EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination

Size: px
Start display at page:

Download "EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination"

Transcription

1 OBJECTIVES: EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination Observe temperature versus time and record data for pure acetic acid cooled in an ice-water bath Plot temperature versus time for the above data Determine the freezing point of pure acetic acid Determine the freezing point of acetic acid containing an unknown dissolved material Calculate the molar mass of the dissolved material BACKGROUND: The physical states matter exhibits -- solid, liquid, or gas -- depend on temperature and pressure. Transition of a substance from solid to liquid and from liquid to gas occurs when the temperature is sufficient to supply enough kinetic energy to the individual molecules in order for them to overcome the forces of attraction for each other. For the reverse process, when a pure liquid is cooled, a temperature is eventually reached at which its solid form begins to separate. This temperature, where liquid and solid exist simultaneously, is called the freezing point of the substance. The temperature where a solid changes to a liquid is called the melting point. When a liquid solution is cooled, a temperature is eventually reached at which a solid begins to separate from the solution. This solid is pure solvent. The temperature where a solution and solid exist simultaneously is called the freezing point of the solution. The solid component is the pure solvent. If you have ever observed a container of a soft drink partially freeze, the solid is pure water -- the solvent. Another example is the formation of sea ice. The Arctic and Antarctic seas are very concentrated salt solutions. When the temperature is low enough for the sea to freeze, the solid ice is pure water. The remaining liquid solution is an even more concentrated salt solution. The freezing point of a liquid is lowered by the presence of dissolved material. The solute molecules interfere with the attractive forces between solvent molecules, thus hindering the ability of the solvent to form a solid. In order for the solvent to solidify, an even lower temperature (hence a depression in the freezing point) is needed to overcome the interference of the solute. The freezing point of a pure liquid is obtained from time-temperature observations. The graph of these observations is called the cooling curve for the substance. The time-temperature data for a pure solvent and for a solution are shown in FIGURE I on the following page. The freezing point of the pure liquid is obtained by extrapolating the flat part (plateau) of the solid-liquid line of the cooling curve to the temperature axis. The cooling curve for the solution falls below that of the pure solvent. Note that there is no plateau in the cooling curve of the solution. The freezing point of the solution is obtained by extrapolating the sloping solid-liquid line of the cooling curve to the liquid line of the cooling curve and then across to the temperature axis. The lowering of the freezing point of a solution compared to the pure solvent is a colligative property of the solvent. A colligative property is one depending on the number of particles (molecules or ions) in solution. A type of concentration unit which is related to the number of particles in a solution is called the molality. Molality, m, is defined as the number of moles of solute per g (1.000 kg) of solvent. Notice the differences and similarities between molality and molarity. 33 P a g e

2 EXPERIMENT #4 FREEZING POINTS FIGURE I: Cooling Curves for a Solvent and a Solution FIGURE II: Modified Beckmann Freezing Point Apparatus moles of solute moles of solute molality = m = = 1000g of solvent kg of solvent The freezing point depression, T is proportional to the molality of the solution. The proportionality constant Kfp, called the molal freezing-point depression constant, is a property of the solvent. T =(Kfp)(m) The table below lists several solvents, their freezing points, and freezing point depression constants. TABLE I: Solvent Freezing Points and Molal Freezing-Point Depression Constants Solvent Freezing Point, C Kfp, C/m HC2H3O2 (acetic acid) C6H6 (benzene) CHCl3 (chloroform) H2O (water) C10H8 (naphthalene) C6H12 (cyclohexane) para-dichlorobenzene P a g e

3 EXPERIMENT #4 FREEZING POINTS Example: What is the molar mass of urea if the freezing point of a solution containing 15.0 g of urea in g of naphthalene is 63.5 C? First, find T: T = freezing point of solvent freezing point of solution = 80.6 C C = 17.1 C Second, find molality: Third, find moles: Fourth, find molar mass: T = (Kfp)(m) 17.1 C = (6.9 C/m)(m) 17.1 C = m 6.9 C m 2.48 = m moles of solute m = kg of solvent moles of solute 2.48 = kg = moles mass moles = molar mass mass molar mass = moles 15.0g = 0.248mol = 60.5 g/mol 35 P a g e

4 EXPERIMENT #4 FREEZING POINTS PROCEDURE: 1. Work in pairs. Do not dispose of any material by flushing down the sink. 2. A modified Beckmann apparatus (FIGURE II) will be used to determine the freezing point of solvent and solution. A test tube containing the solvent or solution will be placed in a beaker of ice water. The thermometer will also serve as the stirrer. Remember that the thermometer is fragile, so handle it with care. In this method the solvent or solution is cooled at a slow, steady rate, and time/temperature readings are recorded until a solid has formed. Graphs are then plotted and freezing points are obtained from the graphs as described above. 3. Measure approximately ml of the solvent, acetic acid, into the sample tube (25 mm x 150 mm) and place the apparatus in a water bath. Add ice cubes to the water bath at such a rate that the temperature of the acetic acid (or the acetic acid solution) slowly becomes lower. Constant stirring of the solvent is maintained throughout the cooling as the time/temperature readings are recorded every 20 seconds for the first two minutes and then at one minute intervals until a time/temperature trend line is clearly established. The constant stirring initiates crystallization of the solution and ensures a uniform temperature throughout the liquid. Readings may be taken until complete solidification of the solvent occurs. 4. The sample tube is removed and warmed with warm water to melt the solid acetic acid and bring the temperature of the solvent to about 25 C. Repeat Step 3 or go on to the next step. 5. Obtain another clean, dry sample tube (25 mm x 150 mm). Weigh out g, to the nearest thousandth of a gram, of your unknown on a square of weighing paper. Record the mass on your data sheet. Add the unknown to the dry tube. Place the dry tube containing the unknown solute in a 600 ml beaker and weigh on a balance. Add the ml of thawed acetic acid to the tube and record the mass. The difference gives the mass of the acetic acid in the solution. Record this mass on your data sheet. 6. The sample tube containing the solution is placed in a cooling bath and the freezing point of the solution is determined. Time/temperature readings are made until complete solidification occurs. 7. On the same piece of graph paper plot temperature (vertical axis) versus time (horizontal axis) for pure solvent and for solution. Obtain T from these graphs. 8. Melt the solution in a warm water bath and repeat the cooling process to collect a second set of data. WASTE DISPOSAL Rinse the contents of the test tube into the waste beaker in the hood using acetone as the solvent. The test tube can now be safely washed in the sink. 36 P a g e

5 NAME Section Date DATA AND CALCULATIONS: Freezing Points TABLE II: Freezing Point of Pure Solvent Freezing point of acetic acid (from graph) TABLE III: Freezing Point of Solution Trial I Trial II Unknown Letter Mass of unknown (solute) Mass of test tube, beaker, unknown, and acetic acid Mass of test tube, beaker, and unknown Mass of acetic acid, g Mass of acetic acid, kg Freezing point of solution (from graph) T of solution Kfp of acetic acid (from TABLE I) Molar Mass of Solute Clearly show molar mass calculations. Set up equations, rearrange for unknown, substitute numbers, then calculate values. Use the reverse side of this page if necessary. 37 P a g e

6 38 P a g e

7 NAME Section Date Time/Temperature Observations Solvent Solution Time (min:sec) C Time (min:sec) C 0:0 0:0 0:20 0:20 0:40 0:40 1:00 1:00 1:20 1:20 1:40 1:40 2:00 2:00 2:20 2:20 2:40 2:40 3:00 3:00 3:20 3:20 3:40 3:40 4:00 4:00 4:20 4:20 4:40 4:40 5:00 5:00 5:20 5:20 5:40 5:40 6:00 6:00 7:00 7:00 8:00 8:00 9:00 9:00 10:00 10:00 11:00 11:00 12:00 12:00 39 P a g e

8 Time/Temperature Observations Solvent Solution Time (min:sec) C Time (min:sec) C 0:0 0:0 0:20 0:20 0:40 0:40 1:00 1:00 1:20 1:20 1:40 1:40 2:00 2:00 2:20 2:20 2:40 2:40 3:00 3:00 3:20 3:20 3:40 3:40 4:00 4:00 4:20 4:20 4:40 4:40 5:00 5:00 5:20 5:20 5:40 5:40 6:00 6:00 7:00 7:00 8:00 8:00 9:00 9:00 10:00 10:00 11:00 11:00 12:00 12:00 40 P a g e

9 NAME Section Date ADDITIONAL ASSIGNMENT I: Freezing Points Use freezing point and Kfp data in TABLE I on page What is the molality of a solution that contains 3.00 g of guanidine (molar mass = g/mol) in g of benzene? 2. How many grams of NaNO3 would you add to g of water in order to prepare a solution that is molal in sodium nitrate? 3. What would be the freezing point of a solution containing 19.5 g of biphenyl (C12H10), the solute, dissolved in g of naphthalene, the solvent? 41 P a g e

10 42 P a g e

11 NAME Section Date ADDITIONAL ASSIGNMENT II: Freezing Points Use freezing point and Kfp data in TABLE I on page Calculate the freezing point of a solution containing 13.0 g of benzene (solute) in g of chloroform(solvent). 2. A solution containing 2.00 g of an unknown substance in 25.0 g of naphthalene was found to freeze at 75.4 C. What is the molar mass of the unknown substance? 43 P a g e

12 44 P a g e

Experiment #4. Molar Mass by Freezing Point Depression

Experiment #4. Molar Mass by Freezing Point Depression Experiment #4. Molar Mass by Freezing Point Depression Introduction When a nonvolatile solute is dissolved in a solvent, the freezing point of the solution is lowered. This process is called Freezing Point

More information

Experiment 1 Molecular Weight Determination from Freezing Point Depression

Experiment 1 Molecular Weight Determination from Freezing Point Depression CEAC 104 GENERAL CHEMISTRY Experiment 1 Molecular Weight Determination from Freezing Point Depression Purpose: To learn colligative properties and to determine the molecular weight of sulfur by using one

More information

Lab 3: Determination of molar mass by freezing point depression

Lab 3: Determination of molar mass by freezing point depression Chemistry 162 The following write-up may be inaccurate for the particular chemicals or equipment we are using. Be prepared to modify your materials/procedure sections when performing the exercise. Please

More information

Exp 02 - Freezing Point

Exp 02 - Freezing Point GENERAL CHEMISTRY II CAÑADA COLLEGE SUMMER 2018 Exp 02 - Freezing Point Exploring the properties that define substances and allow us to distinguish one type of matter from another. Preparation (complete

More information

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate CEAC 105 GENERAL CHEMISTRY Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate

More information

ESSENTIAL EXPERIMENTS CHEMISTRY

ESSENTIAL EXPERIMENTS CHEMISTRY ESSENTIAL EXPERIMENTS for CHEMISTRY Morrison Scodellaro Sample Experiment Freezing Point Depression For additional information email: smg_order@smglabbooks.com Fax: 1-800-201-4587 Phone: 1-800-201-4587

More information

AP CHEMISTRY CHAPTER 8 PROBLEM SET #3. 1. Determine if the following pairs would form a solution. Explain your answer. a.

AP CHEMISTRY CHAPTER 8 PROBLEM SET #3. 1. Determine if the following pairs would form a solution. Explain your answer. a. NAME: AP CHEMISTRY CHAPTER 8 PROBLEM SET #3 1. Determine if the following pairs would form a solution. Explain your answer. a. C 2 H 6 and water b. PbCl 2 and water c. I 2 and water d. F 2 and CH 4 2.

More information

HONORS CHEMISTRY 1. Name: Mods: Chemistry Work - Solutions

HONORS CHEMISTRY 1. Name: Mods: Chemistry Work - Solutions HONORS CHEMISTRY 1 Name: Mods: Chemistry Work - Solutions HONORS CHEMISTRY 2 HONORS CHEMISTRY 3 HONORS CHEMISTRY 4 HONORS CHEMISTRY 5 HONORS CHEMISTRY 6 HONORS CHEMISTRY 7 Name Date 1. What is the solubility

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression KEMS448 Physical Chemistry Advanced Laboratory Work Freezing Point Depression 1 Introduction Colligative properties are properties of liquids that depend only on the amount of dissolved matter (concentration),

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

Experiment 15 - Heat of Fusion and Heat of Solution

Experiment 15 - Heat of Fusion and Heat of Solution Experiment 15 - Heat of Fusion and Heat of Solution Phase changes and dissolving are physical processes that involve heat. In this experiment, you will determine the heat of fusion of ice (the energy required

More information

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date:

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date: /16 Points Lab: Phase Change Introduction Every substance has a characteristic freezing point and melting point. As you might expect, the substance changes phase at each of these temperatures. A pure substance

More information

LESSON 11. Glossary: Solutions. Boiling-point elevation

LESSON 11. Glossary: Solutions. Boiling-point elevation LESSON 11 Glossary: Solutions Boiling-point elevation Colligative properties Freezing-point depression Molality Molarity (M) Mole (mol) Mole fraction Saturated solution a colligative property of a solution

More information

Use the Equations given in your notes to solve the Colligative Property Questions. Freezing Boiling Point ( C)

Use the Equations given in your notes to solve the Colligative Property Questions. Freezing Boiling Point ( C) Colligative Properties of Solvents 8.HW Colligative Properties.doc Use the Equations given in your notes to solve the Colligative Property Questions. ΔT b m K b, ΔT f m Solvent Formula Freezing Point (

More information

VAPOR PRESSURE LOWERING - Described by RAOULT'S LAW

VAPOR PRESSURE LOWERING - Described by RAOULT'S LAW 73 VAPOR PRESSURE LOWERING - Described by RAOULT'S LAW partial pressure of the VAPOR of solvent molecules. mole fraction of component A vapor pressure of pure component A (depends on temperature) partial

More information

Milwaukie HS Chemistry Linman. Period Date / /

Milwaukie HS Chemistry Linman. Period Date / / Milwaukie HS Chemistry Linman A701 Name Solutions Classify the following mixtures as homogeneous or heterogeneous: A: Freshly squeezed orange juice B: Tap water C: Human Blood D: Sand 1. Does a solution

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy. Chapter 4 Physical Properties of Solutions

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy.   Chapter 4 Physical Properties of Solutions General Chemistry CHEM 11 (3+1+) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 4 Physical Properties of Solutions 1 Types of Solutions A solution is a homogenous mixture of 2 or more substances.

More information

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic PLEASE REORD ALL DATA DIRETLY INTO YOUR LAB NOTEBOOKS Introduction Heating a substance is one of the simplest processes carried out in the chemical laboratory, and is usually accompanied by a rise in the

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Solutions. Heterogenous Mixture (Not a Solution) Ice Water (w/ Ice Cubes) Smog Oil and Water

Solutions. Heterogenous Mixture (Not a Solution) Ice Water (w/ Ice Cubes) Smog Oil and Water Solutions Unit 6 1 Solutions Homogenous Mixture (Solution) two or more substances mixed together to have a uniform composition, its components are not distinguishable from one another Heterogenous Mixture

More information

SOLVING EMPIRICAL FORMULA PROBLEMS

SOLVING EMPIRICAL FORMULA PROBLEMS SOLVING EMPIRICAL FORMULA PROBLEMS Why do we want to use Empirical Formulas? 1)Substances that do not consist of discrete units, such as in a crystal (ionic solid) of NaCl---we dont want to write Na456Cl910

More information

Solvation and Freezing Point Depression

Solvation and Freezing Point Depression Experiment 4 Solvation and Freezing Point Depression Prepared by Ross S. Nord, Eastern Michigan University PURPOSE To investigate the solvation process, measure freezing-point depression, and determine

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity.

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity. 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assuming 100 g solution,

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

64 previous solution

64 previous solution 64 previous solution mole fraction (definition) 1 - Convert 29.6 grams sodium sulfate to moles. We already did this to find molality, so we can re-use the number. 2 - This is the total moles of both sodium

More information

Chesapeake Campus Chemistry 111 Laboratory

Chesapeake Campus Chemistry 111 Laboratory Chesapeake Campus Chemistry 111 Laboratory Objectives Calculate molar mass using the ideal gas law and laboratory data. Determine the identity of an unknown from a list of choices. Determine how sources

More information

Lesson Plan: Stearic Acid

Lesson Plan: Stearic Acid Lesson Plan: Stearic Acid Created by: In this lesson, students investigate how stearic acid undergoes a 2014 AACT Middle School phase change from solid to liquid and back from liquid to solid. Content

More information

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown?

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown? 75 A solution of 2.500g of unknown dissolved in 100.0 g of benzene has a freezing point of 4.880 C. What is the molecular weight of the unknown? Solving for Cm (molality) will allow us to calculate how

More information

EXPERIMENT #4 Separation of a Three-Component Mixture

EXPERIMENT #4 Separation of a Three-Component Mixture OBJECTIVES: EXPERIMENT #4 Separation of a Three-Component Mixture Define chemical and physical properties, mixture, solubility, filtration, sublimation, and percent Separate a mixture of sodium chloride

More information

COLLIGATIVE PROPERTIES OF SOLUTIONS

COLLIGATIVE PROPERTIES OF SOLUTIONS NAME: UNIT #9: MOLARITY DILUTIONS SOLUBILITY CURVES COLLIGATIVE PROPERTIES OF SOLUTIONS 1. MOLARITY a) Molarity is a measurement of the concentration of a solution in Chemistry. b) When making solutions,

More information

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources 16 SOLUTIONS Chapter Test B A. Matching Match each term in Column B to the correct description in Column A. Write the letter of the correct term on the line. Column A Column B 1. the number of moles of

More information

Ch 12 and 13 Practice Problems

Ch 12 and 13 Practice Problems Ch 12 and 13 Practice Problems The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 13 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The process of solute particles being surrounded by solvent particles is known as. A)

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: Solutions In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. Agitation prevents settling

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview Measured volume of several solutions having known concentrations of reactants are mixed in a series of trials. The time required for a visible color change to appear

More information

1. All the solutions have the same molality. 2. All the solutions have the same molarity.

1. All the solutions have the same molality. 2. All the solutions have the same molarity. I. (41 points) A. (12 points) Write your answers on the blanks provided. 1. Which of the following solutes would be more soluble in water? a. CH 3 OH or C 17 H 35 OH b. C 2 H 5 Cl or NaCl c. CHCl 3 or

More information

Find Cm (molal concentration of IONS): Find moles ions:

Find Cm (molal concentration of IONS): Find moles ions: 80 If you are at an altitude high enough for the boiling point of water to be 95.00 C, what amount of sodium chloride would you need to add to 1.000 kg of water to raise the boiling point to 100.00 C?

More information

Indian School Muscat

Indian School Muscat Indian School Muscat Chemistry Department Senior Section IIT JEE Solutions 1 What term is associated with the part of a solution that is present in the smallest amount? (A) ionic compound (B) solute (C)

More information

7.02 Colligative Properties

7.02 Colligative Properties 7.02 Colligative Properties Changes in solvent properties due to impurities Colloidal suspensions or dispersions scatter light, a phenomenon known as the Tyndall effect. (a) Dust in the air scatters the

More information

11) What thermodynamic pressure encourages solution formation of two nonpolar substances?

11) What thermodynamic pressure encourages solution formation of two nonpolar substances? AP Chemistry Test (Chapter 11) Class Set Multiple Choice (54%) Please use the following choices to answer questions 1-10. A) London dispersion forces (temporary dipole attractions) B) Ion-ion attractions

More information

Solutions and Solubility. BHS Chemistry

Solutions and Solubility. BHS Chemistry Solutions and Solubility BHS Chemistry MATTER Yes Can it be separated by physical means? No MIXTURES Pure SUBSTANCES Yes Is the composition uniform? Can it be decomposed by regular chemical means? No Yes

More information

CHEM 254 EXPERIMENT 5. Solubility and Enthalpy of Fusion of Ammonium Oxalate in Water

CHEM 254 EXPERIMENT 5. Solubility and Enthalpy of Fusion of Ammonium Oxalate in Water CHEM 254 EXPERIMENT 5 Solubility and Enthalpy of Fusion of Ammonium Oxalate in Water In general solubility (g/100 ml) is defined as amount of substance that dissolved in a given solvent at a given temperature.

More information

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium

EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium OBJECTIVES: EXPERIMENT #6 Calculation of the Atomic Mass of Magnesium Observe the reaction between oxygen and magnesium Accurately weigh reaction mixtures before and after reaction Calculate the atomic

More information

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid Experiment 2 - Using Physical Properties to Identify an Unknown Liquid We usually think of chemists as scientists who do things with chemicals. We can picture a chemist's laboratory with rows of bottles

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Solutions Outline 1. Solubility 2. Concentration Calculations 3. Colligative Properties 4. Freezing Point Depression or Boiling Point Elevation Problems 5. Graphs of Colligative Properties Review 1. Solubility

More information

CHM101 Lab - Solutions Grading Rubric

CHM101 Lab - Solutions Grading Rubric Spring 2017 Name Team Name CHM101 Lab - Solutions Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance

More information

Solutions. Definitions. Some Definitions. Page 1. Parts of a Solution

Solutions. Definitions. Some Definitions. Page 1. Parts of a Solution Chapter 15 s 1 Definitions 4 Why does a raw egg swell or shrink when placed in different solutions? s can be classified as saturated or unsaturated. A saturated solution contains the maximum quantity of

More information

Solutions. Why does a raw egg swell or shrink when placed in different solutions?

Solutions. Why does a raw egg swell or shrink when placed in different solutions? Solutions 1 Why does a raw egg swell or shrink when placed in different solutions? Classification of Matter 2 Some Definitions 3 If a compound is soluble it is capable of being dissolved. A solution is

More information

DATE: POGIL: Colligative Properties Part 2

DATE: POGIL: Colligative Properties Part 2 NAME: AP Chemistry DATE: POGIL: Colligative Properties Part 2 Why? In the winter, up here in the Great White North, people spread calcium chloride onto walkways to prevent them from icing over. Why do

More information

Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7

Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7 Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7 1. Is the sign of Δ r H for an exothermic reaction positive or negative? Why? 2. When 4.21 grams of potassium hydroxide are added to 250.

More information

EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE

EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE Experiment 34D EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE FV 1/11/2017 MATERIALS: PURPOSE: beakers: 400 ml; 150 ml; 100 ml (3); 50 ml (2); 10 ml and 25 ml graduated cylinders; thermometer; 25 x 200

More information

Chemistry 1B Experiment 17 89

Chemistry 1B Experiment 17 89 Chemistry 1B Experiment 17 89 17 Thermodynamics of Borax Solubility Introduction In this experiment, you will determine the values of H and S for the reaction which occurs when borax (sodium tetraborate

More information

Chapter 11 Ideal gases

Chapter 11 Ideal gases OCR (A) specifications: 5.4.10c,d,e,i,j,k Chapter 11 Ideal gases Worksheet Worked examples Practical: Determining absolute zero of temperature from the pressure law End-of-chapter test Marking scheme:

More information

2. What property of water allows a needle to float on it without sinking? Answer: surface tension

2. What property of water allows a needle to float on it without sinking? Answer: surface tension Ch 12 and 14 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

Chemistry 102 Spring 2019 Discussion #4 Chapters 11 and 12 Student name TA name Section

Chemistry 102 Spring 2019 Discussion #4 Chapters 11 and 12 Student name TA name Section Chemistry 102 Spring 2019 Discussion #4 Chapters 11 and 12 Student name TA name Section Things you should know when you finish the Discussion hand out: Average molar kinetic energy = E = M u 2 rms 2 =

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Calorimetry: Heats of Solution Objective: Use calorimetric measurements to determine heats of solution of two ionic compounds. Materials: Solid ammonium nitrate (NH 4 NO 3 ) and anhydrous calcium chloride

More information

Our country, our future

Our country, our future Our country, our future Any consultation Contact: Dr. Bbosa Science +256 776 80 27 09, digitalteachers.co.ug Colligative properties These are behaviors of solution which depend on the number of nonvolatile

More information

DATE: POGIL: Colligative Properties Part 1

DATE: POGIL: Colligative Properties Part 1 NAME: AP Chemistry DATE: POGIL: Colligative Properties Part 1 Why? There is a general misconception that adding sodium chloride to cooking water for pasta increases the temperature of the boiling water

More information

CHEMISTRY - UTEXAS 1E CH.7 - PHYSICAL EQUILIBRIA.

CHEMISTRY - UTEXAS 1E CH.7 - PHYSICAL EQUILIBRIA. !! www.clutchprep.com CONCEPT: PHASE DIAGRAMS Under appropriate conditions of pressure and temperature, most substances can exist in 3 states of matter:, and. Microscopic Explanation for the Behavior of

More information

Unit 11: Chapters 15 and 16

Unit 11: Chapters 15 and 16 Unit 11: Chapters 15 and 16 Water and Solution Chemistry What makes Water Special? Extensive Hydrogen Bonding!! Unusually... high surface tension low vapor pressure high specific heat capacity high molar

More information

UNIT 5: STOICHIOMETRY

UNIT 5: STOICHIOMETRY UNIT 5: STOICHIOMETRY Outline The Mole Molar Mass, Mass and atoms Molar Mass of Compounds Empirical Formula, Molecular Formula (Not Hydrates) Stoichiometry, Mole Ratios Limiting Reactants, Percent Yield

More information

Practice test Chapter 12 and 13

Practice test Chapter 12 and 13 Practice test Chapter 12 and 13 1. Which of the following pure liquids is the best solvent for carbon disulfide? A) C6H6(l) B) NH3(l) C) CH3OH(l) D) H2O(l) E) HBr(l) 2. How does the solubility of a gas

More information

AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES

AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES INTERMOLECULAR FORCES In addition to the covalent bonds that exist between atoms in a molecule (H2O for instance), there are also weak attractions between

More information

THE THERMODYNAMICS OF POTASSIUM NITRATE DISSOLVING IN WATER V010516

THE THERMODYNAMICS OF POTASSIUM NITRATE DISSOLVING IN WATER V010516 THE THERMODYNAMICS OF POTASSIUM NITRATE DISSOLVING IN WATER V010516 OBJECTIVE The ΔG, ΔH and ΔS of the potassium nitrate (KNO3) dissolving reaction will be determined by measuring the equilibrium constant

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

MOST of the reactions are carried out at atmospheric pressure, hence

MOST of the reactions are carried out at atmospheric pressure, hence MOST of the reactions are carried out at atmospheric pressure, hence heat changes noted for these reactions are enthalpy changes. Enthalpy changes are directly related to the temperature changes by the

More information

The Phase Change Lab: Freezing and Melting of Water

The Phase Change Lab: Freezing and Melting of Water The Phase Change Lab: Freezing and Melting of Water Experiment 3 Freezing temperature is the temperature at which a substance turns from a liquid to a solid. Melting temperature is the temperature at which

More information

The CCLI Initiative Computers in Chemistry Laboratory Instruction

The CCLI Initiative Computers in Chemistry Laboratory Instruction Experiment Determining the Coordination Number of Ni and Cu The CCLI Initiative Computers in Chemistry Laboratory Instruction by Enthalpy The objectives of this experiment are to... LEARNING OBJECTIVES

More information

UNIT 5 Readiness Assessment Quiz

UNIT 5 Readiness Assessment Quiz UNIT 5 Readiness Assessment Quiz Name: Vanden Bout/LaBrake UTEID: Spring 2013 CH302 I. MYTH BUSTERS: Soda Freezing Demonstration. Sometimes when you purchase a bottle of soda from a vending machine, the

More information

2. Synthesis of Aspirin

2. Synthesis of Aspirin This is a two-part laboratory experiment. In part one, you will synthesize (make) the active ingredient in aspirin through a reaction involving a catalyst. The resulting product will then be purified through

More information

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest: Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

More information

Name Date Class PROPERTIES OF SOLUTIONS

Name Date Class PROPERTIES OF SOLUTIONS 16.1 PROPERTIES OF SOLUTIONS Section Review Objectives Identify the factors that determine the rate at which a solute dissolves Identify the units usually used to express the solubility of a solute Calculate

More information

SOLUTIONS CHAPTER 9 TEXT BOOK EXERCISE Q1. Choose the correct answer for the given ones. (i) Morality of pure water is (a) 1. (b) 18. (c) 55.5 (d) 6. Hint: Morality of pure water Consider 1 dm 3 (-1000cm

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases.

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases. 73 COLLIGATIVE PROPERTIES - properties unique to solutions. - depend only on the CONCENTRATION of a solution and not the IDENTITY of the solute** **ionic solutes: Remember that they dissociate into MULTIPLE

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

P6 Molecules and matter. Student Book answers. P6.1 Density. Question Answer Marks Guidance. 1 a m 3 (= 0.80 m 0.60 m 0.

P6 Molecules and matter. Student Book answers. P6.1 Density. Question Answer Marks Guidance. 1 a m 3 (= 0.80 m 0.60 m 0. P6. Density a 0.024 m 3 (= 0.80 m 0.60 m 0.05 m) b = 2500 kg/m 3 2 a 36 g 48 g = 88 g 2 b =. g/cm 3 3 a i 0.000 40 m 3 (= 0.0 m 0.080 m 0.05 m) 3 a ii = 9 000 kg/m 3 3 b v = = 7.9 0 8 m 3 thickness t =

More information

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate In this experiment you, as a class, will determine the solubility of sodium tetraborate decahydrate (Na 2 B 4 O 7 10 H 2 O or Na 2 [B

More information

Unit 10: Part 1: Polarity and Intermolecular Forces

Unit 10: Part 1: Polarity and Intermolecular Forces Unit 10: Part 1: Polarity and Intermolecular Forces Name: Block: Intermolecular Forces of Attraction and Phase Changes Intramolecular Bonding: attractive forces that occur between atoms WITHIN a molecule;

More information

Rate of Reaction. Introduction

Rate of Reaction. Introduction 5 Rate of Reaction Introduction This experiment will allow you to study the effects of concentration, temperature, and catalysts on a reaction rate. The reaction whose rate you will study is the oxidation

More information

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction 1 EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate the formation of a precipitate in a chemical

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

What Do You Think? Investigate GOALS. Part A: Freezing Water

What Do You Think? Investigate GOALS. Part A: Freezing Water Activity 5 Freezing Water GOALS In this activity you will: Determine the freezing point of water. Show graphically what happens to the temperature as water is cooled to freezing and while it is freezing.

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 54 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

Concentration of Solutions

Concentration of Solutions CHAPTER 4 Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table compares these three ways

More information

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1 COLLIGATIVE PROPERTIES Engr. Yvonne Ligaya F. Musico 1 Colligative Properties Properties that depend on the collective effect of the number of solute particles. Engr. Yvonne Ligaya F. Musico 2 COLLEGATIVE

More information

EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE

EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE Experiment 34D EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE FV 1/16/2018 MATERIALS: PURPOSE: beakers: 400 ml; 150 ml; 100 ml (3); 50 ml (2); 10 ml and 25 ml graduated cylinders; thermometer; 25 x 200

More information

1. stirring (agitation) 2. temperature 3. the surface area of the dissolving particles

1. stirring (agitation) 2. temperature 3. the surface area of the dissolving particles Chapter 16 16.1 A sinkhole forms when the roof of a cave weakens from being dissolved by groundwater and suddenly collapses. One recorded sinkhole swallowed a house, several other buildings, five cars,

More information

EXPERIMENT 20. Solutions INTRODUCTION

EXPERIMENT 20. Solutions INTRODUCTION EXPERIMENT 20 Solutions INTRODUCTION A solution is a homogeneous mixture. The solvent is the dissolving substance, while the solute is the dissolved substance. A saturated solution is one in which the

More information

How Cold is Freezing?

How Cold is Freezing? Details Completion About one period Permission: Download, Share, and Remix How Cold is Freezing? Overview How can the ocean be colder than 0 C, the temperature at which water freezes? As it turns out,

More information

Take Home Semester 2 Practice Test for Acc Chem MM 15-16

Take Home Semester 2 Practice Test for Acc Chem MM 15-16 Take Home Semester 2 Practice Test for Acc Chem MM 15-16 Thermochemistry 1. Determine ΔHrxn. 2SO2(g) + O2(g) 2SO3(g) a) 98.9 b) 98.9 c) 197.8 d) 197.8 ΔHf o SO2(g) 296.8 kj/mol SO3(g) 395.7 kj/mol O2(g)

More information

Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE

Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE Concepts: Density Equipment Calibration Approximate time required: 90 minutes for density 90 minutes for two thermometers

More information

concentration of solute (molality) Freezing point depression constant (for SOLVENT)

concentration of solute (molality) Freezing point depression constant (for SOLVENT) 74 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information