MAT137 Calculus! Lecture 10

Size: px
Start display at page:

Download "MAT137 Calculus! Lecture 10"

Transcription

1 MAT137 Calculus! Lecture 10 Today we will study the Mean Value Theorem and its applications. Extrema. Optimization Problems. ( ) PS4 is due this Friday June 23. Next class: Curve Sketching ( )

2 Mean value theorem (MVT) MVT Let f be a function that satisfies the following hypothesis: 1 f is continuous on the closed interval [a,b] 2 f is differentiable on the open interval (a,b) then there is at least a point c (a,b) such that f (c) = f(b) f(a) b a

3 Mean value theorem (MVT) remarks MVT Let f be a function that satisfies the following hypothesis: 1 f is continuous on the closed interval [a,b] 2 f is differentiable on the open interval (a,b) then there is at least a point c (a,b) such that f (c) = f(b) f(a) b a Note that the theorem does not tell us how to find the number c. It only tells us that such a number exists.

4 Mean value theorem (MVT) remarks MVT Let f be a function that satisfies the following hypothesis: 1 f is continuous on the closed interval [a,b] 2 f is differentiable on the open interval (a,b) then there is at least a point c (a,b) such that f (c) = f(b) f(a) b a Geometrical interpretation: see the board

5 Mean value theorem (MVT) remarks MVT Let f be a function that satisfies the following hypothesis: 1 f is continuous on the closed interval [a,b] 2 f is differentiable on the open interval (a,b) then there is at least a point c (a,b) such that f (c) = f(b) f(a) b a Physical interpretation: if I run continuously for an hour in High Park and I described my trajectory using a function s : [0,1] R, the average velocity will coincide with the instantaneous velocity at some point of my trajectory, i.e., there is a time t 0 [0,1] such that s (t 0 ) = s(1) s(0) 1 0 = s(1) s(0).

6 Mean value theorem (MVT) remarks MVT Let f be a function that satisfies the following hypothesis: 1 f is continuous on the closed interval [a,b] 2 f is differentiable on the open interval (a,b) then there is at least a point c (a,b) such that f (c) = f(b) f(a) b a It is left as an exercise to find examples of a function f for which the MVT fails when: f is not differentiable on (a,b) but continuous on [a,b] f is differentiable on (a,b) but f is not continuous on [a,b]

7 Mean value theorem (MVT) Rolle s theorem We will prove the mean value theorem in steps. Rolle s theorem Suppose that f is continuous on the closed interval [a,b] and it is differentiable on the open interval (a,b). If f(a) = f(b) = 0, then there is at least a number c (a,b) for which f (c) = 0. Proof: we will prove this theorem later

8 Mean value theorem (MVT) Rolle s theorem: remarks Some times Rolle s theorem is stated as Rolle s theorem Suppose that g is continuous on the closed interval [a,b] and it is differentiable on the open interval (a,b). If g(a) = g(b), then there is at least a number c (a,b) for which g (c) = 0. Proof: considering the auxiliary function f(x) = g(x) g(a) and using our version of Rolle s theorem, you can prove this at home! Rolle s theorem is a special case of the mean value theorem (why?).

9 Mean value theorem (MVT) proof Proof of the Mean Value Theorem: Consider the auxiliary function ( ) f(b) f(a) g(x) = f(x) (x a)+f(a). b a And let s verify that g satisfies the hypothesis of Rolle s theorem (see the board).

10 Applications of MVT Corollary If f (x) = 0 for all x (a,b), then f is constant on (a,b). Proof: on the board. Desideratum: w (a,b), z (a,b),f(w) = f(z).

11 Applications of MVT Corollary If f (x) = g (x) for all x (a,b), then there is a constant C R such that f(x) = g(x)+c, for all x (a,b). Proof: exercise.

12 Applications of MVT Increasing functions Which of the following are valid ways to to write the definition of increasing function? Definition Let f be a function defined on D. We say that f is increasing if... 1 x 1,x 2 D s.t. x 1 < x 2 f(x 1 ) < f(x 2 ). 2 x 1,x 2 D, f(x 1 ) < f(x 2 ). 3 x 1,x 2 D, x 1 < x 2 f(x 1 ) < f(x 2 ). 4 x 1 D, f (x 1 ) > 0.

13 Applications of MVT Increasing functions Which of the following are valid ways to to write the definition of increasing function? Definition Let f be a function defined on D. We say that f is increasing if... 1 x 1,x 2 D s.t. x 1 < x 2 f(x 1 ) < f(x 2 ). 2 x 1,x 2 D, f(x 1 ) < f(x 2 ). 3 x 1,x 2 D, x 1 < x 2 f(x 1 ) < f(x 2 ). 4 x 1 D, f (x 1 ) > 0.

14 Applications of MVT Increasing functions Definition Let f be a function defined on an interval I. We say that f is increasing on I if for all x 1,x 2 I, we have x 1 < x 2 f(x 1 ) < f(x 2 ). We say that f is non-decreasing on I if for all x 1,x 2 I, we have x 1 < x 2 f(x 1 ) f(x 2 ). In a similar way, we can define when a function f is decreasing and non-increasing on an interval I (homework).

15 Applications of MVT Increasing functions vs. derivatives Theorem Let a < b and let f be a function differentiable on (a,b). If f (x) > 0, for all x (a,b), then f is increasing on (a,b). If f (x) < 0, for all x (a,b), then f is decreasing on (a,b). Proof: we will prove only the first statement. We need to prove that x 1,x 2 (a,b),x 1 < x 2 f(x 1 ) f(x 2 ). So, fix x 1,x 2 (a,b). Now we need to prove that: if x 1 < x 2, then f(x 1 ) f(x 2 ) Assume that x 1 < x 2. See the board for the rest of the proof...

16 Applications of MVT Increasing functions vs. derivatives Example 0 Example 0 Let f(x) = x 3 27x 20. Find the intervals on which f is increasing or decreasing. Find the local extreme values.

17 Extrema Recall Extreme value theorem. If f is is continuous on a closed bounded interval [a,b], then f attains both a maximum value M and a minimum value m in [a,b]. That is, there are numbers x 1,x 2 [a,b] such that f(x 1 ) = M, f(x 2 ) = M and for all x [a,b], m f(x) M. How can we find M and m?

18 Extrema Definition Let f be a function with domain D and let c D. We say that f has a maximum (global maximum) at c if f(x) f(c), for all x D. Definition Let f be a function with domain D and let c D. We say that f has a minimum (global minimum) at c if f(c) f(x), for all x D. Maximum and minimum are called extreme values of the function f.

19 Extrema Example 1 Does f have a maximum if f(x) = x 2? Does it have a minimum? Minimum of f is attain at 0 and it is m = f(0) = 0. There is no maximum.

20 Extrema Example 2 Does the following function have a maximum or a minimum? x if x < 0 f(x) = sin(x) if 0 x 2π x 2π if x > 2π f has no maximum and it has no minimum.

21 Extrema Example 2 Does the following function have a maximum or a minimum? x if x < 0 f(x) = sin(x) if 0 x 2π x 2π if x > 2π What about g given by g(x) = sin(x), for x [0,2π]? Note that g = f [0,2π]. g has a maximum at π 2 and a minimum at 3π 2. Even though f has neither a maximum nor a minimum, f does have local max and local min

22 Local extrema Definition Let f be a function with domain D and let c D. We say that f has a local maximum at c if there is δ > 0 such that x c < δ f(x) f(c). Definition Let f be a function with domain D and let c D. We say that f has a local minimum at c if there is δ > 0 such that x c < δ f(c) f(x).

23 Local extrema Example 3 Does the following function have a local maximum or a local minimum? x if x < 0 f(x) = sin(x) if 0 x 2π x if x > 2π Solution: see the board.

24 Local extrema Definition Let f be a function with domain D and let c D. We say that c is an interior point of D if there is an open interval I such that c I and I D. Equivalently, c is an interior point of D if there is δ > 0 such that (c δ,c +δ) D. Theorem If f has a local maximum or local minimum at an interior point c of its domain, then f (c) = 0 or f (c) does not exist.

25 Local extrema Theorem If f has a local maximum or local minimum at an interior point c of its domain, then f (c) = 0 or f (c) does not exist. Definition The interior points c of the domain of f for which are called critical points. f (c) = 0 or f (c) does not exist.

26 Finding local and global extrema Let f be continuous on a closed bounded interval [a,b]. The Extreme value theorem says that f attains a maximum and a minimum. The Local Extreme Value Theorem says that the only places where a function can possibly have an extreme are 1 interior points c where f (c) = 0, 2 interior points c where f (c) is undefined, 3 the end points of the domain of f (i.e. a and b).

27 Finding local and global extrema Example 3 Example 3 Find the local and global extrema of the function f given by f(x) = x 2 3 (x 1) 3 on the interval [ 1,2]. See the board for the solution.

28 Mean value theorem (MVT) Rolle s theorem Theorem Suppose that f is differentiable at x 0. If f (x 0 ) > 0, then for all positive h sufficiently small. If f (x 0 ) < 0, then for all positive h sufficiently small. Proof: see the chalkboard f(x 0 h) < f(x 0 ) < f(x 0 +h) f(x 0 h) < f(x 0 ) < f(x 0 +h)

29 Mean value theorem (MVT) Rolle s theorem Rolle s theorem Suppose that f is continuous on the closed interval [a,b] and it is differentiable on the open interval (a,b). If f(a) = f(b) = 0, then there is at least a number c (a,b) for which Proof: see the chalkboard Theorem 2.6 of the book: Extreme value theorem. f (c) = 0. If f is is continuous on a closed bounded interval [a,b], then f attains both a maximum value M and a minimum value m in [a,b]. That is, there are numbers x 1,x 2 [a,b] such that f(x 1 ) = M, f(x 2 ) = M and for all x [a,b], m f(x) M.

MAT137 Calculus! Lecture 9

MAT137 Calculus! Lecture 9 MAT137 Calculus! Lecture 9 Today we will study: Limits at infinity. L Hôpital s Rule. Mean Value Theorem. (11.5,11.6, 4.1) PS3 is due this Friday June 16. Next class: Applications of the Mean Value Theorem.

More information

The Mean Value Theorem and its Applications

The Mean Value Theorem and its Applications The Mean Value Theorem and its Applications Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229 1. Extreme

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

Math 141: Section 4.1 Extreme Values of Functions - Notes

Math 141: Section 4.1 Extreme Values of Functions - Notes Math 141: Section 4.1 Extreme Values of Functions - Notes Definition: Let f be a function with domain D. Thenf has an absolute (global) maximum value on D at a point c if f(x) apple f(c) for all x in D

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan,

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Linear approximation 1 1.1 Linear approximation and concavity....................... 2 1.2 Change in y....................................

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics Mean Value Theorem MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Background: Corollary to the Intermediate Value Theorem Corollary Suppose f is continuous on the closed interval

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics Mean Value Theorem MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Background: Corollary to the Intermediate Value Theorem Corollary Suppose f is continuous on the closed interval

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

Kevin James. MTHSC 102 Section 4.3 Absolute Extreme Points

Kevin James. MTHSC 102 Section 4.3 Absolute Extreme Points MTHSC 102 Section 4.3 Absolute Extreme Points Definition (Relative Extreme Points and Relative Extreme Values) Suppose that f(x) is a function defined on an interval I (possibly I = (, ). 1 We say that

More information

Lesson 59 Rolle s Theorem and the Mean Value Theorem

Lesson 59 Rolle s Theorem and the Mean Value Theorem Lesson 59 Rolle s Theorem and the Mean Value Theorem HL Math - Calculus After this lesson, you should be able to: Understand and use Rolle s Theorem Understand and use the Mean Value Theorem 1 Rolle s

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

AP CALCULUS (AB) Outline Chapter 4 Overview. 2) Recovering a function from its derivatives and a single point;

AP CALCULUS (AB) Outline Chapter 4 Overview. 2) Recovering a function from its derivatives and a single point; AP CALCULUS (AB) Outline Chapter 4 Overview NAME Date Objectives of Chapter 4 1) Using the derivative to determine extreme values of a function and the general shape of a function s graph (including where

More information

MAT01B1: the Mean Value Theorem

MAT01B1: the Mean Value Theorem MAT01B1: the Mean Value Theorem Dr Craig 15 August 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday (this week): 11h20 12h30 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula.

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. Points of local extremum Let f : E R be a function defined on a set E R. Definition. We say that f attains a local maximum

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

MAT01B1: Maximum and Minimum Values

MAT01B1: Maximum and Minimum Values MAT01B1: Maximum and Minimum Values Dr Craig 14 August 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20 12h55 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

The Mean Value Theorem and the Extended Mean Value Theorem

The Mean Value Theorem and the Extended Mean Value Theorem The Mean Value Theorem and the Extended Mean Value Theorem Willard Miller September 21, 2006 0.1 The MVT Recall the Extreme Value Theorem (EVT) from class: If the function f is defined and continuous on

More information

MAT01B1: the Mean Value Theorem

MAT01B1: the Mean Value Theorem MAT01B1: the Mean Value Theorem Dr Craig 21 August 2017 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 09h40 11h15 Friday (this week): 11h20 12h30 14h00 16h00 Office C-Ring 508

More information

Today Applications of MVT Find where functions are increasing/decreasing Derivative tests for extrema

Today Applications of MVT Find where functions are increasing/decreasing Derivative tests for extrema Today Applications of MVT Find where functions are increasing/decreasing Derivative tests for extrema Mean Value Theorem (proved by Cauchy in 1823) If f is continuous on [a, b] f(b) differentiable on (a,

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

Kevin James. MTHSC 102 Section 4.2 Relative Extreme Points

Kevin James. MTHSC 102 Section 4.2 Relative Extreme Points MTHSC 102 Section 4.2 Relative Extreme Points Definition (Relative Extreme Points and Relative Extreme Values) Suppose that f(x) is a function defined on an interval I. 1 We say that f attains a relative

More information

Math 117: Honours Calculus I Fall, 2002 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded.

Math 117: Honours Calculus I Fall, 2002 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded. Math 117: Honours Calculus I Fall, 2002 List of Theorems Theorem 1.1 (Binomial Theorem) For all n N, (a + b) n = n k=0 ( ) n a n k b k. k Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded.

More information

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b).

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b). Definition of Increasing and Decreasing A function f(x) is increasing on an interval if for any two numbers x 1 and x in the interval with x 1 < x, then f(x 1 ) < f(x ). As x gets larger, y = f(x) gets

More information

[ ] with end points at ( a,f(a) ) and b,f(b)

[ ] with end points at ( a,f(a) ) and b,f(b) Section 4 2B: Rolle s Theorem and the Mean Value Theorem The intermediate Value Theorem If f(x) is a continuous function on the closed interval a,b [ ] with end points at ( a,f(a) ) and b,f(b) ( )then

More information

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions.

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. Continuity Definition. Given a set E R, a function f : E R, and a point c E, the function f is continuous at c if

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) = x 3 5x 2 4x + 20. Its derivative

More information

Homework for Section 1.4, Continuity and One sided Limits. Study 1.4, # 1 21, 27, 31, 37 41, 45 53, 61, 69, 87, 91, 93. Class Notes: Prof. G.

Homework for Section 1.4, Continuity and One sided Limits. Study 1.4, # 1 21, 27, 31, 37 41, 45 53, 61, 69, 87, 91, 93. Class Notes: Prof. G. GOAL: 1. Understand definition of continuity at a point. 2. Evaluate functions for continuity at a point, and on open and closed intervals 3. Understand the Intermediate Value Theorum (IVT) Homework for

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

Math 132 Mean Value Theorem Stewart 3.2

Math 132 Mean Value Theorem Stewart 3.2 Math 132 Mean Value Theorem Stewart 3.2 Vanishing derivatives. We will prove some basic theorems which relate the derivative of a function with the values of the function, culminating in the Uniqueness

More information

What makes f '(x) undefined? (set the denominator = 0)

What makes f '(x) undefined? (set the denominator = 0) Chapter 3A Review 1. Find all critical numbers for the function ** Critical numbers find the first derivative and then find what makes f '(x) = 0 or undefined Q: What is the domain of this function (especially

More information

Linearization and Extreme Values of Functions

Linearization and Extreme Values of Functions Linearization and Extreme Values of Functions 3.10 Linearization and Differentials Linear or Tangent Line Approximations of function values Equation of tangent to y = f(x) at (a, f(a)): Tangent line approximation

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

Consequences of Continuity and Differentiability

Consequences of Continuity and Differentiability Consequences of Continuity and Differentiability We have seen how continuity of functions is an important condition for evaluating limits. It is also an important conceptual tool for guaranteeing the existence

More information

Shape of a curve. Nov 15, 2016

Shape of a curve. Nov 15, 2016 Shape of a curve Nov 15, 2016 y = f(x) Where does the curve of f attain its maximum or minimum value? Where does the curve of f increase or decrease? What is its sketch? Some definitions Def: Absolute

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

Math 117: Honours Calculus I Fall, 2012 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded): A convergent sequence is bounded.

Math 117: Honours Calculus I Fall, 2012 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded): A convergent sequence is bounded. Math 117: Honours Calculus I Fall, 2012 List of Theorems Theorem 1.1 (Binomial Theorem): For all n N, (a+b) n = n k=0 ( ) n a n k b k. k Theorem 2.1 (Convergent Bounded): A convergent sequence is bounded.

More information

What do derivatives tell us about functions?

What do derivatives tell us about functions? What do derivatives tell us about functions? Math 102 Section 106 Cole Zmurchok October 3, 2016 Announcements New & Improved Anonymous Feedback Form: https://goo.gl/forms/jj3xwycafxgfzerr2 (Link on Section

More information

Calculus The Mean Value Theorem October 22, 2018

Calculus The Mean Value Theorem October 22, 2018 Calculus The Mean Value Theorem October, 018 Definitions Let c be a number in the domain D of a function f. Then f(c) is the (a) absolute maximum value of f on D, i.e. f(c) = max, if f(c) for all x in

More information

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number 4.1 Maximum and Minimum Values Assigned videos: 4.1.001, 4.1.005, 4.1.035, 4.1.039 DEFINITION Critical number A critical number of a function f is a number c in the domain of f such that f c or f c ( )

More information

30.1 Continuity of scalar fields: Definition: Theorem: Module 10 : Scaler fields, Limit and Continuity

30.1 Continuity of scalar fields: Definition: Theorem: Module 10 : Scaler fields, Limit and Continuity Module 10 : Scaler fields, Limit and Continuity Lecture 30 : Continuity of scaler fields [Section 30.1] Objectives In this section you will learn the following : The notion of continuity for scalar fields.

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula 1. Two theorems Rolle s Theorem. If a function y = f(x) is differentiable for a x b and if

More information

It has neither a local maximum value nor an absolute maximum value

It has neither a local maximum value nor an absolute maximum value 1 Here, we learn how derivatives affect the shape of a graph of a function and, in particular, how they help us locate maximum and minimum values of functions. Some of the most important applications of

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2019, WEEK 10 JoungDong Kim Week 10 Section 4.2, 4.3, 4.4 Mean Value Theorem, How Derivatives Affect the Shape of a Graph, Indeterminate Forms and L Hospital s

More information

6.2 Important Theorems

6.2 Important Theorems 6.2. IMPORTANT THEOREMS 223 6.2 Important Theorems 6.2.1 Local Extrema and Fermat s Theorem Definition 6.2.1 (local extrema) Let f : I R with c I. 1. f has a local maximum at c if there is a neighborhood

More information

Chapter 4.6. Mean Value Theorem

Chapter 4.6. Mean Value Theorem Chapter 4.6 Mean Value Theorem The Mean Value Theorem (MVT) is a cornerstone in the theoretical framework of calculus. Critical theorems, such as the Fundamental Theorem of Calculus and Taylor s Theorem

More information

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam.

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam. MATH 2250 Calculus I Date: October 5, 2017 Eric Perkerson Optimization Notes 1 Chapter 4 Note: Any material in re you will nee to have memorize verbatim (more or less) for tests, quizzes, an the final

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Extrema on an Interval Objective: Understand the definition of extrema of a function on an interval. Understand the definition of relative extrema of a function on an open interval.

More information

10/9/10. The line x = a is a vertical asymptote of the graph of a function y = f(x) if either. Definitions and Theorems.

10/9/10. The line x = a is a vertical asymptote of the graph of a function y = f(x) if either. Definitions and Theorems. Definitions and Theorems Introduction Unit 2 Limits and Continuity Definition - Vertical Asymptote Definition - Horizontal Asymptote Definition Continuity Unit 3 Derivatives Definition - Derivative Definition

More information

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London MTH4100 Calculus I Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages School of Mathematical Sciences Queen Mary, University of London Autumn 2008 R. Klages (QMUL) MTH4100 Calculus 1 Week 8 1 /

More information

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Essentials of Calculus by James Stewart Prepared by Jason Gaddis Chapter 3 - Applications of Differentiation 3.1 - Maximum and Minimum Values Note We continue our study of functions using derivatives.

More information

1S11: Calculus for students in Science

1S11: Calculus for students in Science 1S11: Calculus for students in Science Dr. Vladimir Dotsenko TCD Lecture 21 Dr. Vladimir Dotsenko (TCD) 1S11: Calculus for students in Science Lecture 21 1 / 1 An important announcement There will be no

More information

Math 241 Homework 7 Solutions

Math 241 Homework 7 Solutions Math 241 Homework 7 s Section 4.2 Problem 1. Find the value or values c that satisfy the equation = f (c) in the conclusion of the Mean Value Theorem for functions and intervals: f(b) f(a) b a f(x) = x

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

AB Calc Sect Notes Monday, November 28, 2011

AB Calc Sect Notes Monday, November 28, 2011 Assignments & Opportunities: I will TRY to have Sketchpad projects back to you next Monday or Tuesday. Tomorrow: p268; 5,22,27,45 & p280; 9 AB Calc Sect 4.3 - Notes Monday, November 28, 2011 Today's Topics

More information

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes Jim Lambers MAT 460 Fall Semester 2009-10 Lecture 2 Notes These notes correspond to Section 1.1 in the text. Review of Calculus Among the mathematical problems that can be solved using techniques from

More information

Section 4.2 The Mean Value Theorem

Section 4.2 The Mean Value Theorem Section 4.2 The Mean Value Theorem Ruipeng Shen October 2nd Ruipeng Shen MATH 1ZA3 October 2nd 1 / 11 Rolle s Theorem Theorem (Rolle s Theorem) Let f (x) be a function that satisfies: 1. f is continuous

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus 1 Instructor: James Lee Practice Exam 3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine from the graph whether the function

More information

x x 1 x 2 + x 2 1 > 0. HW5. Text defines:

x x 1 x 2 + x 2 1 > 0. HW5. Text defines: Lecture 15: Last time: MVT. Special case: Rolle s Theorem (when f(a) = f(b)). Recall: Defn: Let f be defined on an interval I. f is increasing (or strictly increasing) if whenever x 1, x 2 I and x 2 >

More information

Unit #10 : Graphs of Antiderivatives; Substitution Integrals

Unit #10 : Graphs of Antiderivatives; Substitution Integrals Unit #10 : Graphs of Antiderivatives; Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses:

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: Calculus 1 Math 151 Week 10 Rob Rahm 1 Mean Value Theorem Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: (1) f is continuous on [a, b]. (2) f is differentiable

More information

Mean Value Theorem. Increasing Functions Extreme Values of Functions Rolle s Theorem Mean Value Theorem FAQ. Index

Mean Value Theorem. Increasing Functions Extreme Values of Functions Rolle s Theorem Mean Value Theorem FAQ. Index Mean Value Increasing Functions Extreme Values of Functions Rolle s Mean Value Increasing Functions (1) Assume that the function f is everywhere increasing and differentiable. ( x + h) f( x) f Then h 0

More information

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test 9.1 Increasing and Decreasing Functions One of our goals is to be able to solve max/min problems, especially economics

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

We saw in the previous lectures that continuity and differentiability help to understand some aspects of a

We saw in the previous lectures that continuity and differentiability help to understand some aspects of a Module 3 : Differentiation and Mean Value Theorems Lecture 9 : Roll's theorem and Mean Value Theorem Objectives In this section you will learn the following : Roll's theorem Mean Value Theorem Applications

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

MAT137 Calculus! Lecture 20

MAT137 Calculus! Lecture 20 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 20 Today: 4.6 Concavity 4.7 Asypmtotes Next: 4.8 Curve Sketching Indeterminate Forms for Limits Which of the following are indeterminate

More information

MTH4100 Calculus I. Bill Jackson School of Mathematical Sciences QMUL. Week 9, Semester 1, 2013

MTH4100 Calculus I. Bill Jackson School of Mathematical Sciences QMUL. Week 9, Semester 1, 2013 MTH4100 School of Mathematical Sciences QMUL Week 9, Semester 1, 2013 Concavity Concavity In the literature concave up is often referred to as convex, and concave down is simply called concave. The second

More information

WEEK 8. CURVE SKETCHING. 1. Concavity

WEEK 8. CURVE SKETCHING. 1. Concavity WEEK 8. CURVE SKETCHING. Concavity Definition. (Concavity). The graph of a function y = f(x) is () concave up on an interval I if for any two points a, b I, the straight line connecting two points (a,

More information

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 1. True or False (22 points, 2 each) T or F Every set in R n is either open or closed

More information

Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh

Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES By Dr. Mohammed Ramidh OVERVIEW: This chapter studies some of the important applications of derivatives. We learn how derivatives are used

More information

Rolle s Theorem. The theorem states that if f (a) = f (b), then there is at least one number c between a and b at which f ' (c) = 0.

Rolle s Theorem. The theorem states that if f (a) = f (b), then there is at least one number c between a and b at which f ' (c) = 0. Rolle s Theorem Rolle's Theorem guarantees that there will be at least one extreme value in the interior of a closed interval, given that certain conditions are satisfied. As with most of the theorems

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 8 SOLUTIONS

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 8 SOLUTIONS MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 8 SOLUTIONS. Let f : R R be continuous periodic with period, i.e. f(x + ) = f(x) for all x R. Prove the following: (a) f is bounded above below

More information

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ]

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] Lecture 2 5B Evaluating Limits Limits x ---> a The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] the y values f (x) must take on every value on the

More information

M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version

M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version Chapter 0: Some revision of M1P1: Limits and continuity This chapter is mostly the revision of Chapter

More information

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) =

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) = Theorem 13 (i) If p(x) is a polynomial, then p(x) = p(c) 1 Limits 11 12 Fining its graphically Examples 1 f(x) = x3 1, x 1 x 1 The behavior of f(x) as x approximates 1 x 1 f(x) = 3 x 2 f(x) = x+1 1 f(x)

More information

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then 4 3A : Increasing and Decreasing Functions and the First Derivative Increasing and Decreasing! If the following conditions both occur! 1. f (x) is a continuous function on the closed interval [ a,b] and

More information

Unit #10 : Graphs of Antiderivatives, Substitution Integrals

Unit #10 : Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity.

M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity. M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity. This chapter is mostly the revision of Chapter 6 of M1P1. First we consider functions

More information

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Closed sets We have been operating at a fundamental level at which a topological space is a set together

More information

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation Dr. Sarah Mitchell Autumn 2014 Rolle s Theorem Theorem

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

1. Decide for each of the following expressions: Is it a function? If so, f is a function. (i) Domain: R. Codomain: R. Range: R. (iii) Yes surjective.

1. Decide for each of the following expressions: Is it a function? If so, f is a function. (i) Domain: R. Codomain: R. Range: R. (iii) Yes surjective. Homework 2 2/14/2018 SOLUTIONS Exercise 6. 1. Decide for each of the following expressions: Is it a function? If so, (i) what is its domain, codomain, and image? (iii) is it surjective? (ii) is it injective?

More information

3 Geometrical Use of The Rate of Change

3 Geometrical Use of The Rate of Change Arkansas Tech University MATH 224: Business Calculus Dr. Marcel B. Finan Geometrical Use of The Rate of Change Functions given by tables of values have their limitations in that nearly always leave gaps.

More information

Lecture 34: Recall Defn: The n-th Taylor polynomial for a function f at a is: n f j (a) j! + f n (a)

Lecture 34: Recall Defn: The n-th Taylor polynomial for a function f at a is: n f j (a) j! + f n (a) Lecture 34: Recall Defn: The n-th Taylor polynomial for a function f at a is: n f j (a) P n (x) = (x a) j. j! j=0 = f(a)+(f (a))(x a)+(1/2)(f (a))(x a) 2 +(1/3!)(f (a))(x a) 3 +... + f n (a) (x a) n n!

More information

Analysis II - few selective results

Analysis II - few selective results Analysis II - few selective results Michael Ruzhansky December 15, 2008 1 Analysis on the real line 1.1 Chapter: Functions continuous on a closed interval 1.1.1 Intermediate Value Theorem (IVT) Theorem

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

Mathematic 108, Fall 2015: Solutions to assignment #7

Mathematic 108, Fall 2015: Solutions to assignment #7 Mathematic 08, Fall 05: Solutions to assignment #7 Problem # Suppose f is a function with f continuous on the open interval I and so that f has a local maximum at both x = a and x = b for a, b I with a

More information