From last time Newton s laws. Review of forces. Question. Force and acceleration. Monkey and hunter. Equal and opposite forces

Size: px
Start display at page:

Download "From last time Newton s laws. Review of forces. Question. Force and acceleration. Monkey and hunter. Equal and opposite forces"

Transcription

1 From last time Newton s laws 1st law: Law of inertia Every object continues in its state of rest, or uniform motion in a straight line, unless acted upon by a force. 2nd law: F=ma, or a=f/m The acceleration of a body is proportional to sum of all forces acting on body inversely the mass of the body 3rd law: Action and reaction For every action there is an equal an opposite reaction. Review of forces Force results in a change in motion (change in momentum p=mv) during application Equivalently, an acceleration. Example of constant force is gravity Acceleration results from the sum total of all forces (net force) applied (a = F net /m) Zero acceleration -> no net force is being applied. Friday, Feb. 2 Phy107 Spr07 Lect6 1 Friday, Feb. 2 Phy107 Spr07 Lect6 2 Force and acceleration I throw a 5 kg ball up in the air with a force of 10 N. Halfway to the ceiling, the acceleration of the ball is A. 2 m/s 2 B. 0.5 m/s 2 C. 10 m/s 2 D. 2.5 m/s 2 E. 20 m/s 2 I throw the 2 N apple horizontally. After I throw it, what is the acceleration of the apple? A. 10 m/s 2 downward B. 2 m/s 2 horizontally C. 10 m/s 2 horizontally C. Need to know throwing force This is because, after I throw the apple, gravity is the only force. The only acceleration is that due to gravity. Friday, Feb. 2 Phy107 Spr07 Lect6 3 Friday, Feb. 2 Phy107 Spr07 Lect6 4 Monkey and hunter Dart gun fired just as the monkey drops. After shot, only force on dart is from gravity. Deviation from straightline motion is acceleration downward. Two motions are superimposed Equal and opposite forces I apply a force to a ball for a short time Δt to get it to move. During that time, the ball exerts an equal and opposite force on me! The forces cause the ball and I to move in opposite directions Monkey & dart have exactly same acceleration downward, dart hits monkey. Friday, Feb. 2 Phy107 Spr07 Lect6 5 e.g. water forces Friday, Feb. 2 Phy107 Spr07 Lect6 6 1

2 Force of gravity acts downward on the block. Block is not accelerating. ->Net (total) force is zero. Another force is present, equal and opposite, balancing gravity. It is exerted by the table, on the block. Balancing forces Force of gravity on block Force of table on block How can the table exert a force? The interaction between the table and the block is a microscopic one. Friday, Feb. 2 Phy107 Spr07 Lect6 7 Friday, Feb. 2 Phy107 Spr07 Lect6 8 Force exerted by table on block The table can compress, bend, and flex by distorting the atomic positions. The atomic bond is like a spring - exerts a force when compressed. This is the reaction force. Like an object on a scale Spring compresses until force on object equals force from gravity. So weight is the force of gravity on an object. Weightless means no gravitational force Then what is mass? Friday, Feb. 2 Phy107 Spr07 Lect6 9 Friday, Feb. 2 Phy107 Spr07 Lect6 10 Mass Mass is the amount of inertia of an object. Quantifies amount of matter in an object. Symbol for mass usually m Unit of mass is the kilogram (kg). F = ma " F = (kg)#(m/s 2 ) = kg $ m /s 2 % Newton 1 Newton = force required to accelerate a 1 kg mass at 1 m/s 2. What do you think? On Earth you weight 600 N. But suppose you are out in space, far from any planets A. Your weight is zero but your mass is the same. B. Both your weight and mass are zero. C. Your weight is the same and your mass is zero. D. Your weight is zero, and your mass has decreased. Mass is an intrinsic characteristic of a body. The force of gravity on the body (weight) will depend on the other bodies around it. Friday, Feb. 2 Phy107 Spr07 Lect6 11 Friday, Feb. 2 Phy107 Spr07 Lect6 12 2

3 Is pounds really weight? In the English system (feet, pounds, seconds), pounds are a measure of force. Correct to say my weight is 170 pounds. Force of gravity on me is 170 pounds Then what is my mass? m = F g = 170lbs = 5.3 slugs!! 2 32 ft /s A person with a mass of 60 kg wants to hover using a jet pack. What should the thrust be? A. 60 N B. 600 N C. 60 kg D. 10 m/s 2 Friday, Feb. 2 Phy107 Spr07 Lect6 13 Friday, Feb. 2 Phy107 Spr07 Lect6 14 Other jet packs Equal accelerations If more massive bodies accelerate more slowly with the same force why do all bodies fall the same, independent of mass? Gravitational force must depend on mass: F gravity = mg so that acceleration is independent of mass: a = F gravity m = mg m = g Friday, Feb. 2 Phy107 Spr07 Lect6 15 Friday, Feb. 2 Phy107 Spr07 Lect6 16 A fortunate coincidence Newton s laws and gravity A force exactly proportional to mass, so that everything cancels nicely. But a bit unusual. Einstein threw out the gravitational force entirely, attributing the observed acceleration to a distortion of space-time. Friday, Feb. 2 Phy107 Spr07 Lect6 17 Gravitational force on Earth by apple Gravitational force on apple by earth These forces are equal and opposite, m Earth a Earth = m apple a apple " a Earth a apple = m apple m Earth But m earth =6x10 24 kg m apple =1 kg Friday, Feb. 2 Phy107 Spr07 Lect6 18 3

4 Velocity of the moon If an apple falls toward the Earth, why doesn t the moon fall toward the Earth? What is the direction of the velocity of the moon? A C B A. It is is too massive B. It is too far away C. It is moving too fast D. It does fall toward the earth. Friday, Feb. 2 Phy107 Spr07 Lect6 19 Friday, Feb. 2 Phy107 Spr07 Lect6 20 Acceleration of the moon What is the direction of the acceleration of the moon? D. Zero accel C A B Acceleration = change in velocity change in time Velocity at time t 1 Velocity at time t 2 Speed is same, but direction has changed Velocity has changed Friday, Feb. 2 Phy107 Spr07 Lect6 21 Friday, Feb. 2 Phy107 Spr07 Lect6 22 How has the velocity changed? Velocity at time t 1 Velocity at time t 2 V(t 2 ) V(t 1 ) Change in velocity Centripetal acceleration = v 2 /r, directed toward center of orbit. r = radius of orbit (In this equation, v is the speed of the object, which is the same at all times) Friday, Feb. 2 Phy107 Spr07 Lect6 23 Earth s pull on the moon The moon continually accelerates toward the earth, But because of its orbital velocity, it continually misses the Earth. The orbital speed of the moon is constant, but the direction continually changes. Therefore the velocity changes with time. True for any body in circular motion Friday, Feb. 2 Phy107 Spr07 Lect6 24 4

5 Newton s falling moon Throwing the ball fast enough results in orbital motion From Newton s Principia, 1615 Acceleration of moon The moon is accelerating at directly toward the earth! This acceleration is due to the Earth s gravity. Is this acceleration different than g, the gravitational acceleration of an object at the Earth s surface? Can calculate the acceleration directly from moon s orbital speed, and the Earth-moon distance. v 2 r m /s 2 Friday, Feb. 2 Phy107 Spr07 Lect6 25 Friday, Feb. 2 Phy107 Spr07 Lect6 26 Moon acceleration, cont Distance to moon = 60 earth radii ~ 3.84x10 8 m Speed of moon? Circumference of circular orbit = 2"r orbital distance = 2"r Speed = =1023 m /s orbital time = 27.3 days Centripetal acceleration = m/s 2 This is the acceleration of the moon due to the gravitational force of the Earth. Distance dependence of Gravity The gravitational force depends on distance. Moon acceleration is 9.81!m/s !m/s 2 " 3600 times smaller than the acceleration of gravity on the Earth s surface. The moon is 60 times farther away, and 3600=60 2 So then the gravitational force drops as the distance squared Newton: I thereby compared the force requisite to keep the Moon in her orb with the force of gravity at the surface of the Earth, and found them answer pretty nearly. Friday, Feb. 2 Phy107 Spr07 Lect6 27 Friday, Feb. 2 Phy107 Spr07 Lect6 28 5

From Last Time. position: coordinates of a body velocity: rate of change of position. change in position change in time

From Last Time. position: coordinates of a body velocity: rate of change of position. change in position change in time From Last Time position: coordinates of a body velocity: rate of change of position average : instantaneous: average velocity over a very small time interval acceleration: rate of change of velocity average:

More information

Hour Exam #1. Power. Question. Question. Chapter 1: Post-Aristotle. Question. P = Work time, Joules(J) " Watts (W) second(s)

Hour Exam #1. Power. Question. Question. Chapter 1: Post-Aristotle. Question. P = Work time, Joules(J)  Watts (W) second(s) Hour Exam #1 Hour Exam I, Wed. Feb. 14, in-class (50 minutes) Material Covered: Chap 1, 3-6 One page of notes (8.5 x 11 ) allowed 20 multiple choice questions Scantron sheets will be used - bring #2 HB

More information

Forces. Dynamics FORCEMAN

Forces. Dynamics FORCEMAN 1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on

More information

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion:

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion: Fro Last Tie Newton s three laws of otion: 1) Law of inertia ) F=a ( or a=f/ ) 3) Action and reaction (forces always coe in pairs Question If an apple falls toward the Earth, why doesn t the oon fall toward

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 Applying Newton s Laws 1 Equilibrium An object is in equilibrium if the net force acting on it is zero. According to Newton s first law, such an object will remain at rest

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Name Class Date. height. Which ball would land first according to Aristotle? Explain. Skills Worksheet Directed Reading A Section: Gravity and Motion 1. Suppose a baseball and a marble are dropped at the same time from the same height. Which ball would land first according to Aristotle?

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Why do things move? Aristotle s view (developed over 2000 yrs ago): A force always has to act on an object to cause it to move. The velocity of the object is proportional

More information

PHYSICS 149: Lecture 3

PHYSICS 149: Lecture 3 Chapter 2 PHYSICS 149: Lecture 3 2.1 Forces 2.2 Net Force 2.3 Newton s first law Lecture 3 Purdue University, Physics 149 1 Forces Forces are interactions between objects Different type of forces: Contact

More information

Exam #1. On-line review questions for chapters 3-6 at uw.physics.wisc.edu/~rzchowski/phy107. Sep. 27, 2004 Physics 107, Lecture 10

Exam #1. On-line review questions for chapters 3-6 at uw.physics.wisc.edu/~rzchowski/phy107. Sep. 27, 2004 Physics 107, Lecture 10 Exam #1 Hour Exam I, Wednesday Sep 29, in-class Material from Chapters 1,3,4,5,6 One page of notes (8.5 x 11 ) allowed. Can write on both sides Questions are multiple choice Scantron sheets will be used

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

Galileo Uniform acceleration from rest. From last time. Falling object: constant acceleration. Tough questions. Inertia.

Galileo Uniform acceleration from rest. From last time. Falling object: constant acceleration. Tough questions. Inertia. From last time Position, velocity, and acceleration velocity = time rate of change of position acceleration = time rate of change of velocity Particularly useful concepts when velocity is constant (undisturbed

More information

Newton's Law of Universal Gravitation

Newton's Law of Universal Gravitation Section 2.17: Newton's Law of Universal Gravitation Gravity is an attractive force that exists between all objects that have mass. It is the force that keeps us stuck to the earth and the moon orbiting

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

In this chapter, you will consider the force of gravity:

In this chapter, you will consider the force of gravity: Gravity Chapter 5 Guidepost In this chapter, you will consider the force of gravity: What were Galileo s insights about motion and gravity? What were Newton s insights about motion and gravity? How does

More information

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01 Lecture 6 > Forces > Newton's Laws > Normal Force, Weight (Source: Serway; Giancoli) 1 Dynamics > Knowing the initial conditions of moving objects can predict the future motion of the said objects. > In

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Force Force: push or pull Force is a vector it has magnitude and direction The SI unit of force is the newton. The SI symbol for the newton is N. What is Newton s first law of motion?

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness Chapter 5 Part 2 Newton s Law of Universal Gravitation, Satellites, and Weightlessness Newton s ideas about gravity Newton knew that a force exerted on an object causes an acceleration. Most forces occurred

More information

Foundations of Physical Science. Unit One: Forces and Motion

Foundations of Physical Science. Unit One: Forces and Motion Foundations of Physical Science Unit One: Forces and Motion Chapter 3: Forces and Motion 3.1 Force, Mass and Acceleration 3.2 Weight, Gravity and Friction 3.3 Equilibrium, Action and Reaction Learning

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

Name: Date: Weight No More How does artificial gravity work?

Name: Date: Weight No More How does artificial gravity work? Name: Date: Weight No More If you travel in space, you could stay in a weightless environment like the astronauts who inhabit the International Space Station, or you could stay on the circumference of

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics 1 Physics 107: Ideas of Modern Physics Exam 1 Sep. 28, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

Chapter 4 Thrills and Chills >600 N If your weight is 600 N (blue vector), then the bathroom scale would have to be providing a force of greater than 600 N (red vector). Another way of looking at the situation

More information

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out Why Doesn t the oon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out of the equation for the force of gravity? ii. How does

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Physics. Chapter 9 Gravity

Physics. Chapter 9 Gravity Physics Chapter 9 Gravity The Newtonian Synthesis Gravity is a Universal Force The Newtonian Synthesis According to legend, Newton discovered gravity while sitting under an apple tree. The Falling Moon

More information

General Physical Science

General Physical Science General Physical Science Chapter 3 Force and Motion Force and Net Force Quantity capable of producing a change in motion (acceleration). Key word = capable Tug of War Balanced forces Unbalanced forces

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

Forces I. Newtons Laws

Forces I. Newtons Laws Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

PSI AP Physics C Universal Gravity Multiple Choice Questions

PSI AP Physics C Universal Gravity Multiple Choice Questions PSI AP Physics C Universal Gravity Multiple Choice Questions 1. Who determined the value of the gravitational constant (G)? (A) Newton (B) Galileo (C) Einstein (D) Schrödinger (E) Cavendish 2. Who came

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act?

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act? Quest Chapter 05 1 How would your mass change if you took a trip to the space station? 1. decreases; you weigh less. 2. increases; you weigh more. 3. no change in mass 2 (part 1 of 3) You are driving a

More information

Physics 10. Lecture 4A. "It is good to have an end to journey towards, but it is the journey that matters in the end." -- Ursula K.

Physics 10. Lecture 4A. It is good to have an end to journey towards, but it is the journey that matters in the end. -- Ursula K. Physics 10 Lecture 4A "It is good to have an end to journey towards, but it is the journey that matters in the end." -- Ursula K. LeGuin Mass and Weight Mass is a measure of how much inertia an object.

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Dynamics Review Outline

Dynamics Review Outline Dynamics Review Outline 2.1.1-C Newton s Laws of Motion 2.1 Contact Forces First Law (Inertia) objects tend to remain in their current state of motion (at rest of moving at a constant velocity) until acted

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Newton s Laws of Motion and Gravitation

Newton s Laws of Motion and Gravitation Newton s Laws of Motion and Gravitation Introduction: In Newton s first law we have discussed the equilibrium condition for a particle and seen that when the resultant force acting on the particle is zero,

More information

Exam 1 Solutions. Kinematics and Newton s laws of motion

Exam 1 Solutions. Kinematics and Newton s laws of motion Exam 1 Solutions Kinematics and Newton s laws of motion No. of Students 80 70 60 50 40 30 20 10 0 PHY231 Spring 2012 Midterm Exam 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Raw Score 1. In which

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Newton s third law Examples Isaac Newton s work represents one of the greatest contributions to science ever made by an individual.

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

Acceleration in Uniform Circular Motion

Acceleration in Uniform Circular Motion Acceleration in Uniform Circular Motion The object in uniform circular motion has a constant speed, but its velocity is constantly changing directions, generating a centripetal acceleration: a c v r 2

More information

The Laws of Motion. Newton s Second Law

The Laws of Motion. Newton s Second Law The Laws of Motion Newton s Second Law Key Concepts What is Newton s second law of motion? How does centripetal force affect circular motion? What do you think? Read the two statements below and decide

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2.

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2. Read each question carefully. 1) The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2. What is the box's mass? 6 kg 15 kg 21 kg 54 kg 2) A motorcycle and a van collide

More information

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 Summary Newton s law of gravity describes the gravitational force between A. the earth and the

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

07. GRAVITATION. Questions and Answers

07. GRAVITATION. Questions and Answers CLASS-09 07. GRAVITATION Questions and Answers PHYSICAL SCIENCES 1. A car moves with a constant speed of 10 m/s in a circular path of radius 10 m. The mass of the car is 1000 Kg. Who or What is providing

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Force F Chapter 5 Force and Motion is the interaction between objects is a vector causes acceleration Net force: vector sum of all the forces on an object. v v N v v v v v Ftotal Fnet = Fi = F1 + F2 +

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

SUPERCHARGED SCIENCE. Unit 2: Motion.

SUPERCHARGED SCIENCE. Unit 2: Motion. SUPERCHARGED SCIENCE Unit 2: Motion www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-12 hours, depending on how many activities you do! We re going to study

More information

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time.

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time. Motion Motion is all around us. How something moves is probably the first thing we notice about some process. Quantifying motion is the were we learn how objects fall and thus gravity. Even our understanding

More information

Motion. A change in the position of an object

Motion. A change in the position of an object Forces & Motion Motion A change in the position of an object A change in motion is caused by force (a push or pull on an object caused by interaction of objects; either by contact or at a distance) Force

More information

The Newtonian Synthesis. Conceptual Physics 11 th Edition. The Universal Law of Gravity. The Universal Law of Gravity. The Newtonian Synthesis

The Newtonian Synthesis. Conceptual Physics 11 th Edition. The Universal Law of Gravity. The Universal Law of Gravity. The Newtonian Synthesis Conceptual Physics 11 th Edition Chapter 9: GRAVITY The Newtonian Synthesis In Aristotle s time, motion of planets and stars was natural not governed by the same laws as objects on Earth. Newton recognized

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics 1 Physics 107: Ideas of Modern Physics Exam 1 Sep. 28, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

Do Now: Why are we required to obey the Seat- Belt law?

Do Now: Why are we required to obey the Seat- Belt law? Do Now: Why are we required to obey the Seat- Belt law? Newton s Laws of Motion Newton s First Law An object at rest remains at rest and an object in motion remains in motion with the same speed and direction.

More information

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3 FORCES Chapter 2: Section 3, Chapter 3: Sections 1-3 Vocab: 2.3-3.3 DEFINE THESE Force Net force Balanced force Inertia Newton s second law of motion Friction Law of gravitation Weight Newton s third law

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Force and Newton s Laws Chapter 3

Force and Newton s Laws Chapter 3 Force and Newton s Laws Chapter 3 3-1 Classical Mechanics Galileo (1564-1642) and Isaac Newton (1642-1727) developed the current approach we use to understand the motion of objects. The minimal number

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding

More information

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.)

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.) Newton s Laws 1) Inertia - objects in motion stay in motion 2) F=ma 3) Equal and opposite reactions Newton's 1 st Law What is the natural state of motion of an object? An object at rest remains at rest,

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

SECTION 1 (PP ):

SECTION 1 (PP ): FORCES CHANGE MOTION. Georgia Standards: S8P3b Demonstrate the effect of balanced and unbalanced forces on an object in terms of gravity, inertia, and friction; S8CS6a Write clear, step-by-step instructions

More information

Basic Physics 29:008 Spring 2005 Exam I

Basic Physics 29:008 Spring 2005 Exam I Exam I solutions Name: Date: 1. Two cars are moving around a circular track at the same constant speed. If car 1 is at the inner edge of the track and car 2 is at the outer edge, then A) the acceleration

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 1 Gravity & The Distances to Stars Lecture 8 Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 2 Preparing for the Exam 1 Exams in this class are multiple choice, but the questions can be

More information

Where to aim in order to Hit the Falling object (ignore air friction)?

Where to aim in order to Hit the Falling object (ignore air friction)? Where to aim in order to Hit the Falling object (ignore air friction)? y x Ignoring friction y = v 0y t 1/2gt 2 t = x/v 0x, v 0y /v 0x = h/x y = h 1/2gt 2 In the same time the monkey falls 1/2gt 2, i.e.

More information

Practice Test Chapter 2 Forces and Motion

Practice Test Chapter 2 Forces and Motion Practice Test Chapter 2 Forces and Motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What happens when a moving bumper car hits a bumper car at rest?

More information

Newton s Laws and the Nature of Matter

Newton s Laws and the Nature of Matter Newton s Laws and the Nature of Matter The Nature of Matter Democritus (c. 470-380 BCE) posited that matter was composed of atoms Atoms: particles that can not be further subdivided 4 kinds of atoms: earth,

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information