Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Size: px
Start display at page:

Download "Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation"

Transcription

1 Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines

2 Circular Motion and Gravitation Section 1 What do you think? Consider the following objects moving in circles: A car traveling around a circular ramp on the highway A ball tied to a string being swung in a circle The moon as it travels around Earth A child riding rapidly on a playground merry-go-round For each example above, answer the following: Is the circular motion caused by a force? If so, in what direction is that force acting? What is the source of the force acting on each object?

3 Circular Motion and Gravitation Section 1 Tangential Speed (v t ) Speed in a direction tangent to the circle Uniform circular motion: v t has a constant value Only the direction changes Example shown to the right How would the tangential speed of a horse near the center of a carousel compare to one near the edge? Why?

4 Circular Motion and Gravitation Section 1 Centripetal Acceleration (a c ) Acceleration is a change in velocity (size or direction). Direction of velocity changes continuously for uniform circular motion. What direction is the acceleration? the same direction as v toward the center of the circle Centripetal means center seeking

5 Circular Motion and Gravitation Section 1 Centripetal Acceleration (magnitude) How do you think the magnitude of the acceleration depends on the speed? How do you think the magnitude of the acceleration depends on the radius of the circle?

6 Circular Motion and Gravitation Section 1 Tangential Acceleration Occurs if the speed increases Directed tangent to the circle Example: a car traveling in a circle Centripetal acceleration maintains the circular motion. directed toward center of circle Tangential acceleration produces an increase or decrease in the speed of the car. directed tangent to the circle

7 Circular Motion and Gravitation Section 1 Centripetal Acceleration Click below to watch the Visual Concept. Visual Concept

8 Circular Motion and Gravitation Section 1 Centripetal Force (F c ) F c ma c and so a F c c v r 2 t mv r 2 t

9 Circular Motion and Gravitation Section 1 Centripetal Force Maintains motion in a circle Can be produced in different ways, such as Gravity A string Friction Which way will an object move if the centripetal force is removed? In a straight line, as shown on the right

10 Circular Motion and Gravitation Section 1 Describing a Rotating System Imagine yourself as a passenger in a car turning quickly to the left, and assume you are free to move without the constraint of a seat belt. How does it feel to you during the turn? How would you describe the forces acting on you during this turn? There is not a force away from the center or throwing you toward the door. Sometimes called centrifugal force Instead, your inertia causes you to continue in a straight line until the door, which is turning left, hits you.

11 Circular Motion and Gravitation Section 1 Classroom Practice Problems A 35.0 kg child travels in a circular path with a radius of 2.50 m as she spins around on a playground merry-go-round. She makes one complete revolution every 2.25 s. What is her speed or tangential velocity? (Hint: Find the circumference to get the distance traveled.) What is her centripetal acceleration? What centripetal force is required? Answers: 6.98 m/s, 19.5 m/s 2, 682 N

12 Circular Motion and Gravitation Section 1 Now what do you think? Consider the following objects moving in circles: A car traveling around a circular ramp on the highway A ball tied to a string being swung in a circle The moon as it travels around Earth A child riding rapidly on a playground merry-go-round For each example above, answer the following: Is the circular motion caused by a force? If so, in what direction is that force acting? What is the source of the force acting on each object?

13 Circular Motion and Gravitation Section 2 What do you think? Imagine an object hanging from a spring scale. The scale measures the force acting on the object. What is the source of this force? What is pulling or pushing the object downward? Could this force be diminished? If so, how? Would the force change in any way if the object was placed in a vacuum? Would the force change in any way if Earth stopped rotating?

14 Circular Motion and Gravitation Section 2 Newton s Thought Experiment What happens if you fire a cannonball horizontally at greater and greater speeds? Conclusion: If the speed is just right, the cannonball will go into orbit like the moon, because it falls at the same rate as Earth s surface curves. Therefore, Earth s gravitational pull extends to the moon.

15 Circular Motion and Gravitation Section 2 Law of Universal Gravitation F g is proportional to the product of the masses (m 1 m 2 ). F g is inversely proportional to the distance squared (r 2 ). Distance is measured center to center. G converts units on the right (kg 2 /m 2 ) into force units (N). G = x N m 2 /kg 2

16 Circular Motion and Gravitation Section 2 Law of Universal Gravitation

17 Circular Motion and Gravitation Section 2 The Cavendish Experiment Cavendish found the value for G. He used an apparatus similar to that shown above. He measured the masses of the spheres (m 1 and m 2 ), the distance between the spheres (r), and the force of attraction (F g ). He solved Newton s equation for G and substituted his experimental values.

18 Circular Motion and Gravitation Section 2 Gravitational Force If gravity is universal and exists between all masses, why isn t this force easily observed in everyday life? For example, why don t we feel a force pulling us toward large buildings? The value for G is so small that, unless at least one of the masses is very large, the force of gravity is negligible.

19 Circular Motion and Gravitation Section 2 Ocean Tides What causes the tides? How often do they occur? Why do they occur at certain times? Are they at the same time each day?

20 Circular Motion and Gravitation Section 2 Ocean Tides Newton s law of universal gravitation is used to explain the tides. Since the water directly below the moon is closer than Earth as a whole, it accelerates more rapidly toward the moon than Earth, and the water rises. Similarly, Earth accelerates more rapidly toward the moon than the water on the far side. Earth moves away from the water, leaving a bulge there as well. As Earth rotates, each location on Earth passes through the two bulges each day.

21 Circular Motion and Gravitation Section 2 Gravity is a Field Force Earth, or any other mass, creates a force field. Forces are caused by an interaction between the field and the mass of the object in the field. The gravitational field (g) points in the direction of the force, as shown.

22 Circular Motion and Gravitation Section 2 Calculating the value of g Since g is the force acting on a 1 kg object, it has a value of 9.81 N/m (on Earth). The same value as a g (9.81 m/s 2 ) The value for g (on Earth) can be calculated as shown below. g F Gmm Gm m mr r g E E 2 2

23 Circular Motion and Gravitation Section 2 Classroom Practice Problems Find the gravitational force that Earth (m E = kg) exerts on the moon (m m = kg) when the distance between them is 3.84 x 10 8 m. Answer: 1.99 x N Find the strength of the gravitational field at a point 3.84 x 10 8 m from the center of Earth. Answer: N/m or m/s 2

24 Circular Motion and Gravitation Section 2 Now what do you think? Imagine an object hanging from a spring scale. The scale measures the force acting on the object. What is the source of this force? What is pulling or pushing the object downward? Could this force be diminished? If so, how? Would the force change in any way if the object was placed in a vacuum? Would the force change in any way if Earth stopped rotating?

25 Circular Motion and Gravitation Section 3 What do you think? Make a sketch showing the path of Earth as it orbits the sun. Describe the motion of Earth as it follows this path. Describe the similarities and differences between the path and motion of Earth and that of other planets.

26 Circular Motion and Gravitation Section 3 What do you think? What does the term weightless mean to you? Have you ever observed someone in a weightless environment? If so, when? How did their weightless environment differ from a normal environment?

27 Circular Motion and Gravitation Section 3 Kepler s Laws Johannes Kepler built his ideas on planetary motion using the work of others before him. Nicolaus Copernicus and Tycho Brahe

28 Circular Motion and Gravitation Section 3 Kepler s Laws Kepler s first law Orbits are elliptical, not circular. Some orbits are only slightly elliptical. Kepler s second law Equal areas are swept out in equal time intervals.

29 Circular Motion and Gravitation Section 3 Kepler s Laws Kepler s third law Relates orbital period (T) to distance from the sun (r) Period is the time required for one revolution. As distance increases, the period increases. Not a direct proportion T 2 /r 3 has the same value for any object orbiting the sun

30 Circular Motion and Gravitation Section 3 Equations for Planetary Motion Using SI units, prove that the units are consistent for each equation shown above.

31 Circular Motion and Gravitation Section 3 Classroom Practice Problems A large planet orbiting a distant star is discovered. The planet s orbit is nearly circular and close to the star. The orbital distance is m and its period is days. Calculate the mass of the star. Answer: kg What is the velocity of this planet as it orbits the star? Answer: m/s

32 Circular Motion and Gravitation Section 3 Weight and Weightlessness Bathroom scale A scale measures the downward force exerted on it. Readings change if someone pushes down or lifts up on you. Your scale reads the normal force acting on you.

33 Circular Motion and Gravitation Section 3 Apparent Weightlessness Elevator at rest: the scale reads the weight (600 N). Elevator accelerates downward: the scale reads less. Elevator in free fall: the scale reads zero because it no longer needs to support the weight.

34 Circular Motion and Gravitation Section 3 Apparent Weightlessness You are falling at the same rate as your surroundings. No support force from the floor is needed. Astronauts are in orbit, so they fall at the same rate as their capsule. True weightlessness only occurs at great distances from any masses. Even then, there is a weak gravitational force.

35 Circular Motion and Gravitation Section 3 Now what do you think? Make a sketch showing the path of Earth as it orbits the sun. Describe the motion of Earth as it follows this path. Describe the similarities and differences between the path and motion of Earth and that of other planets.

36 Circular Motion and Gravitation Section 3 Now what do you think? What does the term weightless mean to you? Have you ever observed someone in a weightless environment? If so, when? How did their weightless environment differ from a normal environment?

37 Circular Motion and Gravitation Section 4 What do you think? Doorknobs come in a variety of styles. Describe some that you have seen. Which style of doorknob is easiest to use? Why? List the names of any simple machines you can recall. What is the purpose of a simple machine? Provide an example.

38 Circular Motion and Gravitation Section 4 Rotational and Translational Motion Consider a tire on a moving car. Translational motion is the movement of the center of mass. The entire tire is changing positions. Rotational motion is the movement around an axis. Rotation occurs around a center. Changes in rotational motion are caused by torques. Torque is the ability of a force to affect rotation.

39 Circular Motion and Gravitation Section 4 Torque Where should the cat push on the cat-flap door in order to open it most easily? The bottom, as far away from the hinges as possible Torque depends on the force (F) and the length of the lever arm (d).

40 Circular Motion and Gravitation Section 4 Torque Torque also depends on the angle between the force (F) and the distance (d). Which situation shown above will produce the most torque on the cat-flap door? Why? Figure (a), because the force is perpendicular to the distance

41 Circular Motion and Gravitation Section 4 Torque SI units: N m Not joules because torque is not energy The quantity d sin is the perpendicular distance from the axis to the direction of the force.

42 Circular Motion and Gravitation Section 4 Torque as a Vector Torque has direction. Torque is positive if it causes a counterclockwise rotation. Torque is negative if it causes a clockwise rotation. Are the torques shown to the right positive or negative? The wrench produces a positive torque. The cat produces a negative torque. Net torque is the sum of the torques.

43 Circular Motion and Gravitation Section 4 Classroom Practice Problems Suppose the force on the wrench is 65.0 N and the lever arm is 20.0 cm. The angle ( ) between the force and lever arm is Calculate the torque. Answer: 7.46 N m What force would be required to produce the same torque if the force was perpendicular to the lever arm? Answer: 37.3 N

44 Circular Motion and Gravitation Section 4 Simple Machines Change the size or direction of the input force Mechanical advantage (MA) compares the input force to the output force. When F out > F in then MA > 1 MA can also be determined from the distances the input and output forces move. MA F out F in d in d out

45 Circular Motion and Gravitation Section 4 Overview of Simple Machines Click below to watch the Visual Concept. Visual Concept

46 Circular Motion and Gravitation Section 4 Simple Machines Simple machines alter the force and the distance moved. For the inclined plane shown: F 2 < F 1 so MA >1 and d 2 > d 1 If the ramp is frictionless, the work is the same in both cases. F 1 d 1 = F 2 d 2 With friction, F 2 d 2 > F 1 d 1. The force is reduced but the work done is greater.

47 Circular Motion and Gravitation Section 4 Efficiency of Simple Machines Efficiency measures work output compared to work input. In the absence of friction, they are equal. Real machines always have efficiencies less than 1, but they make work easier by changing the force required to do the work. eff W out W in

48 Circular Motion and Gravitation Section 4 Now what do you think? Doorknobs come in a variety of styles. Describe some that you have seen. Which style of doorknob is easiest to use? Why? List the names of any simple machines you can recall. What is the purpose of a simple machine? Provide an example.

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Circular Motion. Gravitation

Circular Motion. Gravitation Circular Motion Gravitation Circular Motion Uniform circular motion is motion in a circle at constant speed. Centripetal force is the force that keeps an object moving in a circle. Centripetal acceleration,

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Physics Test 7: Circular Motion page 1

Physics Test 7: Circular Motion page 1 Name Physics Test 7: Circular Motion page 1 hmultiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. The SI unit of angular speed

More information

Section Study Guide. Teacher Notes and Answers. Circular Motion and Gravitation

Section Study Guide. Teacher Notes and Answers. Circular Motion and Gravitation Section Study Guide Teacher Notes and Answers CIRCULAR MOTION 1. a. yes b. The car has a non-zero acceleration because the direction of motion is changing. c. The direction of centripetal acceleration

More information

Circular motion, Center of Gravity, and Rotational Mechanics

Circular motion, Center of Gravity, and Rotational Mechanics Circular motion, Center of Gravity, and Rotational Mechanics Rotation and Revolution Every object moving in a circle turns around an axis. If the axis is internal to the object (inside) then it is called

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Based on part of Chapter 4 This material will be useful for understanding Chapters 8 and 11

More information

Linear vs. Rotational Motion

Linear vs. Rotational Motion Linear vs. Rotational Motion Every term in a linear equation has a similar term in the analogous rotational equation. Displacements: s = r θ v t ω Speeds: v t = ω r Accelerations: a t = α r Every point

More information

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016 Forces, Momentum, & Gravity (Chapter 3) Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both force and motion the cause and effect. We

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration! Δv! aavg t 3. Going around urve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac. Slowing down v velocity and

More information

An object moving in a circle with radius at speed is said to be undergoing.

An object moving in a circle with radius at speed is said to be undergoing. Circular Motion Study Guide North Allegheny High School Mr. Neff An object moving in a circle with radius at speed is said to be undergoing. In this case, the object is because it is constantly changing

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration 3. Going around a curve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac 2. Slowing down v velocity and acceleration

More information

Angle recap. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Angle recap. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration: Angle recap Angular position: Angular displacement: s Angular velocity: Angular Acceleration: Every point on a rotating rigid object has the same angular, but not the same linear motion! Today s lecture

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

Chapter 7 & 8 Prep Test: Circular Motion and Gravitation

Chapter 7 & 8 Prep Test: Circular Motion and Gravitation Chapter 7 & 8 Prep Test: Circular Motion and Gravitation Multiple Choice Identify the choice that best completes the statement or answers the question. A monkey rides a tricycle in a circular path with

More information

Cp physics web review chapter 7 gravitation and circular motion

Cp physics web review chapter 7 gravitation and circular motion Name: Class: _ Date: _ ID: A Cp physics web review chapter 7 gravitation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question.. What is the

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

FORCE AND MOTION CHAPTER 3

FORCE AND MOTION CHAPTER 3 FORCE AND MOTION CHAPTER 3 Review: Important Equations Chapter 2 Definitions Average speed: Acceleration: v = d t v = Δd a = Δv Δt = v v 0 t t 0 Δt = d d 0 t t 0 Derived Final velocity: Distance fallen:

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D) A 1500 kg car travels at a constant speed of 22 m/s around a circular track which has a radius of 80 m. Which statement is true concerning this car? A) The velocity of the car is changing. B) The car is

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

3 UCM & Gravity Student Physics Regents Date

3 UCM & Gravity Student Physics Regents Date Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 11 Last Lecture Angular velocity, acceleration " = #$ #t = $ f %$ i t f % t i! = " f # " i t!" #!x $ 0 # v 0 Rotational/ Linear analogy "s = r"# v t = r" $ f

More information

PH201 Chapter 6 Solutions

PH201 Chapter 6 Solutions PH201 Chapter 6 Solutions 6.2. Set Up: Since the stone travels in a circular path, its acceleration is directed toward the center of the circle. The only horizontal force on the stone is the tension of

More information

Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION

Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION An object moving in a circle must have a force acting on it; otherwise it would move in a straight line. The direction of the force is towards the center

More information

AP practice ch 7-8 Multiple Choice

AP practice ch 7-8 Multiple Choice AP practice ch 7-8 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW: Assignment - Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully. 1 A dragster maintains a speedometer reading of 100 km/h and passes through a curve with a constant radius. Which statement is true? 1. The dragster rounded the curve at a changing speed of 100 km/h. 2.

More information

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday.

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. Centripetal Acceleration and Newtonian Gravitation Reminders: 15

More information

Chapter 8 Rotational Motion

Chapter 8 Rotational Motion Chapter 8 Rotational Motion Chapter 8 Rotational Motion In this chapter you will: Learn how to describe and measure rotational motion. Learn how torque changes rotational velocity. Explore factors that

More information

Circular Motion CENTRIPETAL ACCELERATION. tf-t,

Circular Motion CENTRIPETAL ACCELERATION. tf-t, Circular Motion Ill SECTION OBJECTIVES Solve problems involving centripetal acceleration. Solve problems involving centripetal force. Explain how the apparent existence of an outward force in circular

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The tides, Dark matter, Space Elevator 7/29/2010 Physics 214

More information

This Week. 2/3/14 Physics 214 Fall

This Week. 2/3/14 Physics 214 Fall This Week Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The tides, Dark matter, Space Elevator 2/3/14 Physics 214 Fall

More information

Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Chapter 7: Circular Motion

Chapter 7: Circular Motion Chapter 7: Circular Motion Spin about an axis located within the body Example: Spin about an axis located outside the body. Example: Example: Explain why it feels like you are pulled to the right side

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

This Week. 5/27/2015 Physics 214 Summer

This Week. 5/27/2015 Physics 214 Summer This Week Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The orbit of the Earth,tides, Dark matter 5/27/2015 Physics

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

Circular Motion 1

Circular Motion 1 --------------------------------------------------------------------------------------------------- Circular Motion 1 ---------------------------------------------------------------------------------------------------

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

CHAPTER 7 GRAVITATION

CHAPTER 7 GRAVITATION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 7 GRAVITATION Day Plans for the day Assignments for the day 1 7.1 Planetary Motion & Gravitation Assignment

More information

Experiment #7 Centripetal Force Pre-lab Questions Hints

Experiment #7 Centripetal Force Pre-lab Questions Hints Experiment #7 Centripetal Force Pre-lab Questions Hints The following are some hints for this pre-lab, since a few of these questions can be a little difficult. Note that these are not necessarily the

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

S Notre Dame 1

S Notre Dame 1 Worksheet 1 Horizontal Circular Motion 1. Will the acceleration of a car be the same if it travels Around a sharp curve at 60 km/h as when it travels around a gentle curve at the same speed? Explain. 2.

More information

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 4 Newton s Three Laws, Free Body Diagrams, Friction Chapter 5 (except

More information

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM.

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM. !! www.clutchprep.com EXAMPLE: HOLDING WEIGHTS ON A SPINNING STOOL EXAMPLE: You stand on a stool that is free to rotate about an axis perpendicular to itself and through its center. Suppose that your combined

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Study Questions/Problems Week 4

Study Questions/Problems Week 4 Study Questions/Problems Week 4 Chapter 6 treats many topics. I have selected on average less than three problems from each topic. I suggest you do them all. Likewise for the Conceptual Questions and exercises,

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed Conceptual Physics 11 th Edition Circular Motion Rotational Inertia Torque Center of Mass and Center of Gravity Centripetal Force Centrifugal Force Chapter 8: ROTATION Rotating Reference Frames Simulated

More information

4 th week of Lectures Jan. 29. Feb

4 th week of Lectures Jan. 29. Feb 4 th week of Lectures Jan. 29. Feb. 02. 2018. Circular motion Going around the bend Riding in a Ferris wheel Gravitation Our solar system, satellites The tides 1/31/2018 Physics 214 Spring 2018 1 The Greatest

More information

Chapter 9. Gravitation

Chapter 9. Gravitation Chapter 9 Gravitation 9.1 The Gravitational Force For two particles that have masses m 1 and m 2 and are separated by a distance r, the force has a magnitude given by the same magnitude of force acts on

More information

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Feeling of apparent weight: Caused your body's reaction to the push that the

More information

Chapter 6: Uniform Circular Motion and Gravity

Chapter 6: Uniform Circular Motion and Gravity Chapter 6: Uniform Circular Motion and Gravity Brent Royuk Phys-111 Concordia University Angular Measure Angular distance: Δθ = θ - θ o Analogous to linear distance Rotation instead of translation How

More information