Chapter 6 Dynamics I: Motion Along a Line

Size: px
Start display at page:

Download "Chapter 6 Dynamics I: Motion Along a Line"

Transcription

1 Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2

2 Chapter 6 Preview Slide 6-3

3 Chapter 6 Preview Slide 6-4

4 Chapter 6 Preview Slide 6-5

5 Chapter 6 Preview Slide 6-6

6 Chapter 6 Preview Slide 6-7

7 Chapter 6 Preview Slide 6-8

8 Equilibrium An object on which the net force is zero is in equilibrium. If the object is at rest, it is in static equilibrium. If the object is moving along a straight line with a constant velocity it is in dynamic equilibrium. The requirement for either type of equilibrium is: The concept of equilibrium is essential for the engineering analysis of stationary objects such as bridges. Slide 6-27

9 Problem-Solving Strategy: Equilibrium Problems Slide 6-30

10 Problem-Solving Strategy: Equilibrium Problems Slide 6-31

11 Example 6.2 Towing a Car up a Hill Slide 6-34

12 Example 6.2 Towing a Car up a Hill Slide 6-35

13 Example 6.2 Towing a Car up a Hill Slide 6-36

14 Example 6.2 Towing a Car up a Hill Slide 6-37

15 Example 6.2 Towing a Car up a Hill Slide 6-38

16 Using Newton s Second Law The essence of Newtonian mechanics can be expressed in two steps: The forces on an object determine its acceleration, and The object s trajectory can be determined by using in the equations of kinematics. Slide 6-43

17 Problem-Solving Strategy: Dynamics Problems Slide 6-44

18 Problem-Solving Strategy: Dynamics Problems Slide 6-45

19 Example 6.3 Speed of a Towed Car Slide 6-48

20 Example 6.3 Speed of a Towed Car Slide 6-49

21 Example 6.3 Speed of a Towed Car Slide 6-50

22 Example 6.3 Speed of a Towed Car Slide 6-51

23 Mass: An Intrinsic Property A pan balance, shown in the figure, is a device for measuring mass. The measurement does not depend on the strength of gravity. Mass is a scalar quantity that describes an object s inertia. Mass describes the amount of matter in an object. Mass is an intrinsic property of an object. Slide 6-54

24 Gravity: A Force Gravity is an attractive, long-range force between any two objects. The figure shows two objects with masses m 1 and m 2 whose centers are separated by distance r. Each object pulls on the other with a force: where G = N m 2 /kg 2 is the gravitational constant. Slide 6-55

25 Gravity: A Force The gravitational force between two human-sized objects is very small. Only when one of the objects is planet-sized or larger does gravity become an important force. For objects near the surface of the planet earth: where M and R are the mass and radius of the earth, and g = 9.80 m/s 2. Slide 6-56

26 Gravity: A Force The magnitude of the gravitational force is F G = mg, where: The figure shows the free-body diagram of an object in free fall near the surface of a planet. With, Newton s second law predicts the acceleration to be: All objects on the same planet, regardless of mass, have the same free-fall acceleration! Slide 6-57

27 Weight: A Measurement You weigh apples in the grocery store by placing them in a spring scale and stretching a spring. The reading of the spring scale is the magnitude of F sp. We define the weight of an object as the reading F sp of a calibrated spring scale on which the object is stationary. Because F sp is a force, weight is measured in newtons. Slide 6-58

28 Weight: A Measurement A bathroom scale uses compressed springs which push up. When any spring scale measures an object at rest,. The upward spring force exactly balances the downward gravitational force of magnitude mg: Weight is defined as the magnitude of F sp when the object is at rest relative to the stationary scale: Slide 6-59

29 Weight: A Measurement The figure shows a man weighing himself in an accelerating elevator. Looking at the free-body diagram, the y-component of Newton s second law is: The man s weight as he accelerates vertically is: You weigh more as an elevator accelerates upward! Slide 6-62

30 Weightlessness The weight of an object which accelerates vertically is If an object is accelerating downward with a y = g, then w = 0. An object in free fall has no weight! Astronauts while orbiting the earth are also weightless. Does this mean that they are in free fall? Astronauts are weightless as they orbit the earth. Slide 6-67

31 Static Friction A shoe pushes on a wooden floor but does not slip. On a microscopic scale, both surfaces are rough and high features on the two surfaces form molecular bonds. These bonds can produce a force tangent to the surface, called the static friction force. Static friction is a result of many molecular springs being compressed or stretched ever so slightly. Slide 6-72

32 Static Friction The figure shows a person pushing on a box that, due to static friction, isn t moving. Looking at the free-body diagram, the x-component of Newton s first law requires that the static friction force must exactly balance the pushing force: points in the direction opposite to the way the object would move if there were no static friction. Slide 6-73

33 Static Friction Static friction acts in response to an applied force. Slide 6-74

34 Static Friction Static friction force has a maximum possible size f s max. An object remains at rest as long as f s < f s max. The object just begins to slip when f s = f s max. A static friction force f s > f s max is not physically possible. where the proportionality constant μ s is called the coefficient of static friction. Slide 6-77

35 Kinetic Friction The kinetic friction force is proportional to the magnitude of the normal force: where the proportionality constant μ k is called the coefficient of kinetic friction. The kinetic friction direction is opposite to the velocity of the object relative to the surface. For any particular pair of surfaces, μ k < μ s. Slide 6-80

36 Rolling Motion If you slam on the brakes so hard that the car tires slide against the road surface, this is kinetic friction. Under normal driving conditions, the portion of the rolling wheel that contacts the surface is stationary, not sliding. If your car is accelerating or decelerating or turning, it is the static friction of the road on the wheels that provides the net force which accelerates the car. Slide 6-87

37 Rolling Friction A car with no engine or brakes applied does not roll forever; it gradually slows down. This is due to rolling friction. The force of rolling friction can be calculated as: where μ r is called the coefficient of rolling friction. The rolling friction direction is opposite to the velocity of the rolling object relative to the surface. Slide 6-88

38 Coefficients of Friction Slide 6-89

39 A Model of Friction The actual causes of friction involve microscopic surface properties and molecular bonds. Experiments show that reasonable predictions are produced by a model of friction a simplification of reality: Here motion means motion relative to the surface. Forces of kinetic and rolling friction are proportional to the normal force of the surface on the object. The maximum static friction force is proportional to the normal force of the surface on the object. Slide 6-90

40 A Model of Friction The friction force response to an increasing applied force. Slide 6-91

41 Causes of Friction All surfaces are very rough on a microscopic scale. When two surfaces are pressed together, the high points on each side come into contact and form molecular bonds. The amount of contact depends on the normal force n. When the two surfaces are sliding against each other, the bonds don t form fully, but they do tend to slow the motion. Slide 6-92

42 Drag The air exerts a drag force on objects as they move through the air. Faster objects experience a greater drag force than slower objects. The drag force on a high-speed motorcyclist is significant. The drag force direction is opposite the object s velocity. Slide 6-93

43 Drag For normal-sized objects on earth traveling at a speed v which is less than a few hundred meters per second, air resistance can be modeled as: A is the cross-section area of the object. ρ is the density of the air, which is about 1.2 kg/m 3. C is the drag coefficient, which is a dimensionless number that depends on the shape of the object. Slide 6-94

44 Drag Cross-section areas for objects of different shape. Slide 6-95

45 Example 6.7 Air Resistance Compared to Rolling Friction Slide 6-96

46 Example 6.7 Air Resistance Compared to Rolling Friction Slide 6-97

47 Example 6.7 Air Resistance Compared to Rolling Friction Slide 6-98

48 Example 6.7 Air Resistance Compared to Rolling Friction Slide 6-99

49 Terminal Speed The drag force from the air increases as an object falls and gains speed. If the object falls far enough, it will eventually reach a speed at which D = F G. At this speed, the net force is zero, so the object falls at a constant speed, called the terminal speed v term. Slide 6-100

50 Terminal Speed The figure shows the velocity-versus-time graph of a falling object with and without drag. Without drag, the velocity graph is a straight line with a y = g. When drag is included, the vertical component of the velocity asymptotically approaches v term. Slide 6-101

51 Example 6.10 Make Sure the Cargo Doesn t Slide Slide 6-102

52 Example 6.10 Make Sure the Cargo Doesn t Slide MODEL Let the box, which we ll model as a particle, be the object of interest. Only the truck exerts contact forces on the box. The box does not slip relative to the truck. If the truck bed were frictionless, the box would slide backward as seen in the truck s reference frame as the truck accelerates. The force that prevents sliding is static friction. The box must accelerate forward with the truck: a box = a truck. Slide 6-103

53 Example 6.10 Make Sure the Cargo Doesn t Slide Slide 6-104

54 Example 6.10 Make Sure the Cargo Doesn t Slide Slide 6-105

55 Example 6.10 Make Sure the Cargo Doesn t Slide Slide 6-106

56 Example 6.10 Make Sure the Cargo Doesn t Slide Slide 6-107

57 Chapter 6 Summary Slides Slide 6-108

58 General Strategy Slide 6-109

59 General Strategy Slide 6-110

60 Important Concepts Slide 6-111

61 Important Concepts

Chapter 6. Dynamics I: Motion Along a Line

Chapter 6. Dynamics I: Motion Along a Line Chapter 6. Dynamics I: Motion Along a Line This chapter focuses on objects that move in a straight line, such as runners, bicycles, cars, planes, and rockets. Gravitational, tension, thrust, friction,

More information

PreClass Notes: Chapter 5, Sections 5.4,5.5

PreClass Notes: Chapter 5, Sections 5.4,5.5 PreClass Notes: Chapter 5, Sections 5.4,5.5 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

PHY131H1F Introduction to Physics I Review of the first half Chapters Error Analysis

PHY131H1F Introduction to Physics I Review of the first half Chapters Error Analysis PHY131H1F Introduction to Physics I Review of the first half Chapters 1-8 + Error Analysis Position, Velocity, Acceleration Significant Figures, Measurements, Errors Equations of constant acceleration

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 5 Lecture Pearson Physics Newton's Laws of Motion Prepared by Chris Chiaverina Chapter Contents Newton's Laws of Motion Applying Newton's Laws Friction Newton's Laws of Motion Two of the most important

More information

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force

More information

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B)

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B) 1. The data table below lists the mass and speed of four different objects. 6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? Which

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. The greatest increase in the inertia of an object would be produced by increasing the A) mass of the object from 1.0 kg to 2.0 kg B) net force applied to the object from 1.0 N to 2.0 N C) time that

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Lecture 4. Newton s 3rd law and Friction

Lecture 4. Newton s 3rd law and Friction Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state

More information

Dynamics Review Outline

Dynamics Review Outline Dynamics Review Outline 2.1.1-C Newton s Laws of Motion 2.1 Contact Forces First Law (Inertia) objects tend to remain in their current state of motion (at rest of moving at a constant velocity) until acted

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Matter in Motion Preview Section 1 Measuring Motion Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Section 4 Gravity: A Force of Attraction Concept Mapping Section 1 Measuring

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car?

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car? Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant? 1. A 0.50-kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

PHY131 Summer 2011 Class 5 Notes

PHY131 Summer 2011 Class 5 Notes PHY131 Summer 2011 Class 5 Notes 5/31/11 PHY131H1F Summer Class 5 Today: Equilibrium Mass, Weight, Gravity Friction, Drag Rolling without slipping Examples of Newton s Second Law Pre-class Reading Quiz.

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Newton s Laws Student Success Sheets (SSS)

Newton s Laws Student Success Sheets (SSS) --- Newton s Laws unit student success sheets--- Page 1 Newton s Laws Student Success Sheets (SSS) HS-PS2-1 HS-PS2-2 NGSS Civic Memorial High School - Physics Concept # What we will be learning Mandatory

More information

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to 1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to A) 9.2 10 12 s B) 8.3 10 14 s C) 1.6 10 16 s D) 4.4 10 17 s E) 2.7

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015 Forces Newton s Three Laws of Motion Types of Forces Weight Friction Terminal Velocity Periodic Motion Forces Defined as a push or a pull Types of Forces 1) Gravitational - attractive force that exists

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

Friction (static & Kinetic) Review

Friction (static & Kinetic) Review Friction (static & Kinetic) Review 1. Sand is often placed on an icy road because the sand A) decreases the coefficient of friction between the tires of a car and the road B) increases the coefficient

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 pplying Newton s Laws 1 Friction When you push horizontally on a heavy box at rest on a horizontal floor with a steadily increasing force, the box will remain at rest initially,

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

r r Sample Final questions for PS 150

r r Sample Final questions for PS 150 Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Lecture Presentation Chapter 5 Applying Newton s Laws

Lecture Presentation Chapter 5 Applying Newton s Laws Lecture Presentation Chapter 5 Applying Newton s Laws Suggested Videos for Chapter 5 Prelecture Videos Static and Dynamic Equilibrium Weight and Apparent Weight Friction Video Tutor Solutions Applying

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects.

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. VISUAL PHYSICS ONLINE DYNAMICS TYPES O ORCES 1 Electrostatic force orce mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. AB A

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces Chapter 4 Classical Mechanics Forces and Mass does not apply for very tiny objects (< atomic sizes) objects moving near the speed of light Newton s First Law Forces If the net force!f exerted on an object

More information

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3 FORCES Chapter 2: Section 3, Chapter 3: Sections 1-3 Vocab: 2.3-3.3 DEFINE THESE Force Net force Balanced force Inertia Newton s second law of motion Friction Law of gravitation Weight Newton s third law

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Lecture Presentation Chapter 5 Applying Newton s Laws

Lecture Presentation Chapter 5 Applying Newton s Laws Lecture Presentation Chapter 5 Applying Newton s Laws Suggested Videos for Chapter 5 Prelecture Videos Static and Dynamic Equilibrium Weight and Apparent Weight Friction Video Tutor Solutions Applying

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem.

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Circular Motion Concepts When an object moves in a circle,

More information

4.4. Friction and Inclines

4.4. Friction and Inclines 4.4. Friction and Inclines Frictional Forces Friction has its basis in surfaces that are not completely smooth. This roughness causes resistance to horizontal motion. Even smooth surfaces have a certain

More information

BIT1002 Newton's Laws. By the end of this you should understand

BIT1002 Newton's Laws. By the end of this you should understand BIT1002 Newton's Laws By the end of this you should understand Galileo's Law of inertia/newton's First Law What is an Inertial Frame The Connection between force and Acceleration: F=ma 4. The Third Law

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Chapter 4 Physics Notes Changes in Motion Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Forces cause changes in velocity Causes a stationary

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls. 4.1. Solve: A force is basically a push or a pull on an object. There are five basic characteristics of forces. (i) A force has an agent that is the direct and immediate source of the push or pull. (ii)

More information

Physics 221, January 24

Physics 221, January 24 Key Concepts: Newton s 1 st law Newton s 2 nd law Weight Newton s 3 rd law Physics 221, January 24 Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code. Matter

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction. Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Newton s Laws Forces Mass and Weight Serway and Jewett 5.1 to 5.6 Practice: Chapter 5, Objective Questions 2, 11 Conceptual Questions 7, 9, 19, 21 Problems 2, 3, 7, 13 Newton s

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket. Ch 11 ENERGY and its CONSERVATION 11.1 The Many Forms of Energy work causes a change in the energy of a system W = KE (an increase or decrease in KE) work energy theorem object + work object work increase

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

Exam 1 Solutions. Kinematics and Newton s laws of motion

Exam 1 Solutions. Kinematics and Newton s laws of motion Exam 1 Solutions Kinematics and Newton s laws of motion No. of Students 80 70 60 50 40 30 20 10 0 PHY231 Spring 2012 Midterm Exam 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Raw Score 1. In which

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

PHYSICS 231 Laws of motion PHY 231

PHYSICS 231 Laws of motion PHY 231 PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

A force is could described by its magnitude and by the direction in which it acts.

A force is could described by its magnitude and by the direction in which it acts. 8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

PHY131H1F - Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag

PHY131H1F - Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag PHY131H1F - Class 9 Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag Microscopic bumps and holes crash into each other, causing a frictional force. Kinetic

More information

Chapter 12 Forces and Motion

Chapter 12 Forces and Motion Chapter 12 Forces and Motion GOAL: Students will be able to interpret and apply Newton s three laws of motion and analyze the motion of an object in terms of its position, velocity, and acceleration. Standard:

More information

Force, Motion, and Sound

Force, Motion, and Sound Force, Motion, and Sound Physics 160, Spring 2006 Galileo (1564-1642) 1642) Isaac Newton (1643-1727) 1727) Uniform Motion x = 1cm 2cm 3cm 4cm 5cm 6cm 7cm 8cm O t = 1s 2s 3s 4s 5s 6s 7s 8s This picture

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Newtonian Mechanics Mass Mass is an intrinsic characteristic of a body The mass of a body is the characteristic that relates a force on the body to the resulting acceleration.

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information