinking Obtaining, evaluating, and communicating information Cross-Cutting Concepts Patterns Cause and Effect: Mechanism and Explanation Scale, Proportion, and Quantity Energy and Matter: Flows, Cycles, and Conservation Disciplinary Core Ideas, Grades 6-8 Physical science Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1) In a liquid, the molecules are constantly in contact with others. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4)

6 The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (MS-PS1-4) The term heat as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4) The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system s material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4) Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-3),(MS-PS3-4) The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. (MS-PS3-4) Energy is spontaneously transferred out of hotter regions or objects and into colder ones. (MS-PS3-3)

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter.

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. Name: Block: Date: LCPS Core Experience Heat Transfer Student Notes OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. LINK 1. Particles in

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 2, LESSON 1 HEAT, TEMPERATURE, AND CONDUCTION MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state

More information

Thermal Energy and Temperature Lab. Experiment Question: How can the difference between thermal energy and temperature be experimentally observed?

Thermal Energy and Temperature Lab. Experiment Question: How can the difference between thermal energy and temperature be experimentally observed? Thermal Energy and Temperature Lab Name 7 th Grade PSI Grade / 20 Experiment Question: How can the difference between thermal energy and temperature be experimentally observed? Hypothesis Starters: 1.

More information

Chapter 2, Lesson 5: Changing State Melting

Chapter 2, Lesson 5: Changing State Melting Chapter 2, Lesson 5: Changing State Melting Key Concepts Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that

More information

What Do You Think? Investigate GOALS. Part A: Freezing Water

What Do You Think? Investigate GOALS. Part A: Freezing Water Activity 5 Freezing Water GOALS In this activity you will: Determine the freezing point of water. Show graphically what happens to the temperature as water is cooled to freezing and while it is freezing.

More information

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date:

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date: /16 Points Lab: Phase Change Introduction Every substance has a characteristic freezing point and melting point. As you might expect, the substance changes phase at each of these temperatures. A pure substance

More information

Chemical Bonds. MATERIALS 24-well microplate calcium chloride candle citric acid conductivity tester ethanol gloves iron ring lab apron

Chemical Bonds. MATERIALS 24-well microplate calcium chloride candle citric acid conductivity tester ethanol gloves iron ring lab apron Microscale Chemical Bonds Chemical compounds are combinations of atoms held together by chemical bonds. These chemical bonds are of two basic types ionic and covalent. Ionic bonds result when one or more

More information

States of Matter: Solid, Liquid, and Gas

States of Matter: Solid, Liquid, and Gas Movie Special Effects Activity 2 States of Matter: Solid, Liquid, and Gas GOALS In this activity you will: Create an animation to illustrate the behavior of particles in different phases of matter, and

More information

Performance script for sixth graders By Thomas Kuo and Kimberly Kline LEAPS Fellows, University of California, Santa Barbara

Performance script for sixth graders By Thomas Kuo and Kimberly Kline LEAPS Fellows, University of California, Santa Barbara Performance script for sixth graders By Thomas Kuo and Kimberly Kline LEAPS Fellows, 2007-08 University of California, Santa Barbara [Remember to get answers from a wide variety of students in the audience.

More information

MiSP PHASE CHANGES Teacher Guide, L1 L3. Introduction

MiSP PHASE CHANGES Teacher Guide, L1 L3. Introduction MiSP PHASE CHANGES Teacher Guide, L1 L3 Introduction Several related areas of physical science may be addressed in this unit: melting and freezing points; relative motion of particles in solids, liquids,

More information

Rashid School for Boys. Year 7 Science. Particles. Name: Form:

Rashid School for Boys. Year 7 Science. Particles. Name: Form: Rashid School for Boys Year Science Particles Name: Form: 1 By the end of this topic.. Unit Particles Level 3 I know that ice melts when it gets too warm and that liquid water turns into solid water (ice)

More information

INTRODUCTION TO LESSON CLUSTER 7

INTRODUCTION TO LESSON CLUSTER 7 INTRODUCTION TO LESSON CLUSTER 7 EXPLAINING MELTING AND SOLIDIFYING A. Lesson Cluster Goals and Lesson Objectives Goals Students should be able to explain melting and solidifying, by reference to the molecular

More information

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS The Molar Mass of a Volatile Liquid Computer 3 One of the properties that helps characterize a substance is its molar mass. If the substance in question is a volatile liquid, a common method to determine

More information

Experiment #4. Molar Mass by Freezing Point Depression

Experiment #4. Molar Mass by Freezing Point Depression Experiment #4. Molar Mass by Freezing Point Depression Introduction When a nonvolatile solute is dissolved in a solvent, the freezing point of the solution is lowered. This process is called Freezing Point

More information

Activity Title: It s Either Very Hot or Very Cold Up There!

Activity Title: It s Either Very Hot or Very Cold Up There! Grades 3-5 Teacher Pages Activity Title: It s Either Very Hot or Very Cold Up There! Activity Objective(s): In this activity, and the follow-up activity next week, teams will design and conduct experiments

More information

MiSP PHASE CHANGES UNIT

MiSP PHASE CHANGES UNIT MiSP PHASE CHANGES UNIT Introduction: Several related areas of physical science may be addressed in this unit: melting and freezing points, relative motion of particles in solids, liquids and gases, characteristics

More information

Chapter 2, Lesson 1: Heat, Temperature, and Conduction

Chapter 2, Lesson 1: Heat, Temperature, and Conduction Chapter 2, Lesson 1: Heat, Temperature, and Conduction Key Concepts Adding energy (heating) atoms and molecules increases their motion, resulting in an increase in temperature. Removing energy (cooling)

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 3, LESSON 1: WHAT IS DENSITY? MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. DISCIPLINARY

More information

Reviewing the Alignment of IPS with NGSS

Reviewing the Alignment of IPS with NGSS Reviewing the Alignment of IPS with NGSS Harold A. Pratt & Robert D. Stair Introductory Physical Science (IPS) was developed long before the release of the Next Generation Science Standards (NGSS); nevertheless,

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

Experiment 7 Can You Slow It Down?

Experiment 7 Can You Slow It Down? Experiment 7 Can You Slow It Down? OUTCOMES After completing this experiment, the student should be able to: tell which factors influence the reaction rate and how they influence the rate. change the temperature

More information

Activity 6.5 From gas to liquid to solid

Activity 6.5 From gas to liquid to solid Activity 6.5 This activity is an extension of Activity 6.4a in which ice is used to make a container cold. As in Activity 6.4a, this activity will work only with sufficient water vapor in the air. Here,

More information

States of Matter: Solid, Liquid, and Gas

States of Matter: Solid, Liquid, and Gas Movie Special Effects Activity 2 States of Matter: Solid, Liquid, and Gas GOALS In this activity you will: Create an animation to illustrate the behavior of particles in different phases of matter, and

More information

Lesson Plan Book-stacking Activity

Lesson Plan Book-stacking Activity T o g o d i r e c t l y t o a l e s s o n, c l i c k o n e o f t h e f o l l o w i n g l i n k s : B o o k - s t a c k i n g A c t i v i t y B a l l o o n A c t i v i t y H y d r o g e n G a s L a b F

More information

CALORIMETRY: Heat of Fusion of Ice

CALORIMETRY: Heat of Fusion of Ice Pre-Lab Discussion CALORIMETRY: Heat of Fusion of Ice When a chemical or physical change takes place, heat is either given off or absorbed That is, the change is either exothermic or endothermic It is

More information

Chapter 1, Lesson 3: The Ups and Downs of Thermometers

Chapter 1, Lesson 3: The Ups and Downs of Thermometers Chapter 1, Lesson 3: The Ups and Downs of Thermometers Key Concepts The way a thermometer works is an example of heating and cooling a liquid. When heated, the molecules of the liquid in the thermometer

More information

Chapter 1, Lesson 3: The Ups and Downs of Thermometers

Chapter 1, Lesson 3: The Ups and Downs of Thermometers Chapter 1, Lesson 3: The Ups and Downs of Thermometers Key Concepts The way a thermometer works is an example of heating and cooling a liquid. When heated, the molecules of the liquid in the thermometer

More information

Section 16.3 Phase Changes

Section 16.3 Phase Changes Section 16.3 Phase Changes Solid Liquid Gas 3 Phases of Matter Density of Matter How packed matter is (The amount of matter in a given space) Solid: Liquid: Gas: High Density Medium Density Low Density

More information

Alka Seltzer Lab: Reaction rate - Factors that affect the rate of chemical reactions

Alka Seltzer Lab: Reaction rate - Factors that affect the rate of chemical reactions Alka Seltzer Lab: Reaction rate - Factors that affect the rate of chemical reactions Materials Lead Scribe Reporter/Questioner Clean-up WRITE ALL NOTES / DATA / OBSERVATIONS ON YOUR DATA SHEET The rate

More information

13.4. Lesson 13.4 Changes of State. Overview

13.4. Lesson 13.4 Changes of State. Overview 13.4 Lesson 13.4 Changes of State Objectives 13.4.1 Identify the conditions necessary for sublimation. 13.4.2 Determine how the conditions at which phases are in equilibrium are represented on a phase

More information

MIXTURES, COMPOUNDS, & SOLUTIONS

MIXTURES, COMPOUNDS, & SOLUTIONS MIXTURES, COMPOUNDS, & SOLUTIONS As with elements, few compounds are found pure in nature and usually found as mixtures with other compounds. A mixture is a combination of two or more substances that are

More information

EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination

EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination OBJECTIVES: EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination Observe temperature versus time and record data for pure acetic acid cooled in an ice-water bath Plot temperature

More information

Heat Transfer. Conduction Radiation Convection

Heat Transfer. Conduction Radiation Convection Heat Transfer Conduction Radiation Convection Real World Experience We are going outside to experiences heat transfer. Instructions: while outside place hand on the concrete. Note whether it feels cold

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information

CHM101 Lab - Solutions Grading Rubric

CHM101 Lab - Solutions Grading Rubric Spring 2017 Name Team Name CHM101 Lab - Solutions Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance

More information

Boiling Ice Lab. D) Materials A thermometer A beaker A stopwatch A hot plate Ice

Boiling Ice Lab. D) Materials A thermometer A beaker A stopwatch A hot plate Ice IP 644 Name: Date: Block: Boiling Ice Lab A) Introduction All matter can exist as a solid, liquid, or gas. The phase in which a substance exists depends on its temperature. The solid phase exists at a

More information

Chemistry A: States of Matter Packet Name: Hour: Page!1. Chemistry A States of Matter Packet

Chemistry A: States of Matter Packet Name: Hour: Page!1. Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page!1 Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page!2 Worksheet #1: States of Matter In this packet we will

More information

Post-Show HOT AND COLD. Gases. Liquids. Solids. After the Show. Traveling Science Shows

Post-Show HOT AND COLD. Gases. Liquids. Solids. After the Show. Traveling Science Shows Traveling Science Shows Post-Show HOT AND COLD After the Show We recently presented a Hot and Cold show at your school, and thought you and your students might like to continue investigating this topic.

More information

Temperature. Grade Level: 1-3

Temperature. Grade Level: 1-3 Temperature Grade Level: 1-3 Teacher Guidelines pages 1 2 Instructional Pages pages 3 4 Activity Page pages 5-7 Practice Page page 8 Homework Page page 9 Answer Key page 10 11 Classroom Procedure: Approximate

More information

WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE. Homework #4 is due today at the beginning of class.

WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE. Homework #4 is due today at the beginning of class. WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE Homework #4 is due today at the beginning of class. PHYSICS 1104 PERIOD 5 How are temperatures measured? How do atoms and molecules act at different

More information

Activity 2: Determine the Effect of Temperature on the Reaction Rate

Activity 2: Determine the Effect of Temperature on the Reaction Rate STUDENT MANUAL Activity 2: Determine the Effect of Temperature on the Reaction Rate Temperature can affect the speed of the reaction. Heat can speed up the movement of the substrate and enzyme molecules,

More information

The Phase Change Lab: Freezing and Melting of Water

The Phase Change Lab: Freezing and Melting of Water The Phase Change Lab: Freezing and Melting of Water Experiment 3 Freezing temperature is the temperature at which a substance turns from a liquid to a solid. Melting temperature is the temperature at which

More information

C1a The particulate nature of matter

C1a The particulate nature of matter C1a The particulate nature of matter Introduction This topic may go back over ideas that students have already met, so it does not need to take up much teaching time. Nevertheless, it is important for

More information

Lab Activity 3: Factors Affecting Reaction Rate

Lab Activity 3: Factors Affecting Reaction Rate Chemistry 3202 Lab #3 factors affecting Reaction Rate Page 1 of 5 Lab Activity 3: Factors Affecting Reaction Rate Introduction Several factors influence how fast a reaction proceeds. In this activity,

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 1, LESSON 1 MOLECULES MATTER MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance

More information

LESSON 6: Dew Drops ESTIMATED TIME Setup: 5 10 minutes Procedure: minutes

LESSON 6: Dew Drops ESTIMATED TIME Setup: 5 10 minutes Procedure: minutes LESSON 6: Dew Drops ESTIMATED TIME Setup: 5 10 minutes Procedure: 15 20 minutes DESCRIPTION Use jars of hot and cold water to demonstrate how water changes states. OBJECTIVE This lesson demonstrates the

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9 CHM 111 - Solids, Liquids, and Phase Changes (r15) - 2015 Charles Taylor 1/9 Introduction In CHM 110, we used kinetic theory to explain the behavior of gases. Now, we will discuss solids and liquids. While

More information

What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy?

What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy? CHAPTER 3 3 Changes of State SECTION States of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a change of state? What happens during a change

More information

ICY HOT LAB. In at least one sentence, explain your reasoning behind your prediction of curve:

ICY HOT LAB. In at least one sentence, explain your reasoning behind your prediction of curve: TEMPERATURE (ºC) ICY HOT LAB In the following chart sketch your prediction of what will happen to the temperature of the system as you start heating it (beaker of ice, heat until boiling). Include any

More information

Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

More information

Name Class Date. What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy?

Name Class Date. What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy? CHAPTER 2 3 Changes of State SECTION States of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a change of state? What happens during a change

More information

Name: Block : Date: (Textbook Chapter 9.4) Rate of reaction or reaction rate is how quickly or slowly reactants turn into products.

Name: Block : Date: (Textbook Chapter 9.4) Rate of reaction or reaction rate is how quickly or slowly reactants turn into products. Science 10: Chemistry! Factors Affecting Reaction Rates (Textbook Chapter 94) Rate of reaction or reaction rate is how quickly or slowly reactants turn into products reaction rate = A slow reaction has

More information

TEACHER NOTES: ICE CUBE POSTER

TEACHER NOTES: ICE CUBE POSTER TEACHER NOTES: NATIONAL CURRICULUM LINKS THE PARTICULATE NATURE OF MATTER the properties of the different states of matter (solid, liquid and gas) in terms of the particle model, including gas pressure

More information

The CCLI Initiative Computers in Chemistry Laboratory Instruction

The CCLI Initiative Computers in Chemistry Laboratory Instruction Experiment Determining the Coordination Number of Ni and Cu The CCLI Initiative Computers in Chemistry Laboratory Instruction by Enthalpy The objectives of this experiment are to... LEARNING OBJECTIVES

More information

Section 1: The Science of Energy¹

Section 1: The Science of Energy¹ SECTION1: THE SCIENCE OF ENERGY Section 1: The Science of Energy¹ What Is Energy? Energy is the ability to do work or the ability to make a change. Everything that happens in the world involves the exchange

More information

Chapter 21: Temperature, Heat and Expansion

Chapter 21: Temperature, Heat and Expansion Chapter 21: Temperature, Heat and Expansion All matter solid, liquid and gas is made of atoms or molecules, which are continually jiggling. As this jiggling is a movement, all these particles must have

More information

What Is Air Temperature?

What Is Air Temperature? 2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

More information

Phase Changes. Measuring temperature during phase changes

Phase Changes. Measuring temperature during phase changes Objective The purpose of this activity is to analyze temperature changes in water as a result of a physical state transition, formulating an hypothesis about that phenomenon and testing it, using the Labdisc

More information

6.1- Chemical vs. Physical - Pre-Lab Questions

6.1- Chemical vs. Physical - Pre-Lab Questions 6.1- Chemical vs. Physical - Pre-Lab Questions Name: Instructor: Date: Section/Group: 1. Using the procedures for each station provided as a guide, predict which properties you will be looking for in each

More information

SAM Teachers Guide Phase Change Overview Learning Objectives Possible Student Pre/Misconceptions

SAM Teachers Guide Phase Change Overview Learning Objectives Possible Student Pre/Misconceptions SAM Teachers Guide Phase Change Overview Students review the atomic arrangements for each state of matter, following trajectories of individual atoms to observe their motion and observing and manipulating

More information

Heating and Cooling Explained By The Particle Model. Notes: Part 2/4

Heating and Cooling Explained By The Particle Model. Notes: Part 2/4 Heating and Cooling Explained By The Particle Model Notes: Part 2/4 Particles are the building blocks of all things. What are Particles? Some people call them molecules. Particles are NOT alive. How many

More information

Physical and Chemical Changes Or How Do You Know When You ve Made Something New?

Physical and Chemical Changes Or How Do You Know When You ve Made Something New? Introduction Or How Do You Know When You ve Made Something New? Remember that all matter has characteristic physical and chemical properties. Matter can also undergo physical and chemical changes. How

More information

2/22/2019 NEW UNIT! Chemical Interactions. Atomic Basics #19

2/22/2019 NEW UNIT! Chemical Interactions. Atomic Basics #19 NEW UNIT! Chemical Interactions Atomic Basics #19 1 Vocabulary: Matter: Anything that has mass and takes up space. Atom: the smallest particle of matter. Element: A pure substance made up of only one type

More information

Lab: Detecting ph of Commonly Used Acids and Bases

Lab: Detecting ph of Commonly Used Acids and Bases Lab: Detecting ph of Commonly Used Acids and Bases FOR THE TEACHER Summary In this lab, students will use their knowledge of acids and bases to determine the acidity and basicity of every day items by

More information

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid Experiment 2 - Using Physical Properties to Identify an Unknown Liquid We usually think of chemists as scientists who do things with chemicals. We can picture a chemist's laboratory with rows of bottles

More information

Period 5: Thermal Energy, the Microscopic Picture

Period 5: Thermal Energy, the Microscopic Picture Name Section Period 5: Thermal Energy, the Microscopic Picture 5.1 How Is Temperature Related to Molecular Motion? 1) Temperature Your instructor will discuss molecular motion and temperature. a) At a

More information

Safety and Rules of the Lab

Safety and Rules of the Lab Safety and Rules of the Lab 1 Lab Safety Rules Part of this PowerPoint has been taken from the power point of. Tim Baker, Adam Kueltzo, and Todd Katz.former NCHS students And from Lyndon B. Johnson High

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

Periodicity of Properties of Oxides

Periodicity of Properties of Oxides Microscale Periodicity of Properties of Oxides Some oxides produce acidic solutions when they dissolve in water. These oxides are classified as acidic oxides (acid anhydrides), and they are the primary

More information

Measuring Enthalpy Changes

Measuring Enthalpy Changes Measuring Enthalpy Changes PURPOSE To observe changes in enthalpy in chemical processes. GOALS To identify exothermic and endothermic processes. To relate enthalpy changes and entropy changes to changes

More information

Lab 12 Pressure-Temperature Relationship in Gases

Lab 12 Pressure-Temperature Relationship in Gases Lab 12 Pressure-Temperature Relationship in Gases INTRODUCTION /PURPOSE/PLE LAB QUESTION Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of

More information

SAM Teachers Guide Phase Change Overview Learning Objectives Possible Student Pre/Misconceptions

SAM Teachers Guide Phase Change Overview Learning Objectives Possible Student Pre/Misconceptions SAM Teachers Guide Phase Change Overview Students review the atomic arrangements for each state of matter, following trajectories of individual atoms to observe their motion. Students observe and manipulate

More information

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information

Completion Match each each piece of equipment with its description. Please only put one number in the blank.

Completion Match each each piece of equipment with its description. Please only put one number in the blank. LAB SAFETY AND EQUIPMENT TEST Completion Match each each piece of equipment with its description. Please only put one number in the blank. 1. Used for filtering and for adding chemicals without spilling.

More information

Two students investigated the change of state of stearic acid from liquid to solid.

Two students investigated the change of state of stearic acid from liquid to solid. Two students investigated the change of state of stearic acid from liquid to solid. They measured how the temperature of stearic acid changed over 5 minutes as it changed from liquid to solid. Figure shows

More information

Newton s Second Law of Motion

Newton s Second Law of Motion Newton s Second Law of Motion Topic Newton s second law of motion describes how acceleration is related to force and mass. Introduction Newton s second law of motion states that the acceleration of an

More information

SPECIFIC HEAT OF WATER LAB 11-2

SPECIFIC HEAT OF WATER LAB 11-2 CONCEPT Heat of Fusion Changes of state (phase changes) involve the conversion or transition of matter from one of the common states (solid, liquid or gas) to another. Examples include fusion or melting

More information

Titration with an Acid and a Base

Titration with an Acid and a Base Skills Practice Titration with an Acid and a Base Titration is a process in which you determine the concentration of a solution by measuring what volume of that solution is needed to react completely with

More information

Thermal energy 7 TH GRADE SCIENCE

Thermal energy 7 TH GRADE SCIENCE Thermal energy 7 TH GRADE SCIENCE Temperature There s more to temperature than the idea of hot and cold. Remember that all matter is made up of tiny particles that are constantly moving even in solid objects.

More information

Science Safety Booklet

Science Safety Booklet Name: Period: Science Safety Booklet Grade 8 1 2 BC SCIENCE CONNECTIONS 8 GETTING TO KNOW YOUR TEXTBOOK Objective: To become familiar with your textbook 1. List the authors of your textbook (last names

More information

Energy Changes in Chemical Reactions

Energy Changes in Chemical Reactions Energy Changes in Chemical Reactions Author(s): Ashley Colvin, Yunus Kinkhabwala, Prof. Song Lin, Jonathan Neff, & Greg Sauer Date Created: October 2016 Subject: Chemistry Grade Level: Middle School Standards:

More information

Lesson 2 Changes in State

Lesson 2 Changes in State Lesson 2 Changes in State Student Labs and Activities Page Launch Lab 25 Content Vocabulary 26 Lesson Outline 27 MiniLab 29 Content Practice A 30 Content Practice B 31 Language Arts Support 32 School to

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest: Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

More information

Archimedes Principle

Archimedes Principle Archimedes Principle applies in air the more air an object displaces, the greater the buoyant force on it if an object displaces its weight, it hovers at a constant altitude if an object displaces less

More information

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab.

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab. Name: Date: Pd: Lab Partner: Lab # 13: Types of Reactions, Predicting Products of Chemical Reactions Lab Accelerated Chemistry 1 Introduction: If you examine your bicycle after it has been left out in

More information

PDFMAILER.COM Print and send PDF files as s with any application, ad-sponsored and free of charge Activity # 14.

PDFMAILER.COM Print and send PDF files as  s with any application, ad-sponsored and free of charge   Activity # 14. Activity # 14 Name Purpose Date Date due Activities 10c and 10d - Performing More Examples of Chemical Reactions To perform a number of different chemical reactions, determine what the reactants and products

More information

2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition. Dew Formation

2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition. Dew Formation 2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition Dew Formation Topic Dew Time 30 minutes! Safety Please click on the safety icon to view safety precautions. Be careful using the thermometer. Be careful

More information

Chemistry A: States of Matter Packet Name: Hour: Page 1. Chemistry A States of Matter Packet

Chemistry A: States of Matter Packet Name: Hour: Page 1. Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page 1 Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page 2 Worksheet #1: States of Matter In this packet we will

More information

EXPERIMENT 6: ABSOLUTE ZERO

EXPERIMENT 6: ABSOLUTE ZERO LAB SECTION: NAME: EXPERIMENT 6: ABSOLUTE ZERO Introduction: In this lab, you will use the relationship between temperature and volume for a gaseous substance (we will use air) to determine the temperature

More information

Your Very Own Borate Glass

Your Very Own Borate Glass Your Very Own Borate Glass Workshop Students learn about glass, how glass is formed, and the conditions in which that occurs. Glassy materials form a cornerstone of the study of material sciences with

More information

BUTTERFLY LAB METAMORPHOSIS & THE ENVIRONMENT. Handouts 6th & 7th Grade Science Unit EarthsBirthday.org

BUTTERFLY LAB METAMORPHOSIS & THE ENVIRONMENT. Handouts 6th & 7th Grade Science Unit EarthsBirthday.org METAMORPHOSIS & THE ENVIRONMENT Handouts 6th & 7th Grade Science Unit 1 800 698 4438 EarthsBirthday.org BUTTERFLY LAB CONTENTS Note: Answer Keys are in the Teacher Guide. Handout: Controlled Experiment

More information

LAB: Photosynthesis in Leaf Disks

LAB: Photosynthesis in Leaf Disks Name Date Period LAB: Photosynthesis in Leaf Disks H O N O R S B I O L O G Y : U N I T 3 Introduction: Photosynthesis is a process in which plants convert light energy (sunlight) into usable chemical energy

More information

Temperature Ball and Hoop

Temperature Ball and Hoop Temperature Ball and Hoop Edited by Anne Starace ABSTRACT: We can sense temperature changes through our senses of touch, but what happens on a molecular level as temperature changes? This module demonstrates

More information

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law)

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Name: Date: The formation or destruction of chemical bonds is always accompanied by an energy exchange between the reactant molecules and the

More information

Station 1 Water is a polar molecule and has a very unique structure

Station 1 Water is a polar molecule and has a very unique structure Station 1 Water is a polar molecule and has a very unique structure A water molecule, because of its shape, is a polar molecule. That is, it has one side that is positively charged and one side that is

More information

Chapter 1 Heating Processes

Chapter 1 Heating Processes Chapter 1 Heating Processes Section 1.1 Heat and temperature Worked example: Try yourself 1.1.1 CALCULATING THE CHANGE IN INTERNAL ENERGY A student places a heating element and a paddle wheel apparatus

More information

LAB. FACTORS INFLUENCING ENZYME ACTIVITY

LAB. FACTORS INFLUENCING ENZYME ACTIVITY AP Biology Date LAB. FACTORS INFLUENCING ENZYME ACTIVITY Background Enzymes are biological catalysts capable of speeding up chemical reactions by lowering activation energy. One benefit of enzyme catalysts

More information

Snow and Ice, Part 2: How Does Ice Change?

Snow and Ice, Part 2: How Does Ice Change? Snow and Ice, Part 2: How Does Ice Change? We have been observing how things, like snow, can change by melting. We have used thermometers to compare the warmer temperature of the room to the colder temperature

More information