Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh

Size: px
Start display at page:

Download "Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh"

Transcription

1 Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES By Dr. Mohammed Ramidh

2 OVERVIEW: This chapter studies some of the important applications of derivatives. We learn how derivatives are used to find extreme values of functions, the Mean Value Theorem, L Hôpital s Rule, Newton s Method. Extreme Values of Functions

3 EXAMPLE 1: The absolute extreme of the following functions on their domains can be seen in Figure.

4 Local (Relative) Extreme Values:

5 The First Derivative Theorem for Local Extreme Values

6 EXAMPLE 2: Find the absolute maximum and minimum values of ƒ(x) = x 2 on [-2, 1]. Solution: The function is differentiable over its entire domain, so the only critical point is where ƒ (x) = 2x = 0, namely We need to check the function s values at x = 0 and at the endpoints x = -2 and x = 1: Critical point value: ƒ(0) = 0 Endpoint values: ƒ(1) = 1 ƒ( -2) = 4 The function has an absolute maximum value of 4 at x = -2 and an absolute minimum value of 0 at x = 0.

7 EXAMPLE 3: Find the absolute extrema values of g(t) = 8t - t 4, on the interval [-2,1].

8 EXAMPLE 4: Find the absolute maximum and minimum values of Solution: The first derivative ƒ(x) = x 2 3, on the interval [-2,3].

9 EXERCISES In Exercises1 3,determine from the graph whether the function has any absolute extreme values on [a, b] In Exercises1 5, find the absolute maximum and minimum values of function on the given interval. Then graph the function. Identify each the points on the graph where the absolute extremer occur, and include their coordinates

10 3. In Exercises1 4,find the function s absolute maximum and minimum values and critical point In Exercises1 5, find the derivative at each critical point and determine the local extreme values

11 The Mean Value Theorem To arrive at this theorem we first need Rolle s Theorem. Rolle s Theorem:

12 The Mean Value Theorem:

13 Solution: f b f(a) b a =f (c) = = 2 f (x)=2x f (c) = 2c = 2 c= 1

14 EXERCISES 4.2 Find the value or values of c that satisfy the equation in the conclusion of the Mean Value Theorem for the functions and intervals in Exercises 1 4.

15 Monotonic Functions and The First Derivative Test Increasing Functions and Decreasing Functions: The only functions with positive derivatives are increasing functions; the only functions with negative derivatives are decreasing functions.

16 First Derivative Test for Monotonic Functions:

17 EXAMPLE 5 : Using the First Derivative Test for Monotonic Functions Find the critical points of ƒ(x) = x 3 12x 5 and identify the intervals on which ƒ is increasing and decreasing. Solution: The function ƒ is everywhere continuous and differentiable. The first derivative, is zero at x = -2 and x = 2. These critical points subdivide the domain of ƒ into intervals (, 2),(-2,2),and(2, ) and we determine the sign of f by evaluating ƒ at a point in each subinterval.the behavior of ƒ is determined by then applying Corollary 3 to each subinterval.

18 First Derivative Test for Local Extrema FIGURE, A function s first derivative tells how the graph rises and falls.

19 EXAMPLE 6: Using the First Derivative Test for Local Extrema,find the critical points of, Identify the intervals on which ƒ is increasing and decreasing. Find the function s local and absolute extreme values.

20

21 summary:

22 Fig.13-2

23 1.

24

25 EXERCISES Answer the following questions about the functions whose derivatives are given in Exercises 1 5: a. What are the critical points of ƒ? b. On what intervals is ƒ increasing or decreasing? c. At what points,if any, does ƒ assume local maximum and minimum values?

26 2. In Exercises 1 4:

27 Concavity and Curve Sketching In this section we see how the second derivative gives information about the way the graph of a differentiable function bends or turns. Concavity The Second Derivative Test for Concavity

28

29 Points of Inflection Second Derivative Test for Local Extrema

30 EXAMPLE 8: Using ƒ and ƒ to Graph ƒ Sketch a graph of the function ƒ(x) = x 4-4x using the following steps. (a) Identify where the extrema of ƒ occur. (b) Find the intervals on which ƒ is increasing and the intervals on which ƒ is decreasing. (c) Find where the graph of ƒ is concave up and where it is concave down. (d) Sketch the general shape of the graph for ƒ. (e) Plot some specific points, such as local maximum and minimum points, points of inflection,and intercepts. Then sketch the curve.

31

32

33 (e) Plot the curve s intercepts (if possible) and the points where y and y are zero. Indicate any local extreme values and inflection points. Use the general shape as a guide to sketch the curve. See figure. FIGURE 4. The graph of ƒ(x) = x 4 4x

34 Strategy for Graphing y = ƒ(x)

35 EXAMPLE 7: Using the Graphing Strategy, Sketch the graph of Solution: ƒ(x) = (x+1)2 1+x 2

36

37

38

39 EXERCISES Identify the inflection points and local maxima and minima of the functions graphed in Exercises 1 3. Identify the intervals on which the functions are concave up and concave down Use the steps of the graphing procedure on page 272 to graph the equations in Exercises 1 5. Include the coordinates of any local extreme points and inflection points

40 L Hôpital s Rule L Hôpital s Rule (First Form)

41 L Hôpital s Rule (Stronger Form)

42 EXERCISES In Exercises 1 6, use l Hôpital s Rule to evaluate the limit Use l Hôpital s Rule to find the limits in Exercises

43 Newton-Raphson method to find the roots of nonlinear algebraic equation In this section we study a numerical method, called Newton s method or the Newton Raphson method, which is a technique to approximate the solution to an equation ƒ(x) = 0. Essentially it uses tangent lines in place of the graph of y = ƒ(x) near the points where ƒ is zero. (A value of x where ƒ is zero is a root of the function ƒ and a solution of the equation ƒ(x) = 0.)

44 Procedure for Newton s Method EXAMPLE 1: Applying Newton s Method

45

46 EXAMPLE 13: Using Newton s Method Find the x-coordinate of the point where the curve y = x 3 - x crosses the horizontal line y = 1.

47 In figure we have indicated that the process in Example 2 might have started at the point B0(3, 23) on the curve, with x0 = 3. Point B0 is quite far from the x-axis, but the Tangent at B0 crosses the x-axis at about (2.12, 0), So x1 is still an improvement over x0. If we use Equation (1) repeatedly as before, with ƒ(x) = x 3 - x - 1 and ƒ (x) = 3x 2-1, we confirm the nine-place solution x7 = x6 = in seven steps.

48

49 EXAMPLE 14: Use Newton s method to estimate the one real solution x 3 + 3x + 1 = 0. of Start with x0 = 0 and then find x2. solution: f(x)= x 3 + 3x + 1 f x = 3x When x 0=0, so x 1= x n f(x n ) f x n x 1= then x 2 = - 1 (1 3 ) ( 1 3 ) = =

50 EXERCISES 4.7

51 7. Use Newton s method to find the two negative zeros of 8. 9.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes. Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the

More information

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London MTH4100 Calculus I Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages School of Mathematical Sciences Queen Mary, University of London Autumn 2008 R. Klages (QMUL) MTH4100 Calculus 1 Week 8 1 /

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

MTH4100 Calculus I. Bill Jackson School of Mathematical Sciences QMUL. Week 9, Semester 1, 2013

MTH4100 Calculus I. Bill Jackson School of Mathematical Sciences QMUL. Week 9, Semester 1, 2013 MTH4100 School of Mathematical Sciences QMUL Week 9, Semester 1, 2013 Concavity Concavity In the literature concave up is often referred to as convex, and concave down is simply called concave. The second

More information

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Essentials of Calculus by James Stewart Prepared by Jason Gaddis Chapter 3 - Applications of Differentiation 3.1 - Maximum and Minimum Values Note We continue our study of functions using derivatives.

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

ch 3 applications of differentiation notebook.notebook January 17, 2018 Extrema on an Interval

ch 3 applications of differentiation notebook.notebook January 17, 2018 Extrema on an Interval Extrema on an Interval Extrema, or extreme values, are the minimum and maximum of a function. They are also called absolute minimum and absolute maximum (or global max and global min). Extrema that occur

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

4.2: What Derivatives Tell Us

4.2: What Derivatives Tell Us 4.2: What Derivatives Tell Us Problem Fill in the following blanks with the correct choice of the words from this list: Increasing, decreasing, positive, negative, concave up, concave down (a) If you know

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following Absolute and Local Extrema Definition 1 (Absolute Maximum). A function f has an absolute maximum at c S if f(x) f(c) x S. We call f(c) the absolute maximum of f on S. Definition 2 (Local Maximum). A function

More information

MATH Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz.

MATH Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz. MATH 1060 - Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz. 3 rd Edition Testable Skills Unit 3 Important Students should expect

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Extrema on an Interval Objective: Understand the definition of extrema of a function on an interval. Understand the definition of relative extrema of a function on an open interval.

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number 4.1 Maximum and Minimum Values Assigned videos: 4.1.001, 4.1.005, 4.1.035, 4.1.039 DEFINITION Critical number A critical number of a function f is a number c in the domain of f such that f c or f c ( )

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

Maximum and Minimum Values section 4.1

Maximum and Minimum Values section 4.1 Maximum and Minimum Values section 4.1 Definition. Consider a function f on its domain D. (i) We say that f has absolute maximum at a point x 0 D if for all x D we have f(x) f(x 0 ). (ii) We say that f

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

1S11: Calculus for students in Science

1S11: Calculus for students in Science 1S11: Calculus for students in Science Dr. Vladimir Dotsenko TCD Lecture 21 Dr. Vladimir Dotsenko (TCD) 1S11: Calculus for students in Science Lecture 21 1 / 1 An important announcement There will be no

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

MA 113 Calculus I Fall 2012 Exam 3 13 November Multiple Choice Answers. Question

MA 113 Calculus I Fall 2012 Exam 3 13 November Multiple Choice Answers. Question MA 113 Calculus I Fall 2012 Exam 3 13 November 2012 Name: Section: Last 4 digits of student ID #: This exam has ten multiple choice questions (five points each) and five free response questions (ten points

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer Week 9 Friday Homework (32849) Question 23456789234567892. Question DetailsSCalcET6 4.2.AE.3. [29377] EXAMPLE 3 To illustrate the Mean Value Theorem with a specific function, let's consider f(x) = 5x 3

More information

What makes f '(x) undefined? (set the denominator = 0)

What makes f '(x) undefined? (set the denominator = 0) Chapter 3A Review 1. Find all critical numbers for the function ** Critical numbers find the first derivative and then find what makes f '(x) = 0 or undefined Q: What is the domain of this function (especially

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

PTF #AB 21 Mean Value Theorem & Rolle s Theorem

PTF #AB 21 Mean Value Theorem & Rolle s Theorem PTF #AB 1 Mean Value Theorem & Rolle s Theorem Mean Value Theorem: What you need: a function that is continuous and differentiable on a closed interval f() b f() a What you get: f '( c) where c is an x

More information

Math 1314 Lesson 12 Curve Sketching

Math 1314 Lesson 12 Curve Sketching Math 1314 Lesson 12 Curve Sketching One of our objectives in this part of the course is to be able to graph functions. In this lesson, we ll add to some tools we already have to be able to sketch an accurate

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

Section 1.3 Rates of Change and Behavior of Graphs

Section 1.3 Rates of Change and Behavior of Graphs Section 1. Rates of Change and Behavior of Graphs 5 Section 1. Rates of Change and Behavior of Graphs Since functions represent how an output quantity varies with an input quantity, it is natural to ask

More information

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then 4 3A : Increasing and Decreasing Functions and the First Derivative Increasing and Decreasing! If the following conditions both occur! 1. f (x) is a continuous function on the closed interval [ a,b] and

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

Math 241 Homework 7 Solutions

Math 241 Homework 7 Solutions Math 241 Homework 7 s Section 4.2 Problem 1. Find the value or values c that satisfy the equation = f (c) in the conclusion of the Mean Value Theorem for functions and intervals: f(b) f(a) b a f(x) = x

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P (x) = 3, Q(x) = 4x 7, R(x) = x 2 + x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 + 2x +

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

A.P. Calculus Holiday Packet

A.P. Calculus Holiday Packet A.P. Calculus Holiday Packet Since this is a take-home, I cannot stop you from using calculators but you would be wise to use them sparingly. When you are asked questions about graphs of functions, do

More information

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values I. Review from 1225 A. Definitions 1. Local Extreme Values (Relative) a. A function f has a local

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

MA1021 Calculus I B Term, Sign:

MA1021 Calculus I B Term, Sign: MA1021 Calculus I B Term, 2014 Final Exam Print Name: Sign: Write up your solutions neatly and show all your work. 1. (28 pts) Compute each of the following derivatives: You do not have to simplify your

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

Curve Sketching. Warm up

Curve Sketching. Warm up Curve Sketching Warm up Below are pictured six functions: f,f 0,f 00,g,g 0, and g 00. Pick out the two functions that could be f and g, andmatchthemtotheir first and second derivatives, respectively. (a)

More information

It has neither a local maximum value nor an absolute maximum value

It has neither a local maximum value nor an absolute maximum value 1 Here, we learn how derivatives affect the shape of a graph of a function and, in particular, how they help us locate maximum and minimum values of functions. Some of the most important applications of

More information

10/9/10. The line x = a is a vertical asymptote of the graph of a function y = f(x) if either. Definitions and Theorems.

10/9/10. The line x = a is a vertical asymptote of the graph of a function y = f(x) if either. Definitions and Theorems. Definitions and Theorems Introduction Unit 2 Limits and Continuity Definition - Vertical Asymptote Definition - Horizontal Asymptote Definition Continuity Unit 3 Derivatives Definition - Derivative Definition

More information

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet

More information

Math 103 Day 13: The Mean Value Theorem and Tuesday How Derivatives OctoberShape 26, 2010 a Graph1 / 12

Math 103 Day 13: The Mean Value Theorem and Tuesday How Derivatives OctoberShape 26, 2010 a Graph1 / 12 Math 103 Day 13: The Mean Value Theorem and How Derivatives Shape a Graph Ryan Blair University of Pennsylvania Tuesday October 26, 2010 Math 103 Day 13: The Mean Value Theorem and Tuesday How Derivatives

More information

Calculus The Mean Value Theorem October 22, 2018

Calculus The Mean Value Theorem October 22, 2018 Calculus The Mean Value Theorem October, 018 Definitions Let c be a number in the domain D of a function f. Then f(c) is the (a) absolute maximum value of f on D, i.e. f(c) = max, if f(c) for all x in

More information

Section 5-1 First Derivatives and Graphs

Section 5-1 First Derivatives and Graphs Name Date Class Section 5-1 First Derivatives and Graphs Goal: To use the first derivative to analyze graphs Theorem 1: Increasing and Decreasing Functions For the interval (a,b), if f '( x ) > 0, then

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then Derivatives - Applications - c CNMiKnO PG - 1 Increasing and Decreasing Functions A function y = f(x) is said to increase throughout an interval A if y increases as x increases. That is, whenever x 2 >

More information

Math Section TTH 5:30-7:00pm SR 116. James West 620 PGH

Math Section TTH 5:30-7:00pm SR 116. James West 620 PGH Math 1431 Section 15241 TTH 5:30-7:00pm SR 116 James West jdwest@math.uh.edu 620 PGH Office Hours: 2:30 4:30pm TTH in the CASA Tutoring Center or by appointment Class webpage: http://math.uh.edu/~jdwest/teaching/fa14/1431/calendar.html

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

Module 7 : Applications of Integration - I. Lecture 20 : Definition of the power function and logarithmic function with positive base [Section 20.

Module 7 : Applications of Integration - I. Lecture 20 : Definition of the power function and logarithmic function with positive base [Section 20. Module 7 : Applications of Integration - I Lecture 20 : Definition of the power function and logarithmic function with positive base [Section 201] Objectives In this section you will learn the following

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

Applications of the Derivative - Graphing. Body Temperature Fluctuation during the Menstrual Cycle

Applications of the Derivative - Graphing. Body Temperature Fluctuation during the Menstrual Cycle Math 121 - Calculus for Biology I Spring Semester, 2004 Applications of the Derivative 2001, All Rights Reserved, SDSU & Joseph M. Mahaffy San Diego State University -- This page last updated 30-Dec-03

More information

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses:

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: Calculus 1 Math 151 Week 10 Rob Rahm 1 Mean Value Theorem Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: (1) f is continuous on [a, b]. (2) f is differentiable

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Calculus with Analytic Geometry I Exam 8 Take Home Part.

Calculus with Analytic Geometry I Exam 8 Take Home Part. Calculus with Analytic Geometry I Exam 8 Take Home Part. INSTRUCTIONS: SHOW ALL WORK. Write clearly, using full sentences. Use equal signs appropriately; don t use them between quantities that are not

More information

sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22, 2015 convexity/concav 1 / 15

sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22, 2015 convexity/concav 1 / 15 Calculus with Algebra and Trigonometry II Lecture 2 Maxima and minima, convexity/concavity, and curve sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22,

More information

x x implies that f x f x.

x x implies that f x f x. Section 3.3 Intervals of Increase and Decrease and Extreme Values Let f be a function whose domain includes an interval I. We say that f is increasing on I if for every two numbers x 1, x 2 in I, x x implies

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) = x 3 5x 2 4x + 20. Its derivative

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers Mon 3 Nov 2014 Tuesday 4 Nov: Quiz 8 (4.2-4.4) Friday 7 Nov: Exam 2!!! In class Covers 3.9-4.5 Today: 4.5 Wednesday: REVIEW Linear Approximation and Differentials In section 4.5, you see the pictures on

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

Week 12: Optimisation and Course Review.

Week 12: Optimisation and Course Review. Week 12: Optimisation and Course Review. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway November 21-22, 2016 Assignments. Problem

More information

Shape of a curve. Nov 15, 2016

Shape of a curve. Nov 15, 2016 Shape of a curve Nov 15, 2016 y = f(x) Where does the curve of f attain its maximum or minimum value? Where does the curve of f increase or decrease? What is its sketch? Some definitions Def: Absolute

More information

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective:

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective: Name Period Date: Topic: 9-2 Circles Essential Question: If the coefficients of the x 2 and y 2 terms in the equation for a circle were different, how would that change the shape of the graph of the equation?

More information

Summary of Derivative Tests

Summary of Derivative Tests Summary of Derivative Tests Note that for all the tests given below it is assumed that the function f is continuous. Critical Numbers Definition. A critical number of a function f is a number c in the

More information

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work.

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work. April 9, 009 Name The problems count as marked The total number of points available is 160 Throughout this test, show your work 1 (15 points) Consider the cubic curve f(x) = x 3 + 3x 36x + 17 (a) Build

More information

Lecture Notes (Math 90): Week IX (Thursday)

Lecture Notes (Math 90): Week IX (Thursday) Lecture Notes (Math 90): Week IX (Thursday) Alicia Harper November 13, 2017 Monotonic functions/convexity and Concavity 1 The Story 1.1 Monotonic Functions Recall that we say a function is increasing if

More information

= c, we say that f ( c ) is a local

= c, we say that f ( c ) is a local Section 3.4 Extreme Values Local Extreme Values Suppose that f is a function defined on open interval I and c is an interior point of I. The function f has a local minimum at x= c if f ( c) f ( x) for

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5.

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5. MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 52) Extrema, Inflection Points, and Graphing (Section 53) Alberto Corso albertocorso@ukyedu Department of Mathematics

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

AP CALCULUS (AB) Outline Chapter 4 Overview. 2) Recovering a function from its derivatives and a single point;

AP CALCULUS (AB) Outline Chapter 4 Overview. 2) Recovering a function from its derivatives and a single point; AP CALCULUS (AB) Outline Chapter 4 Overview NAME Date Objectives of Chapter 4 1) Using the derivative to determine extreme values of a function and the general shape of a function s graph (including where

More information

QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS

QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS Math 150 Name: QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% Show all work, simplify as appropriate, and use good form and procedure

More information

MATH 019: Final Review December 3, 2017

MATH 019: Final Review December 3, 2017 Name: MATH 019: Final Review December 3, 2017 1. Given f(x) = x 5, use the first or second derivative test to complete the following (a) Calculate f (x). If using the second derivative test, calculate

More information

Ï ( ) Ì ÓÔ. Math 2413 FRsu11. Short Answer. 1. Complete the table and use the result to estimate the limit. lim x 3. x 2 16x+ 39

Ï ( ) Ì ÓÔ. Math 2413 FRsu11. Short Answer. 1. Complete the table and use the result to estimate the limit. lim x 3. x 2 16x+ 39 Math 43 FRsu Short Answer. Complete the table and use the result to estimate the it. x 3 x 3 x 6x+ 39. Let f x x.9.99.999 3.00 3.0 3. f(x) Ï ( ) Ô = x + 5, x Ì ÓÔ., x = Determine the following it. (Hint:

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

1. Find all critical numbers of the function. 2. Find any critical numbers of the function.

1. Find all critical numbers of the function. 2. Find any critical numbers of the function. 1. Find all critical numbers of the function. a. critical numbers: *b. critical numbers: c. critical numbers: d. critical numbers: e. no critical numbers 2. Find any critical numbers of the function. a.

More information

Math 180, Final Exam, Fall 2007 Problem 1 Solution

Math 180, Final Exam, Fall 2007 Problem 1 Solution Problem Solution. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify. (a) x 27 x 2/3 (b) (x 2 2x + 2)e x (c) ln(x 2 + 4) (a) Use the Power

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

Math 112 (Calculus I) Midterm Exam 3 KEY

Math 112 (Calculus I) Midterm Exam 3 KEY Math 11 (Calculus I) Midterm Exam KEY Multiple Choice. Fill in the answer to each problem on your computer scored answer sheet. Make sure your name, section and instructor are on that sheet. 1. Which of

More information

What do derivatives tell us about functions?

What do derivatives tell us about functions? What do derivatives tell us about functions? Math 102 Section 106 Cole Zmurchok October 3, 2016 Announcements New & Improved Anonymous Feedback Form: https://goo.gl/forms/jj3xwycafxgfzerr2 (Link on Section

More information